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Generating point clouds for slicing free-form objects for 3-D printing
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ABSTRACT
3-D printing, also known as additive manufacturing, has gained a lot of attention both within and
outside CAD research. Even popular media have touted the technology as one of the game changer
technologies of the 21st century. Simply stated, most printing devices addmaterial to an unfinished
part, layer by layer, until the entire object is completed. In order to make this happen, the object is
sliced into thin layers which are produced and glued together. Since NURBS are the standard form
ofmodeling tools, the process entails converting the NURBS into an STLmodel (piecewise triangular
model) which is then sliced into a set of closed polygonal loops. In order to avoid themany problems
with the STL-based slicing, in this paperwe investigate a point cloud-based approach todirect slicing
of NURBS basedmodels. It uses the original NURBSmodel and converts themodel into a point cloud,
based on layer thickness and accuracy requirements, for direct slicing. The onlymajor computational
requirement is point evaluation which can be done error free and in an inexpensive manner. The
generation of the point cloud is the main topic of this paper.
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1. Introduction

3-D printing has become a viable technology in the past
several decades. Although it is not a new technology, its
roots go back as early as the 1960s, increases in mem-
ory and computing power made it useful for a variety of
purposes ranging from rapid prototyping to high preci-
sion manufacturing. There has not been any shortage in
popular media coverage either; wild speculations range
from made-at-home parts to cloning an entire human
being. While some of these speculations may actually
come true over time, the current state-of-the-art is any-
thing but close to the imagination of the authors of these
claims. It is not uncommon to see that once a technology
is on the popular bandwagon, researchers tend to forget
about the gaps left in the fundamentals. 3-D printing is
no exception [3]. In this paper we address one of those
fundamentals: object slicing [2, 4, 9–12, 14].

The current state-of-the-art is to model the object
using NURBS. Once the modeling has been completed,
the object is converted into a tessellated model and saved
as an STL file. The file is then passed onto a slicer
that cuts the triangulated model into closed polygonal
sections. The interior of the sections is filled with the
required material and glued to the layer underneath. In
principle this all sounds well, however, there are several
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fundamental problems with the tessellation as well as the
slicing:

• The tessellation produces an approximation only and
it takes a lot of triangles to get accurate results. This in
itself is not the issue, the problem is that once a certain
level of tolerance is reached, the tessellation software
tends to have all sorts of numerical problems (not to
mention the time it takes to complete the large number
of numerical calculations).

• Currently used commercial tessellation software may
not triangulate the object with a uniform triangula-
tion, i.e. neighboring triangles can be quite different
in size giving rise to numerical problems downstream.
If the tessellation is done via an error tolerance, then
flat areas produce large triangles whereas curved areas
give rise to small ones. Triangles of varying sizes do
not mix well in numerical processes.

• STL files tend to have gaps, dangling edges and faces,
overlapping triangles, etc. This is due, in part, to prob-
lems with the tessellation software and to the fact that
an object is passed from one system to the other dur-
ing the (collaborative) design process. Unfortunately,
these systems have different internal representations
and hence conversion is almost always necessary [6].
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Sadly, conversions come with losses which in turn
produce poor results during triangulation.

• Poor quality STL files need to be healed in order to be
useful for slicing [13].Unfortunately, healing produces
even more losses as the underlying surface is miss-
ing (the idea of the STL model is to avoid the NURBS
model, i.e. to eliminate the precise model altogether).
What is needed is not model repair, but rather model
regeneration to given requirements [7].

• Slicing triangulated models gives rise to all sorts of
numerical anomalies: nearly parallel faces, overlap-
ping faces, touching along an edge or vertex, etc. These
challenges are difficult to handle as they require a
tolerance (tessellation) upon a tolerance (anomaly)
upon another tolerance (numerical process) to han-
dle. In the worst case, these stacked-up tolerances
may produce a model that is not within the required
accuracy [8].

• Most mechanical engineering parts contain tons of
conventional objects such as planes and cylinders.
When the object has a planar part that is parallel to the
slicer, it can pose a challenge if the plane falls between
two slicing positions. Again, this anomaly must be
handled with special code that makes the slicer a com-
plicated piece of software that may not be easy to
maintain.

This paper investigates the possibility to use a point
cloud to address the above problems. It uses the original
NURBSmodel and converts themodel into a point cloud,
based on layer thickness and accuracy requirements, for
direct slicing. The method requires no expensive tes-
sellation, has no anomalies, needs no model repair and
no conversion. The only major computational require-
ment is point evaluation which can be done error free
and in an inexpensive manner. Such an approach may
have been prohibitive a decade or so ago. However, with
the proliferation of powerful hardware and the abun-
dance of memory, point-based approaches are more
than viable today. Add the possibility of parallelization
via a cheap multi-core GPU, the point-based approach
becomes better suited in today’s applications than the
triangle-based ones.

The organization of the paper is as follows. Section 2
introduces some NURBS notations for a better compre-
hension of the B-spline details. In Section 3 we introduce
the overall approach followed by Section 4 where object
decomposition is discussed. Section 5 provides details
on how the point cloud is generated, providing ample
examples and illustration. A conclusion section closes
the paper.

2. B-spline notation

To better comprehend the method presented herein,
some B-spline notations are in order. A B-spline surface
or degree p in u-direction and q in v-direction is a tensor-
product surface in the following form [5]:

S(u, v) =
n∑

i=0

m∑
j=0

Ni,p(u)Nj,q(v)Pwi,j

where Pwi,j are the weighted control points, Ni,p(u) and
Nj,q(v)are the normalized B-splines defined over the knot
vectors

U = {u0 = · · · = up︸ ︷︷ ︸
p+1

, up+1, . . . , ur, ur−p = · · · = ur︸ ︷︷ ︸
p+1

}

V = {v0 = · · · = vq︸ ︷︷ ︸
q+1

, vq+1, . . . , vs, vs−q = · · · = vs︸ ︷︷ ︸
q+1

}

We assume that the knot vectors are always clamped,
i.e. the end knots are repeated with the multiplicities
above. If the B-spline surface has no internal knots, it
degenerates to a Bezier surface, which will be used for
point cloud generation in this paper.

3. Overview of the approach

Objects to be printed (manufactured) are assumed to be
bounded by B-spline surfaces, i.e. any object is consid-
ered as a collection of B-spline patches. Holes and cavities
are covered by B-spline patches as well and the inner
part of the object is determined by the orientation of the
covering surfaces.

We take two parameters from the 3-D printer:

• λ - the layer thickness. We assume this to be constant
throughout the printing process.

• ε- accuracy, i.e. the addressability of the printer, the
printer head can move from position to position with
at least that much distance.

The overview of our approach is as follows:

• Take each B-spline surface that bounds the object and
perform the operation below for each surface.

• Decompose each surface into small sub-patches that
are Bezier surfaces.

• Create a global data structure that holds all the sub-
patches.

• For each slicer, create an active list of sub-surfaces that
may intersect the slicing plane (a reference of the sub-
patch in the global data structure).
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• Sample the patches in the active list based on the
required tolerance and keep the resulting point cloud
in a temporary data structure.

• As the slicer moves up, refresh the active list and the
point cloud: drop surfaces (and the points on them)
that no longer intersect the plane and add the ones that
became intersecting. Sample the new surfaces and add
the points to the active point cloud.

Since the method deals with a point cloud, a com-
pletely global approachwould require the storage,manip-
ulation as well as the processing of a large amount of data.
What we do in this work is based on the principle of
coherence; we are looking at a small band of surfaces and
the corresponding points that are sampled off of those
surfaces. In other words, we maintain a dynamic list for
both the sub-patches as well as the points belonging to
those surfaces.

4. Surface decomposition

In this section details are given on how a set of B-splines
are decomposed based on the setup parameters of the 3-D
printer.

4.1. Slicer band

Decomposing a set of surfaces so that on average only a
fewwould intersect a slicer would result in a very large set
of sub-surfaces. We grouped a number of slicers together
to form a band for the purpose of decomposition only. In
other words, given the layer thickness λ we introduced
a band defined as β = cλ where c = {2, 3, 4, . . .}. The
value for the constant c must be determined for each
type of object, e.g. simple surfaces or highly free-form
surfaces. The examples below will be provided for the
following settings:

λ = 0.1mm β = 3λ = 0.3mm

4.2. Surface extents

In order to produce a sensible surface decomposition, the
estimation of surface areas is required. Such area is esti-
mated by the approximate surface extents in each of the
u- and v-directions. Since a precise area is not required,
we use the following approach:

• Perform a knot refinement based on a level of refine-
ment. That is, for level zero, no knots are inserted. For
level one, one knot is inserted into each non-zero knot
span. For level two the spans are refined twice, one
knot is inserted into the middle of each span result-
ing in two sub-spans which in turn are refined as

well. In general, a level k refinement produces 2k − 1
new knots in each span. For a good surface extent
computation a level one or two refinement is quite
adequate.

• Compute themaximum length of the control polygons
along the rows and the columns.

The output is {Lu, Lv} the approximate extents in u- and
v-directions. We will make use of these quantities in the
next subsection to generate the sub-patches.

4.3. Sub-patch computation

This part of the algorithm creates small sub-patches out
of each bounding B-spline surface. Each B-spline surface
consists of a set of Bezier patches, obtained by inserting
the interior knots multiple times so that the total multi-
plicity is equal to the degrees. While these Bezier patches
are smaller than the B-splines, they are still much larger
than what the printer requires, so they need to be fur-
ther subdivided. This is how we do it. Assume that the
number of non-zero knot spans in u- and v-direction are
nu and nv , respectively. These non-zero knot spans are
the ones over which the Bezier surfaces are defined. The
approximate Bezier patch extents are

LBu = Lu
nu

LBv = Lv

nv

We want the subdivided sub-patches to be roughly of
size β so we insert

ku =
⌊
LBu
β

+ 0.5
⌋

kv =
⌊
LBv

β
+ 0.5

⌋

number of knots into each non-zero knot span. Figure 1
shows an example of a head model with X-Y-Z dimen-
sions (32 x 43 x 45 mm). The model of the head contains
601 B-spline surfaces. After refinement for β = 0.3mm
band thickness the number of sub-patches becomes
57,975. This is two orders of magnitude higher than the
original set of surfaces, clearly underlying the importance
of proper decomposition. Improper subdivision could
generate either an unnecessarily high number or produce
surfaces that are inadequate in meeting manufacturing
requirements.

Note that the number of sub-patches are very man-
ageable for engineering tolerances, however, when the
accuracy gets too high, the decomposition will results in
quite some number of surfaces, as shown in the Table 1
below.

4.4. Surface lists

One of the many challenges of dealing with massive
amounts of data is storage and ease of access. Storage



COMPUTER-AIDED DESIGN & APPLICATIONS 245

Figure 1. Surface decomposition: (left) object covered by B-spline surfaces, and (right) sub-patches after decomposition forβ = 0.3mm
(model courtesy of Direct Dimensions, Inc.).

Table 1. Number of sub-patches as a function of the layer thick-
ness.

λ 0.001 0.01 0.1 0.2 0.3 0.4 0.5

No. of
patches

8,387,525 196,000 57,975 37,075 19,975 15,700 15,075

requires memory allocation and deallocation and if these
operations are performed repeatedly (as in linked entities
of complex data structures) the algorithm can be quite
slow (it may not be all that well known but memory allo-
cation can be more expensive than number crunching).
Operating on a global data structure is out of the ques-
tion so we introduced a dynamic list that is constantly
updated for each slicer position.

First, we put all the sub-patches into a global storage so
that surfaces can be selected for each slicer. Since the size
of that list is not known until the decomposition is done,
we estimate it as follows. Let the area of the bounding box
of the entire object beA. The decomposition aims at gen-
erating surfaces that are about the size of the slicer band
β . The estimated number of sub-patches and the patches
per slicer are given below

Npatches = A
β2 npatchonslicer = N

No of slicers

Memory is allocated once based on the estimates above.
If we run out, memory is reallocated in chunks, instead
of one-by-one.

The critical part is the creation of the local list that
is dynamically updated as the slicer moves up. For each
slicer the method works as follows:

• The surfaces on the global list are sorted by their
bounding boxes’ minimum z-value.

• For each slicer we add surfaces from the global list if
their bounding boxes intersect the slicing plane, and
drop surfaces currently on the list if they no longer
intersecting.

• Each time we add new surfaces, we check if the mem-
ory is sufficient or not. If not, we reallocate the mem-
ory and increase the current account by a larger chunk.
Since the estimates are quite accurate, reallocation is
rarely needed.

Figure 2 shows an example. The cut is slice number
104 of the head above (the neck area) produced a list of
279 patches. Notice how the sizes of the patches vary:

Figure 2. Surfaces on the local list corresponding to slice number
104.
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high curvature areas generate small patches, whereas
small curvature areas produce large patches.

A more complicated slice is shown in Figure 3: slice
number 228 through the nose containing 582 patches.
The yellow is the slicing plane and black depicts the
surface patches.

The crux of the point-based algorithm lies in proper
decomposition as well as themanagement of the dynamic
list. If the surface is not properly decomposed, then some
surfaces remain on the list too long while others drop
out quickly. Figure 4 shows how the local list is utilized.
The yellow line represents the number of surfaces for
each slice. The green line shows the number of newly
added surfaces and the red one illustrates the number of
removed surfaces. It is quite revealing that the number
of added and removed surfaces are roughly the same and
they are proportional to the number of active surfaces on
the list. It is also evident that adding and removing is not
dependent of how complex the slice is, i.e. the surface
decomposition does a good job regardless of the com-
plexity of the object. A sample of numerical data is shown
in Table 2 below.

Figure 3. Surfaces on the local list corresponding to slice number
228.

Figure 4. Surface patch utilization of the local list: the number
of added and removed surfaces are shown in green and red,
respectively, while the total active surfaces are marked in yellow.

Table 2. Sample slicer data: added, removed and total number of
surfaces.

Slice 0 1 2 10 104 228 291 394 456
Added 1 64 107 174 71 220 206 81 36
Removed 0 1 60 159 70 208 197 87 36
Surfaces 1 64 111 269 279 583 589 334 36

5. Surface sampling

Once the surface patches are buffered into the dynamic
list, they are ready to be sampled. Given a set of sur-
faces Sk(u, v), k = 0, . . . , K, the required tolerance ε,
we are seeking to obtain a sample of points Qi, i =
0, . . . , N on each surface so that for each point Qj
the following relationship holds: |Qj − Ql| < ε, where
Ql, l = 0, . . . , M are the immediate neighbors of Qj
(the immediate neighbors form a polygon and the point
Qj is in the interior of that polygon).

There are a number of ways one can sample a surface
given a tolerance. We discuss three different methods in
this section.

5.1. Sampling based on derivatives

The simplest method involves computing a set of points
at uniform parameter locations so that the resulting sur-
face points, when triangulated, would not deviate from
the surface inmore than the allowed tolerance. To accom-
plish this, we need to determine the number of paramet-
ric locations (the number of sampling points). Assuming
equal number of points in each direction, then according
to [1], the formula is

n =
√

1
8ε

(M1 + 2M2 + M3) M1 = max(Suu)

M2 = max(Suv) M3 = max(Svv)

While this seems like a simple solution, there are a num-
ber of problems:

• Computing bounds on derivatives is expensive espe-
cially if it needs to be done on a large number of
surfaces (see the data in Table 2).

• The resulting point distribution is too high as this
method oversamples the surface to achieve a global
accuracy.

• Flat areas receive a small number of points whereas
curved areas receive a lotmore. That is, the point cloud
can have large gaps in flat areas that is a no-no in 3-D
printing.

We want a sampling technique that produces points in
quasi-uniform manner, i.e. the distance condition above
must be satisfied irrespective of the curvature of the
surface.
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5.2. Sampling based on divide-and-conquer

This method uses recursion to compute a set of points
based on distance as well as flatness conditions. The
outline of the algorithm is as follows:

• Subdivide the surface into four patches at the paramet-
ric midpoints.

• Push the four patches onto a stack.
• While the stack is not empty do:

• Pop the stack
• Check the surface for flatness; if flat, continue, oth-

erwise subdivide and put the four sub-surfaces on
the stack.

• Check the six distances formed by the four corners;
if they satisfy the accuracy requirement (and the
flatness condition above), output the four corners,
otherwise subdivide.

• Continuewith the subdivision until no surfaces are left
in the stack.

A few notes are in order:

• The algorithm needs to satisfy both the flatness con-
dition as well as the distance condition. That is, the
small patches should not deviate from a plane more
than the tolerance ε to guarantee that there are no
bumps in the middle of the patch. On the other hand,
the corner points, forming the samples we are look-
ing for, must satisfy the distance condition, i.e. for
each point, all neighboring points must be within the
tolerance.

• Care must be exercised when creating the output as a
single point may be incident uponmore than one sub-
patch giving rise tomultiple output. Sample points can
be identified by their parameter pairs which can carry
a flag to avoid multiple output.

• There are several ways one can check if a surface patch
is flat enough (based on a strong convex hull property
of splines [5]). The simplest is to compute a best-fitting
plane to the four corners and check the distances of the
control points from this plane. A more complicated
one can compute a best-fitting plane to the entire set
of control points and then check the distances.

While this algorithm is not the cheapest, it is tightly
coupledwith the geometry of the local surfaces and hence

produces good quality results with a reasonable amount
of overshoots, i.e. overly dense point distributions.

5.3. Sampling based on a hybridmethod

This approach uses the ideas in the previous two meth-
ods but avoids expensive recursions. Let {Lu, Lv} be the
approximate extents of the small sub-patch to be sam-
pled. Compute

nu = Lu
ε

nv = Lv

ε

number of points in each parametric direction at equal
parametric locations. This generates a grid of points that,
in turn, will be subjected to the flatness and distance
conditions. That is, each quad

[Qi,j, Qi+1,j, Qi,j+1, Qi+1,j+1]

in the grid computed at the parametric intervals

[ui, ui+1] [vj, vj+1]

is considered as a small surface patch and is processed
for flatness and for the six distances. If the tests fail, the
quad is subdivided. Given that the sub-patches are quite
small, subdivision is rarely needed. Table 3 and Figure 5
below show the number of points for various slicers. For
one-tenth of a millimeter, the total number of points per
slicer is quite small, in the neighborhood of under 50,000.
For one-hundredth of a millimeter, this number jumps
by two orders of magnitude to under about 2 million!
Thismay sound toomany, however, in today’s computing
power and memory storage 2 million points is a drop in

Figure 5. Number of points for each slicer computed at ε = 0.1.

Table 3. Number of sampling points based on recursive subdivision.

Slice 0 1 2 10 104 228 291 394 453

ε = 0.1 289 13986 17599 40687 26142 42227 43281 32972 1214
ε = 0.01 16641 1065024 1668899 1912570 500548 1212010 895429 516049 152100
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the bucket (we live in the world of big data and 2 million
points is in fact quite small).

A few improvements to the above algorithm are pos-
sible:

• Simple surfaces, such as planes and cylinders, do not
require flatness and distance checking. All we need
to do is sample them based on the tolerance. What
it needs is knowing for each initial surface what their
types are.

• We could reduce the thickness of the slicer band to
produce small sub-patches. In the extreme, we could
subdivide the surfaces to tiny pieces requiring no fur-
ther sampling and checking at all. This, of course,
would increase the data, however, if would eliminate
further computational burdens.

Figure 6 below shows the result of sampling of the
entire head model. The varying density is due to local
surface characteristics and the angle of visualization.

Figure 6. Point cloud computed at ε = 0.5.

6. Conclusions

This paper presented several ideas on how to prepare
complex objects for slicing for 3-D printing. In order to
avoid themyriad of problemswith STLmodels and brain-
numbing numerical issues, we elected to use the simplest
of all geometric entities: the point. One of the biggest pros
of the method is that it is extremely simple and nearly
error free. The price to be paid for this simplicity is large
data. However, living in the age of big data, this does not

seem to be a burden. In fact, the algorithm runs smoothly
on a plain vanilla laptop with off-the-shelf components.
Each slice is processed in a matter of a few seconds, far
outperforming the printer that takes many minutes to
complete one layer. In other words, the slicer can be run
in parallel with the printing process, instead of having to
pre-process the entire object.
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