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ABSTRACT
Generative modeling tools have become a popular means of composing algorithms to generate
complex building forms at the conceptual design stage. However, composing algorithms in order to
meet the requirements of general design criteria, and communicating those criteria with other disci-
plines by means of generative algorithms still faces many technical challenges. This paper proposes
the use of a “Semantic-Topological-Geometric (STG)” pattern to guide architects in composing algo-
rithms for representing, modeling, and validating design knowledge and criteria. The STG pattern
can help architects to convert semantic information concerning the conditions and requirements of
a project into design criteria, which are usually composed of topological relations among design ele-
ments, in order to explore the geometric properties of spaces and building components by means
of generated 3Dmodels.
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1. Introduction

Generativemodeling tools likeGrasshopper have become
a popular means of composing algorithms for generat-
ing complex building forms, optimizing multiple design
objectives, and structural and sustainability control at
the conceptual design stage [18]. The visual program-
ming interfaces of Grasshopper are easier to learn and
understand than textual programming tools. With the
help of immediate feedback of visualized 3D models
in Rhino, generative modeling tools allow architects to
freely explore creative ideas expressing geometric inten-
tions. Except in the case of constructability issues involv-
ing complex geometric forms, however, one of the major
issues affecting application of generative modeling in
architectural design is how to associate generative algo-
rithms with known design criteria in order to evaluate
whether the generated forms are acceptable or not. How
to compose algorithms in order tomeet the requirements
of general design criteria, and how to communicate those
criteria with other disciplines by means of generative
algorithms still faces many technical challenges.

The “Pattern Language” proposed by Alexander yields
conclusions concerning the good practices of endemic
buildings that serve as design paradigms for acquiring
the knowledge needed to solve common problems [1].
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However, while few architects actually employ Alexan-
der’s language, a relatively large number of software engi-
neers apply “design patterns” in identifying and reusing
the best practices in known situations. In the software
engineering domain, “design patterns” do not deter-
mine the final design of software, but instead specify
methodologies for solving commonly occurring prob-
lems within a given context. Some design patterns have
been accepted as best practices, such as the model-view-
controller (MVC) pattern for implementing user inter-
faces based on object-oriented programming. With gen-
erative modeling and parametric design becoming more
popular and important in architectural design, how to
translate design criteria into computational procedures
has become a common problem when employing gener-
ative modeling tools. However, there is still no pattern to
guide architects in composing generative algorithms that
can implement their design knowledge and criteria.

2. Design patterns in computational digital
architecture

With the widespread penetration of digital tools into
almost all areas of architectural design, including both
education and practice, digital tool application skills
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and knowledge have become more important than in
the past. To apply generative modeling tools such as
Grasshopper, a designer needs more knowledge of math-
ematical formulas than basic architecture knowledge
[16], and more data processing skills than aesthetic skills
involving geometric forms. However, the need for addi-
tional skill and knowledge often causes the results of
parametric design to be disconnected from architec-
tural contexts, such as material, user, and usage require-
ments, and causes designers to expend more effort on
programming/scripting of algorithms than on architec-
tural design [18].

Grasshopper is a graphic algorithm editor integrated
with Rhino that can be used to explore novel geometric
shapes, and cognitive studies have revealed that paramet-
ric design mainly supports designers’ geometric inten-
tions [18]. Beyond geometric intentions, designers also
tend to select existing solutions for known problems,
instead of developing new solutions, which meets the
definitions of Alexander’s pattern [17]. Obviously, gener-
ative algorithms should potentially be able to go beyond
geometric intentions [13]. For example, the use of gen-
erative algorithms in optimization of spatial planning [2]
and building performance during early design stages has
been explored [3]. Although those attempts have chiefly
consisted of implementations of existing algorithms for
specific design issues, such as spatial syntax for space
planning, and genetic algorithms for optimizingmultiple
objectives concerning building performance, the results
have demonstrated potential application to more general
design criteria than just the realization of novel geometric
intentions.

While generative modeling and parametric design has
impacted architects’ thinking and methodology during
the early and developing design stages, BIM applica-
tions have been used to extensively improve workflow
during the later and detailed design stages. Since they
can manipulate more semantic and topological infor-
mation concerning building components than 2D CAD
or 3D models, BIM applications provide a convenient
platform for visually communicating with different dis-
ciplines, especially concerning the mechanical, electrical,
and plumbing (MEP) engineering of a project. Based
on the design information schema of BIM, which con-
sist of semantic, topological, and geometric informa-
tion, and referring to the MVC pattern in software
engineering, therefore this paper consequently proposes
an algorithmic design pattern based on a “semantic-
topological-geometric (STG)” framework [7], and this
pattern can enable designers compose algorithms for
modeling general design criteria at the early design
stages.

2.1. Semantic ontology as the informationmodel of
design criteria

The first component of the STG pattern is “Semantic
Ontology,” which consists of the information models of
design criteria. In the MVC pattern, a “model” module
is the central component used to capture behavioral and
logical rules in a problem domain. To associate algorith-
mic generative modeling with design criteria, the sys-
tem must first represent design criteria in a computable
format. At early design stages, architectural design cri-
teria usually consist of abstract, textual descriptions of
various requirements. In order to represent semantic
criteria of architectural design into a computable for-
mat, semantic ontology was incorporated into the STG
pattern.

Protégé is one of most popular tools for encod-
ing domain knowledge in knowledge engineering [12].
Knowledge representation in Protégé is based on the
OntologyWebLanguage (OWL), which is anXML-based
language, and was originally used to develop seman-
tic networks. Based on the semantic web rule language
(SWRL), which can used to express rules as well as
logic, the logic reasoner in Protégé can validate and infer
implicit knowledge within an ontology. If architectural
design criteria can be expressed in OWL, then a SWRL
reasoner can help architects and stakeholders of a build-
ing project to validate criteria, infer implicit criteria, and
keep those criteria consistent throughout the design pro-
cess. For example, because an enclosed and quiet space
may make children nervous, the Japanese architect Taka-
haru Tezuka, who had designed some award-winning
kindergartens in Japan, asserted that the classrooms in
a good kindergarten should have enough openness to
make children feel relaxed [14]. This design criterion
may be presented as two simple rules in SWRL format
as follows:

Kindergarten(?k) ∧ Classroom(?c)
∧ hasClassroom(?k, ?c) ∧ hasSpatialQuality(?c,

FeelRelaxed) → hasSpatialQuality(?k, GoodQuality)
(1)

Classroom(?c) ∧ hasOpenness(?c, HighlyOpen)

→ hasSpatialQuality(?c, FeelRelaxed) (2)

The Criterion 2means that an instance of “Classroom”
class, which has a “HighlyOpen” instance of “Openness”
property, implies this “Classroom” instance has a “Feel-
Relaxed” instance of “SpatialQuality” class. However,
many textural criteria will not indicate how to implement
or validate the criterion, and this criterion also doesn’t
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indicate how to implement or validate the “HighlyOpen”
property of a “Classroom.” Tezuka therefore designed the
“Fuji Kindergarten,” an award-winning kindergarten in
Tokyo, which has four “teaching spaces” as classrooms
enclosed only by sliding patio doors but without walls
(Fig. 1). In this context, the implementation of the “Open-
ness” criterion can be presented as a simple rule of SWRL
format as follows (Criterion 3):

Classroom(?c) ∧ beEnclosedBy(?c, PatioDoors)

→ hasOpenness(?c, HighlyOpen) (3)

The Criterion 3 means that an instance of the “Class-
room” class, which is encloded by the “PatioDoors”
instance of the “Opening” class, implies this “Class-
room” instance has a “HighlyOpen” instance of “Open-
ness” property. Basically, the “beEnclosedBy” class is an
“Object Property,” which is used to declare semantic
relations between different conceptual classes in Pro-
tégé. In an OWL triple, “Object Property” is a “pred-
icate” for connecting the subject and the object of a
knowledge chunk within an ontology. Once a predi-
cate has been used to connect two architectural design
objects, such as “Classroom,” “Opening,” or other kind
of architectural design components, the predicate can
be used to indicate a topological function waiting for
implementing in the next step of the STG pattern. As
the “Model” module in the MVC pattern, a seman-
tic ontology of design criteria can therefore not only
play the role of information models for storing and
representing more general design criteria proposed by
architects, but also provide a guide for scripters when
composing algorithms for generating proposals and val-
idating general design criteria rather than geometric
intentions.

2.2. Topological relations as controlling algorithms
of design criteria

The second component of the STG pattern is “Topologi-
cal Relation,” which is a controlling algorithm for design
criteria. Eastman declared that topologies are the funda-
mental definitions of parametric models in BIM [4]. At
an early design stage, the topological relations of design
criteria are usually abstract, andmay consist of enclosure,
extension, and concentration of indoor/outdoor spaces
and buildingmasses [5]. Except for some geometric rules,
such as the constraints in Revit, abstract topologies for
early design stages are absent from most BIM applica-
tions, however.

In the MVC pattern, a “Controller” module is used to
accept operations from users to modify the data within
models. A “Controller” can therefore control the inter-
active behavior among different “models” in a system.
Topological relations among design criteria can thus be
regarded as the “Controller” of design criteria. In the case
of the “Fuji Kindergarten” by Tezuka, for example, the
“SpatialQuality” property of a “Classroom” instance is
implied by the “Openness” property, and the “Openness”
property is implied by the “beEnclosedBy” property of a
“Classroom” instance. Accordingly, the “beEnclosedBy”
function, or “Encloses” function, which is the inverse
property of “beEnclosedBy,” becomes a topological func-
tion waiting for implementation in order to validate
the “Openness” property. Through the help of SPARQL,
which is a “SQL like Protocol and RDF Query Language”
integrated in Protégé for the retrieval and manipulation
of RDF data, users can implement information queries by
calculating data. However, it is difficult to manipulate the
geometric features of 3Dmodels by a data query language
like SPARQL. Grasshopper is therefore a better and easier

(a) (b)

Figure 1. The classrooms of the Fuji Kindergarten designed by Takaharu Tezuka: (a) Classrooms are enclosed by patio doors but without
walls, and (b) The patio doors can be fully opened to remove the boundaries of classrooms [9].
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tool for implementing topological interactions between
semantic information and the geometric features of 3D
model.

As an example, when implementing the “Encloses”
topology, a simple algorithm can be proposed as follows:
(1) draw at least two separate and unconnected curves
as walls of a space, (2) connect the closest endpoints of
each walls as the openings of the space, and (3) the gen-
erating shape enclosed by walls and openings is the space
enclosed by the drawn walls (Fig. 2). This algorithm can
easily be implemented by the “Connect Curves” com-
ponent of Grasshopper to generate a spatial shape by
inputting some curves. Although this simple “Encloses”
algorithm needs the geometric features of walls as input
parameters, in the case of most topological relations,
however, different shapes and numbers of walls may
derive out similar “Encloses” topology. The controlling
behaviors of topological functions in a STG pattern are
therefore more dependent on the composed algorithms
than on the input geometric features of models.

Furthermore, the “Openness” property of a space can
be easily generated from the “EnclosedRate” property,
which is the inverse property of “Openness” is derived
by dividing the total length of walls by the perimeter
of the space. For example, a designer can define a rule
for declaring the “Openness” instance: (1) A “Highly-
Open” instance when “EnclosedRate” is less than 0.4,
(2) an “Enclosed” instance when “EnclosedRate” is more
than 0.6, and (3) a “SemiOpen” instance when “Enclose-
dRate” is between 0.4 and 0.6. However, these algorithms
of the “EnclosedRate” property can ignore the geometric
features of space by simplifying the length of a wall as

the straight-line distance of two endpoints, as in the
case of the length of an opening. The three differently-
shaped spaces in Fig. 3 can therefore be derived out same
“SemiOpen” instance of “Openness” property (Fig. 3).
As architects usually ignore the details of geometric fea-
tures at early design stages, it is better to minimize the
interference of geometric features when developing algo-
rithms formanipulating topological relationship in order
to keep enough geometricmanipulations freedom for the
exploration of possible proposals. By retrieving predi-
cates from the semantic ontology of design criteria, the
STG pattern can guide Grasshopper scripters in deter-
mining which criterion has what topological functions.

2.3. Geometric features as validating views of
design criteria

The final component of the STG pattern is the “Geomet-
ric Feature,” which can visually represent and validate
design criteria. In a MVC pattern, a “View” module is
used to visualize a retrieved “Model” and the results of
“Controller.” In architectural design, architects always
need visual feedbacks to validate the instances of design
proposals, and to determine the behaviors of topologi-
cal algorithms. Because immediate and visual feedback
is one of the most attractive features of Grasshopper
for architects, it is not surprising that most designers
chiefly applyGrasshopper in the exploration of geometric
intentions. It is more important for architects to vali-
date other intentions, such as semantic and topological
criteria, rather than geometric intentions. Although the
geometric features of proposed models are usually the

Figure 2. A sample algorithm for implementing an “Encloses” topology by using geometric features: (a) First draw two or more curves
as walls, (b) then connect the closest endpoints of walls as openings, and (c) finally generate an enclosed shape using those walls and
opening.

Figure 3. Three different shapes of spaces have the same “SemiOpen” instance of “Openness” property derived from a simplified
algorithm, which calculates “EnclosedRate” while ignoring the shape of walls.
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(a) (b)

Figure 4. Geometric features of the roof of the Fuji Kindergarten designed by Takaharu Tezuka: (a) The geometric features of the roof
consist of two simple ellipses, and (b) a series of mock-up models created by the architect [9].

critical parameters for validating design criteria, those
features usually cannot be easily generated from seman-
tic or topological criteria. Geometric forms are ultimately
within the domain of an architect’s creativity in represent-
ing design concepts.

In the case of the “Fuji Kindergarten” by Tezuka, the
initial concept of the building was an annular shape
around a playground (Fig. 4a), which occurred to the
architect when he recalled that his children liked to run
around a circle. However, a series of mock-up mod-
els created by the architect revealed some situations,
such as existing buildings and trees within the site
(Fig. 4b), which needed to be considered when the archi-
tect explored geometric features. Some peculiar shapes
emerged when trying to fit the building into the irregular
shape of the available land, while avoiding existing build-
ings and trees based on general design criteria. To realize
implementing the idea of an annular shape, the architect
finally chose to allow the existing trees to grow directly
through the roof in order to keep the building a perfect
eclipse. Except for the previously-established design cri-
teria, the situations within/around the site are the major
constraints on geometric intentions. The geometric fea-
tures of the site situations, such as the site’s shape, terrain,
vegetation, and existing buildings, therefore became the
geometric features for modeling their relevant criteria.
For example, a semantic criterion can be declared so
that an instance of “ExistingTree” implies an instance
of “OutdoorSpace” around the tree, thus the “hasMini-
mumSpace” topology will be ready for implementation.
The geometric features of design objects, include the
site situations and the architect’s proposals, can not only
serve as the validating views of established design crite-
ria, but also the visual hints for modeling more semantic
criteria.

2.4. Summary

One of the major obstacles to applying algorithmic gen-
erative modeling is that stakeholders cannot understand
the algorithms, especially in the case of those algorithms
too complex to be explained by the designers who are
actually implementing those algorithms. The “Model” of
semantic ontology and the “Controller” of topological
relations of design criteria can therefore help in associat-
ing design proposals, which are generated by algorithmic
modeling tools like Grasshopper, with the architectural
design knowledge that was applied within those algo-
rithms. This approach does not attempt to implement
rapid modeling of design concepts, but rather aims to
divide scripting tasks into small and independent parts,
which can be assigned to different participants, who may
hold different skills, knowledge, and responsibilities. For
modeling more general design criteria than geometric
intentions, it is necessary to translate different types and
sources of design criteria into computable formats like
semantic ontology before composing the generating and
validating algorithms. The three steps of the STG pattern
can therefore not only guide task assignment procedures,
but also facilitate communication with relevant stake-
holders by means of easily-readable formats of textual
criteria formats within the semantic ontology.

3. Implementation and initial testing of the STG
pattern

Unlike Alexander’s pattern language, which can pack-
age instances of solutions with relevant design problems,
a programming design pattern should not only pro-
vide direct solutions to known problems, but also meta-
knowledge for identifying design situations, and then
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select appropriate methods for addressing those prob-
lems. In thewake of a “geometric-topological-geometric”
information conversion framework [7], this paper pro-
poses an algorithmic pattern formodeling general design
criteria that goes beyond the geometric intentions of a
building’s form. By taking the Fuji Kindergarten by the
architect Tezuka as an example, the STG pattern demon-
strates how to guide designers in associating generative
modeling with their architectural knowledge when com-
posing algorithms.

3.1. Reversemodeling semantic ontology

Since the graphic scripting interface of Grasshopper pro-
vides a convenient tool for manipulating the geometric
features of 3Dmodels, and composing algorithms for val-
idating topological relations among the features of those
models, the first critical tasks in implementing STG pat-
tern is to integrate semantic ontology techniques into
Grasshopper. In previous studies, a prototype Python
scripts, which was entitled “Design Criteria Modeling
(DCM),” which sought to help designers to model and
validate semantic ontology within Grasshopper by hook-
ing with OWL files and the SWRL reasoner of Protégé,
was implemented [7]. Because of an incompatibility issue
of Python-based OWL reasoner, most manipulations of
semantic ontologies inDCMstill elies on the Protégé, and
was usually too complex to be recognized and learned by
designers.

For example, before a designer can declare simple
design criteria like Rule 1 to 3, he/she must model the
ontology in Protégé as follows: (1) Declare the concep-
tual classes of all of design objects, such as “Kinder-
garten,” “Classroom,” and “SpatialQuility”; (2) declare
the object properties of those classes, such as “has-
Classroom,” “hasSpatialQuality,” and “hasOpenness;”
(3) declare the object properties between relevant classes,
such as “Kindergarten” “hasClassroom” some “Class-
room”, and (4) finally declare the individuals/instances

of relevant classes and properties in order to write
the reasoning rules of relevant individuals/instances
(Fig. 5). Based on DCM, this paper therefore imple-
ments a Python-based script for helping designers to
easily present design criterion rules, and to reversely gen-
erate the relevant semantic classes and object properties
for constructing an ontology of those design criteria.

A SWRL sentence in human readable syntax consists
two basic types of clauses: (1) Classe(?c) clause, such as
“Classroom(?c),” whichmeans an instance varible “?c” of
“Classroom” class, and (2) Property(?c, instance) clause,
such as “hasOpenness(?c, HighlyOpen),” which means
an instance “?c” has an instance of “hasOpenness” prop-
erty which is the “HighlyOpen” instance. Therefore, once
a rule sentence has the rule 2 input in to the ontology
module of STG, it will reversely generate a “Classroom”
object, and the “hasOpenness” and “hasSpatialQuality”
properties, and further acquires the actual class names
of instances “HighlyOpen” and “FeelRelaxed” from the
user. By recognizing the second parameter of a clause,
STG implements the reverse modeling of an ontology of
design criteria.

3.2. Example topological algorithms

After the ontology of design criteria has been con-
structed, the next step in the STG process is to compose
topological algorithms for generating or validating the
topological relations of design criteria, which are usu-
ally the object properties for connecting design objects in
the ontology, such as the “BeEnclosedBy” or “Enclosed”
property and the “Opening” class of the “HighlyOpen”
instance. As mentioned above, the algorithm of ““BeEn-
closedBy” and “Openness” can be implemented using the
“Connect Curves” component of Grasshopper in order
to generate a spatial shape. However, the manipulation of
input and generated geometric data often poses technical
difficulties.

(a) (b)

Figure 5. (a) Visualization of relevant classes in the ontology of Rule 1 and 2 design criteria, and (b) the “Relaxed” instances of
“SpatialQuality” inferred by the SWRL reasoner in Protégé.
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For example, the “Connect Curves” component of
Grasshopper can easily generate an enclosed shape in
order to represent a space by inputting several separate
and unconnected curves (Fig. 6a). However, the draw-
ing directions and the order of selection of input curves
directly affect the generating shape, which sometimes
violates the designers’ expectations (Fig. 6b). Another
difficulty is how to obtain the length of the gener-
ated openings, which should be the total length of the
new generated segments other than the input segments
retrieved from the enclosed shape. One solution is to
apply the “Explode Curve” component, and then to
retrieve the even items from the list of exploded segments
using the “Cull Pattern” component. Since designers are
often not familiar with data structures and program-
ming skills, which are the critic foundation of genera-
tive design, the implementation of topological algorithms
usually requires extensive guidance from experienced
Grasshopper instructors, or the examination of similar
algorithms from existing examples. Not like Lunchbox,
which packages complex algorithms into un-modifiable
components, the STG pattern proposes some example
component clusters, which comprise a set of well pre-
assembled components for demonstrating basic topolo-
gies such as “Connects,” “Encloses,” and “Avoids.” A
“Cluster” is the means by which Grasshopper simpli-
fies the display of complex combinations, which can be
repeatedly reused as new algorithmic components many
times in a GH file, and can protect the combination by
passwords from unauthorized changes. Since those clus-
ters aren’t protected by passwords, so it is easy for design-
ers to learn, copy, or modify the algorithms within them

in order to develop new combinations for resolving new
topologies.

3.3. Filtering geometries for design criteria

Architectural design usually ignores some geometric
details at the early stages. Conversely, the input geome-
tries in at the early stage are usually applied to represent
or develop important design criteria. For example, the
contour lines of a building site imply themaximum range
of the available land, and the input situationswith/around
the site, such as adjoining roads, existing trees and
buildings, imply different implicit design criteria, such
the “Avoids” property of trees, and the “Retreats” or
“OutdoosSpaceAround” property of the buildings, which
must await for modeling the semantic ontology or imple-
mentation of topological functions. Since those geome-
tries were input by the user, however, the identification
of semantic relations between geometries and design cri-
teria usually imposes a burden on the user.

One advantage of a BIM application is that most
geometries have their default building component seman-
tics, which can indicate which geometries are the
instances of what components, such as the “Wall,”
“Floor,” “Roof,” or “Room” classes. Except for some plu-
gins, such as visualARQ [15], which is a commercial
plugin for architectural design, however, all geometries
in Rhino have no default semantic features connecting
architectural design objects. The STG pattern therefore
applies the “Pipeline” component of Grasshopper, which
is a data filter that can automatically collect geometries
from Rhino by types, layers, and names of geometries.

(a) (b)

Figure 6. (a) A “2DWallToSpace” cluster implements the “Openness” topology to identify a “HighlyOpen” instance and “SemiOpen”
instance of two spaces, but (b) the directions and the order of the selected curves directly affect the generating shape of a space.
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The STG pattern therefore has some layers with default
names, such as “Site,” “Floor,” “Wall,” and “Roof,” as
semantic clues for the input geometries of relevant design
criteria.

3.4. Initial test of the STG pattern

The DCM prototype was provided to students for mod-
eling their semantic design criteria. They were asked to
rapidly design a “Community-Friendly Primary School,”
which was a topic on Taiwan’s architect qualification
exam in 2015. The design context consisted of two sites
located on north and south sides of a primary school
(Figure 7.a), and the building’s purpose was for the learn-
ing and leisure use of seniors in the community. Except
for such basic issues as the building code, traffic, and cli-
mate response, the existing site context, including exist-
ing trees, classrooms, exercise yard, and green areas,
served as the predominant element for the development
of design criteria.

In this test, most of the students found the strong
patterns of existing buildings, including an axis formed
by the central corridor, and the rhythm formed by par-
allel building masses. They therefore tended to follow
the axis by extending the central corridor to connect
both sites, and then arranged the new building to be
parallel with existing buildings. The students could con-
sequently first code the “Parallel” and “Axis” topology,
then seek to implement the algorithms of “Parallel” and
“Axis,” and finally select the input parameters, such as
an existing building and its gaps as the generating rules
(Figure 7.b).

4. Discussion

New design thinking andmethods have emerged asmore
digital tools penetrate architectural design education and
practices. However, because digital tools require consid-
erable prior knowledge apart from basic architectural
knowledge, many misunderstandings concerning digital
architectural design have also arrived with the increased
availability of digital tools [11]. Confusion about meth-
ods, thinking, andmodeling among generative, paramet-
ric, and algorithmic approaches has emerged with more
new digital tools. Kotaik therefore proposes a theoretical
framework that addresses the differences among the gen-
erative, parametric, and algorithmic approaches in terms
of computability [6].

Kotaik concludes that a critical feature of digital archi-
tectural design is the ability to explore the computable
functions of various architectural disciplines. Kotaik
remapped Oxman’s five class models of digital design,
which are CAD, formation, performance, generative, and
integrated compound models [10], onto three levels of
design computability, which are representational, para-
metric, and algorithmic in the order of low to high com-
putability. Furthermore, a formal description of digital
architectural design has been proposed as a computable
function for generating “variables” of architectural prop-
erties by inputting “parameters” of the architectural fac-
tors of buildings or their environment. Kotaik’s model of
digital architectural design therefore be translated into a
Grasshopper-style visual format as shown in Fig. 8a, and
the STG pattern can be represented as Fig. 8b. The obvi-
ous difference between Kotaik’s model and STG pattern

(a) (b)

Figure 7. The site contexts for the rapidly design of a “Community-Friendly Primary School”: (a) The context and content of the site, and
(b) a test model for developing design criteria.
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(a) (b)

Figure 8. Two conceptual models of computing architectural design: (a) Kotaik’s model (Left), and (b) the STG pattern (Right).

is that the generated geometric forms may recursively
generate or be input as new semantic ontologies of design
criteria. The STG pattern is discussed as follows based on
this computability model of digital architectural design
(see Fig. 8).

4.1. Semantic ontology as the input parameters of
computable architectural design

Woodbury defined parametric design thinking as think-
ing with abstraction, mathematically, and algorithmi-
cally [16]. In the case of architectural design, algorithmic
thinking means to understand the interpretive correla-
tions between algorithms and design criteria [2]. How-
ever, most abstract design criteria at early design stages,
such as the “Openness” property of classrooms in the
Fuji Kindergarten, are too abstract to be directly input
as parameters, and it is not easy to find an algorithm
for generating or validating them. For instance, designers
cannot input a “FeelRelaxed” instance of “SpatialQuality”
property into a function for generating the “HighlyOpen”
instance of a classroom.

Kotnik indicated the output “Variables” should be
an architectural property, and might include a build-
ing’s geometric form or components. However, the pos-
sible input “Parameters” of computable functions are left
with open definitions. If the input parameters of a com-
putable function cannot be associated with any known
architectural design criteria, in view of the principle of
“garbage-in, garbage-out,” it is not surprising that para-
metric design is often criticized as being disconnected
from basic architectural design knowledge.

In order to convert semantic design criteria into com-
putable parameters to facilitate machine processing, it is
necessary to represent them in a formal and computable
format. With help of STG’s scripts based on SWRL, it
is easier to model semantic rules of design criteria than
using the DCM approach, which relies on hooking Pro-
tégé by OWL files in order to employ the OWL reasoner
in Protégé. Semantic criteria at the early design stages

can therefore be regarded as input parameters for the
algorithms of generative modeling tools like Grasshop-
per. However, since STG or DCM do not implement
the full reasoning functions of OWL, STG still requires
the help of Protégé for validating the completeness and
consistency of a complex design criteria ontology.

4.2. Topological relations as controlling algorithms
of computable architectural design

Generative algorithms are the core of a computable archi-
tectural design. However, a parametric model usually
implies that the algorithms are fixed, and the correla-
tions between input parameters and output variables are
consequently predictable. Cognitive studies have found
that, when solving design problems, designers put more
effort into finding appropriate collections of generative
algorithms fitting their intentions [18], than testing pos-
sible output variables bymodifying the input parameters.
The extra costs of applying parametric modeling usu-
ally do not mean those design problems are so novel
that the solution algorithms have not been invented,
but usually only mean that the designer does not know
the solution algorithms or has not mastered those
algorithms.

Visual programming in Grasshopper should not
requires excessive programming knowledge and skill.
However, when designers’ intentions become more com-
plex, programming knowledge, including mathematical
knowledge, data structure analysis and programming
skills, becomes critical in developing acceptable algo-
rithms. Consequently, researchers claim that paramet-
ric design imposes new challenges by asking architects
to play the roles of programmers/scripters [18]. How-
ever, algorithms for modeling complex geometries have
already been developed by mathematicians, and some
have even been packaged as plugins of Grasshopper, such
as the “LunchBox” plugin [8], which can generate a para-
metric Mobius strip, Klein bottle, and different shapes
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subdividing given surfaces. However, it must be possi-
ble to classify those geometric intentions into aesthetic or
creative criteria, rather than general architectural design
criteria, which can be validated by algorithms.

The population of using the “LunchBox” plugin by
architects reveals that extra effort is usually spent on
converting mathematical knowledge into programming
scripts in parametric design, rather than on converting
architectural knowledge into generative algorithms. In
the case of the Fuji Kindergarten, for example, the archi-
tect can only identify topological relations, such as con-
nective and surrounding as the controller, and then iden-
tify classrooms and the playground as the input parame-
ters. Thus, algorithmic coding tasks can be handed over
to professional programmers/scripters. Once topological
algorithms are regarded as input parameters for modify-
ing parametricmodeling, an architect’s true creativity can
be released from the restricted output variables of fixed
algorithms.

4.3. Geometric features as visual validations of
computable architectural design

The original purpose of Grasshopper was to automate
and accelerate 3D modeling tasks in Rhino. However,
the computability of generative algorithms should not be
restricted to only the generation of complex geometries.
According to Kotnik’s view, a “threshold” between com-
putable and non-computable design should be located
between representational and parametric design models,
and the representational applications of digital tools are
only an alternative to paper drawings and hand-made
models, such as those produced using conventional 2D
CAD or 3D modeling software.

From the view of computability, the application of plu-
gins like “LunchBox” to generate complex geometries is
actually closer to the representational level than the para-
metric level. Key knowledge of architectural design is
thus not contained in the generative algorithms of geo-
metric forms, but rather in the selection of input param-
eters and how to filter out generated geometric forms as
output variables. In the case of the Fuji Kindergarten,
before the architect took an ellipse as the predominant
geometry, he had to learn or develop some criteria con-
cerning the geometric features of the playground and
the building, such as the minimal required spaces of the
playground and a classroom, and the necessary retreats
along the contour of the existing trees and the site. Even
though some of these criteria cannot be used to directly
generate geometric forms, the generated geometries still
can be used to visually validate those criteria. For exam-
ple, a designer can apply a “hasOutdoosSpaceAround”
topology to connect the existing trees, buildings, and

the shape of the building site in order to generate a
buildable shape within a site. By applying the “Subtract”
component in the topological algorithms of “hasOut-
doosSpaceAround,” the geometric features of existing
trees and buildings within a site can be the visual repre-
sentations of design criteria. Consequently, the geometric
features of generative building forms cannot only repre-
sent designers’ geometric intentions, but can also visu-
ally validate the invisible design criteria of architectural
design.

5. Conclusion

At present, parametric design mainly is chiefly applied
to complex building form generation, multiple design
solution optimization, and structural and sustainabil-
ity control [17]. Parametric design is not only a novel
tool for digital architectural design, but also a new
methodology for architectural design thinking. Follow-
ing the generative approach, Kotnik concluded that the
exploration of computing functions is a critical feature
of digital architectural design. However, there may be
insufficient clues for discovering the computable func-
tions of general architectural design criteria, especially
for those abstract concepts proposed by architects and
emerging in the early design stages. To expand the use
of parametric design, this paper proposes an “STG”
pattern based on a “semantic-topological-geometric”
information-converting framework to guide designers in
modeling design criteria knowledge in the algorithmic
modeling tool Grasshopper.

In view of the fact that one purpose of the MVC
pattern is to divide programming tasks in complex sys-
tems into small, discrete, and independent objects, the
STG pattern divides computational architectural design
into three parts characterized by computable functions,
which can implement generative algorithms by different
designers. As building projects become more complex,
instead of requiring architects wear many hats associated
with other disciplines, it is better to hand over program-
ming/scripting tasks involving complex geometric gen-
eration and performance optimization to software and
MEP engineers. It is therefore time to embed basic and
conventional design knowledge into the parameters and
variables of generative architectural design. Using guid-
ance from STG, it is possible for architects to commu-
nicate design criteria with parametric modeling scripters
and other disciplines of an AEC projects.
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