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Truss-like structure design with local geometry control
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ABSTRACT
This paper presents a local geometry control method when designing truss-like structures. Two
kinds of local geometry measures are proposed: the local grid area and the local grid incircle radius.
Both measures work effectively in constraining the local geometry and the selection is problem-
dependent. To prove the effectiveness of the local geometry control, two shape optimization exam-
ples are studied by optimizing the nodal design freedoms. For topology optimization, the ground
structure problem plus nodal design freedoms are employed and the simultaneous optimization
approach is adopted to solve the optimization problem. It is highlighted that the local geometry
constraints are dynamically applied to varying objects because of the grid merging caused by truss
element elimination. The dynamic constraints would cause local fluctuation during the optimization
process but would not impact the overall convergence.
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1. Introduction

Truss or truss-like structure design has been actively
investigated in the past three decades for its broad appli-
cation scope. Different approaches have been developed
such as the ground structure method, the density projec-
tionmethod [2], the evolutionary structural optimization
(ESO) method [16], among which the ground struc-
ture method is definitely the most popular which can
be tracked back to [9]. With this method, a dense grid
is initially generated and the nodes are mutually con-
nected to form the input ground structure. Cross-section
area of each beam is applied as the design variable, and
it could approach to zero value which means a topolog-
ical change. A review about early developments of the
ground structure method can be found in [4,5], and an
educational Matlab program can be found in [21].

Even though intensively investigated, there are still
drawbacks about the ground structure method that: the
optimized solutions tend to employ complex topology;
the result optimality is dependent on the initial guess and
therefore extremely dense grid is generally required for
the input ground structure. In addition, the optimized
solution may be impractical because only selected sizes
of the beams are available in reality.

In order to reduce the topology complexity, one pos-
sible approach is to remove the beams with sizes below
a threshold value, and add the removed material back to
the remaining beams. Given the negative impact, global
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optimality is lost and the optimal solution is strongly
dependent on the threshold value [3]. Another approach
is to penalize the intermediate beam sizes into either
the lower or the upper bounds through the SIMP (Solid
Isotropic Material with Penalization) method [6]. In this
approach, the lower bound is assigned a small positive
value to avoid singularity phenomenon and the upper
bound is the full beam size. The penalization factor
should be big enough to derive the pure binary solution.

To eliminate the dependence on the initial guess,
exploration about adding nodes and beams during opti-
mization [8,10,13,14] is conducted which has demon-
strated good potential. However, amore popular solution
is to allow additional design freedoms of moving nodes.
As summarized by [1], two approaches: the alternative
optimization and the simultaneous optimization, have
been widely employed to involve the additional nodal
freedoms.

For the alternative optimization, the simple imple-
mentation [17,18] is to alternately optimize the topolog-
ical variables (beam cross-section size) with fixed shape
variables (nodal positions) and shape variables with fixed
topological variables. For instance, Wang et al. [17]
applied the alternative optimization with fully stressed
rule for the topology variables and the evolutionary node
shift for the shape variables. Xia et al. [18] performed the
gradient-based shape and topology optimization also fol-
lowing the alternative manner. With this approach, the
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optimality criteria cannot be applied, but a local mini-
mum is likely obtained even though it is not guaranteed
[1]. Another implementation is to transform the orig-
inal problem into a two-level nested problem [1,7,11],
which is solved through the so called “implicit program-
ming approach”. However, only limited scale of design
variables can be handled because of the non-smooth
high-level problem.

A more direct approach is about the simultaneous
optimization. This approach generally leads to a drastic
increase of design variables, which may make the opti-
mization algorithm quite complicated [17]. However, as
commented by [1], the standard theory of nonlinear opti-
mization applies and at least a local minimum can be
found given certain scenarios [8]. Therefore, in this work,
the authors apply the simultaneous optimization of the
shape and topology variables.

More importantly, the main contribution is to real-
ize the local geometry control. Specifically, two local
geometry measures are proposed: the local grid area
and the local grid incircle radius. With either measure,
the local geometry constraint is applied by imposing an
upper bound. Practically, it is meaningful of realizing the
local geometry control in fulfillment of some functioning
requirements, e.g. the sand protection of wire-wrapped
screens and the permeability control of lattice structures.
To the authors’ knowledge, there is no similar research
conducted before based on the literature survey.

It is also worth noticing that, scale control is also an
important issue for truss-like structure design [19,20].
For small scale truss structures, the inverse homogeniza-
tion is necessary for the optimization activity, while it
is out of this paper’s scope. Only the meso/macro truss
structures will be studied in this paper.

The rest of this paper is organized as follows. Section 2
presents the simultaneous optimization problem and its
solution. Section 3 introduces the two local geometry
measures and the related local geometry control meth-
ods. A few shape and topology optimization examples
are studied in Section 3, and the conclusion is given in
Section 4.

2. The simultaneous optimization

2.1. Optimization problem

The popular compliance-minimization problem is
employed to demonstrate the simultaneous optimization
with local geometry control. The optimization problem
is formulated as:

min. FTU

s.t. KU = F

n∑
e=1

ρeve < vmax or
n∑

e=1
ρe < vmax

0 < ρmin < ρe < 1 (2.1)

where K is the assembled global stiffness tensor, U is
the global displacement vector, and F is the global force
vector. ve is the volume of truss element e and vmax is
the maximally allowed volume of the truss structure or
the maximally allowed number of truss elements. The
density based method [6] is applied for topology evolve-
ment and so, the topological variable ρe is added to
each truss element which varies within [ρmin,1], where
ρmin is a small positive number to avoid the singularity
phenomenon.

It is noted that:

Ke = TT
e ρ

p
e K̄eTe (2.2)

whereTe is the coordinate transformation tensor [12];Ke
is the stiffness tensor of truss element e in local coordi-
nate system with the full cross-section value, while Ke is
the stiffness tensor of truss element e in global coordi-
nate system with interpolated cross-section value by ρe;
and p (≥3) is the penalization factor to prevent interme-
diate densities. Assembly of Ke forms the global stiffness
tensor K .

On the other hand, truss elements in practice are
often selected among a fewdiscrete cross-section options.
In that situation, some advanced multi-material inter-
polations should be applied. For instance, DMO (Dis-
crete Optimization Optimization) [15] is a good multi-
material interpolation scheme as presented in Eq. (2.3):

Ke = TT
e
{
(ρe1)

p[1 − (ρe2)
p]K̄e1

+ (ρe2)
p[1 − (ρe1)

p]K̄e2
}
Te (2.3)

in which K̄e1 and K̄e2 are stiffness tensors of truss ele-
ment e in local coordinate system with the cross-section
option 1 and 2, respectively; ρe1 and ρe2 are the densities
related to cross-section option 1 and 2, respectively. The
advantage of this multi-material interpolation scheme is
that it will finally converge into either (ρe1 = 1, ρe2 =
0) or (ρe1 = 0, ρe2 = 1), which means a clearly identi-
fied cross-section option. This advanced scheme will be
investigated in our future work.

2.2. Problem solution

To solve this shape optimization problem, the Lagrangian
is constructed as:

L = FTU − Ũ(KU − F) (2.4)

in which Ũ is the adjoint displacement field.
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Correspondingly, the sensitivity analysis result on the
nodal coordinate is:

∂L
∂xi

= −
n∑

e=1
UT

e
∂Ke

∂xi
Ue

= −
n∑

e=1
UT

e

(
∂TT

e
∂xi

ρ
p
e K̄eTe + TT

e ρe
p ∂K̄e

∂xi
Te

+ TT
e ρe

pK̄e
∂Te

∂xi

)
Ue (2.5)

where Ue is the displacement vector of truss element e
and xi is the ith nodal coordinate.

Then, the sensitivity analysis result on the truss ele-
ment density ρe is:

∂L
∂ρe

= −
n∑

e=1
UT

e
∂Ke

∂ρe
Ue (2.6)

Changes of the nodal positions and truss element den-
sities can be determined through Eq. (2.7) and (2.8),
which ensures that the Lagrangian changes in the steepest
descent direction.

∂xi
∂t

=
n∑

e=1
UT

e
∂Ke

∂xi
Ue (2.7)

∂ρe

∂t
=

n∑
e=1

UT
e

∂Ke

∂ρe
Ue (2.8)

Design update of the shape variable and the topologi-
cal variable is performed through Eq. (2.9) and (2.10),
respectively

xik+1 = xik + t
∂xi
∂t

(2.9)

ρk+1
e = ρk

e + t
∂ρe

∂t
(2.10)

in which, t is the step length and k represents the iteration
number.

It is noted that the inequality constraints are not neces-
sary for shape optimization, because the design domain
is bounded and the nodes can only move within it. On
the other hand, the inequality constraints are manda-
tory for topology optimization; otherwise, no topological
change would happen because all truss element densi-
ties approaching to 1 would provide the optimal struc-
tural compliance. In this work, the augmented Lagrange
multiplier method is adopted to address the inequality
constraints [18].

2.3. Optimization procedure

Procedure of the simultaneous optimization is listed
below:

Step 1: Generate the input ground structure and
prepare all the optimization related parameters.
Step 2: Perform the finite element analysis to com-
pute the displacement vector U .
Step 3: Calculate the sensitivity information ∂L

∂xi and
∂L
∂ρe

.
Step 4: Simultaneously update the shape variable xi
and the topological variable ρe.
Step 5: Check if the termination condition is satis-
fied. If no, repeat the step 2–4.

3. local geometry control

3.1. The local grid area

In [18], geometry control was realized to prevent truss
elements from intersection. As shown in Fig. 1, if the
vertex v3 flips over the edge v1-v2, the truss elements
intersect which is unreasonable in practice.

Figure 1. Example of truss element intersection: (a) Structure
before truss element intersection, (b) Structure after truss element
intersection.

Therefore, a non-intersection constraint was devel-
oped, as:

Sj ≥ S j = 1, . . . ,m

Sj = 0.5 ∗ det

⎡
⎣ 1 1 1
x1 x2 x3
y1 y2 y3

⎤
⎦ (3.1)

where Sj is the jth triangle grid area and it is ensured pos-
itive by counting the vertices in the contour-clockwise
order. S is the lower bound of the triangle grid area which
is a small positive number to prevent the intersection. m
is the number of triangle grids involved.

Inspired by this non-intersection constraint, the trian-
gle grid areas are also constrainedwith an upper bound in
this work, in order to realize the local geometry control.
It is:

Sj ≤ S̄ j = 1, . . . ,m (3.2)
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in which S̄ is the upper bound of the triangle grid area.
S̄ is determined by the specific problem applied. For
instance, if the method is applied to designing wire-
wrapped screens for sand protection, then S̄ is deter-
mined by the minimum sand size to be blocked; if the
method is applied to designing lattice structures for per-
meability control, then S̄ is determined by the maximum
local permeability allowed.

3.2. The local grid incircle radius

Another method of realizing local geometry control is to
constrain the incircle radius (see Fig. 2), with which the
maximum incircle radius constraint can be applied as:

Rj ≤ R̄ j = 1, . . . ,m

Rj = 2Sj
Pj

(3.3)

where Pj is the perimeter of the jth triangle grid.

Figure 2. In-circle of the triangle grid.

As well, the minimum incircle radius constraint
should be simultaneously applied to preventing the edge
flipping, which is:

Rj ≥ R j = 1, . . . ,m (3.4)

The purpose of controlling the incircle radius is that,
the aspect ratio can be kept small which means close-to-
isotropic properties.

4. Case study

A few numerical examples will be studied in this sub-
section to prove the effectiveness of the local geometry
control.

4.1. Shape optimization examples

In Fig. 3, the initial truss structure and the attached
boundary conditions are demonstrated. Two point forces
are loaded with the magnitude of 0.1/each. All truss ele-
ments employ the section area of 0.04 and the material
Young’s modulus of 1.3.

Figure 3. The initial truss structure (overall size of 5*5.19) and the
boundary conditions.

A few shape optimization processes are gone through
with different S̄ values and the fixed S=0.3. Correspond-
ingly, the optimization results are demonstrated in Fig. 4.
The derived structural compliance values are attached in
the figure caption.

Some interesting conclusions can be drawn from the
optimization results that:

• The shape optimization result without local grid area
constraint is only a local optimum, and a similar con-
clusion can be found in [18];

• In case that the grid area constraints are applied,
the derived structural compliance value is non-
monotonically varying against the S̄ value;

• Restricting the maximum grid area can possibly help
converge the result at a better local optimum; see Fig
4(f–h).

Then, more shape optimization processes are per-
formedwith different R̄ values and the fixed R = 0.1. The
optimization results are shown in Fig. 5 and the derived
structural compliance values are attached in the figure
caption.

Conclusions of this example is different as compared
to the last one, which is:

• In case that the grid incircle radius is constrained, the
derived structural compliance value is monotonically
varying against the R̄ value. A smaller R̄ value would
lead to a less optimal design solution;

• The non-constrained design solution shows the best
structural performance.

4.2. Topology optimization example

In the shape optimization examples, the truss element
densities keep unchanged, and therefore, no topolog-
ical change happens. For the following example, the
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Figure 4. Shape optimization results with different S̄ values: (a) S̄ = +∞; obj = 0.9136, (b) S̄ = 1.15; obj = 0.9354, (c) S̄ = 1.05; obj =
0.9503, (d) S̄ = 0.95; obj = 0.9729, (e) S̄ = 0.85; obj = 0.9580, (f ) S̄ = 0.75; obj = 0.9102, (g) S̄ = 0.65; obj = 0.9062, and (h) S̄ =
0.55; obj = 0.8949.

Figure 5. Shape optimization results with different R̄ values:
(a) R̄ = +∞; obj = 0.9099, (b) R̄ = 0.40; obj = 0.9315, (c) R̄ =
0.38; obj = 0.9451, (d) R̄ = 0.36; obj = 0.9617.

same input ground structure and boundary conditions as
demonstrated in Fig. 3 are applied. Both nodal positions
and truss element densities are employed as design vari-
ables. Hence, both shape and topological changes could
happen. As discussed in Section 1, the simultaneous opti-
mization approach is employed and it is intended to
remove 8 truss elements from the input ground structure.

For the local geometry control, it would be more
complex compared to the shape optimization examples.
If a truss element density approaches to zero, the two
connected triangle grids will merge into a quadrangle

grid. At the same time, the local constraints will dynam-
ically change as well which causes the non-smooth
convergence. This phenomenon should be taken care
specially, and based on the numerical examples studied;
the overall convergence is not severally influenced.

A few topology optimization processes are gone
through with different S̄ values and fixed at S = 0.3. Cor-
respondingly, the optimization results are demonstrated
in Fig. 6.

By analyzing the design solutions in Fig. 6, the follow-
ing conclusion can be derived:

• In case that the grid area is constrained, the derived
structural compliance value is monotonically varying
against the S̄ value.

• A smaller S̄ value would lead to a less optimal design
solution;

• The non-constrained design solution shows the best
structural performance.

• Topology of the non-constrained design solution is
different from those of the constrained design solu-
tions.

• Because of the removed struts, the structural perfor-
mances of the topology optimization results are not so
good as compared to those of the shape optimization
results.

The convergence history of a topology optimization
process is recorded in Fig. 7. We can see that fluctua-
tions happen during the early iterations when some grids
merge and the locally constrained objects dynamically
change. Then, in the later iterations, the topology is no
longer varying while the nodal positions are optimized
to smoothly converge to the final optimum.
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Figure 6. Shape optimization results with different S̄ values: (a) S̄ = +∞; obj = 1.0129, (b) S̄ = 1.4; obj = 1.1218, (c) S̄ = 1.3; obj =
1.1335, (d) S̄ = 1.2; obj = 1.1531, (e) S̄ = 1.1; obj = 1.1711, and (f ) S̄ = 1.0; obj = 1.2019.

Figure 7. Convergence history of a topology optimization pro-
cess.

4.3. A benchmark study

In this sub-section, a benchmark example is studied with
local grid area control, which was previously studied in
[18]. In Fig. 8, the left half of the initial truss structure

Figure 9. The optimization result.

is demonstrated and the red line represents the symme-
try axis. The bottom feet are fixed and one point force
is loaded on the top midpoint with the magnitude of 0.1.
All truss elements employ the section area of 0.04 and the
material Young’s modulus of 1.3. For the local grid area
constraint, S̄ equals 1.0 and S is 0.3.

The optimization result is demonstrated in Fig. 9. We
can conclude from this result that, the load path has been
effectively optimized by changing the nodal positions;
more importantly, the local grid area is strictly con-
strained below 1.0, which is not achieved in the previous
work [18].

Figure 8. The initial truss structure (overall size of 30*5.19) and the boundary conditions.
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5. Conclusion

This paper presents a truss-like structure design method
with constrained local geometry. Two local geometry
measures are proposed: the local grid area and the local
grid incircle radius. Both measures have been proven
effective in constraining the local geometry.

Through the numerical examples, it has been observed
that the upper bound of the local geometry constraint
has an influence in the result optimality: either positive
or negative depending on the specific problems. A dis-
cussion has been provided to explain this phenomenon;
however, more exploration will be made in our future
work to dig the deep reasons.

On the other hand, the proposed method will be
extended to 3D examples in the future work to better
serve the practical engineering design tasks.
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