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ABSTRACT
The development of multi-user CAD (MUCAD) tools has opened up exciting new opportunities and
applications. The capability formultiple users to simultaneouslymodel anddesign aCADpart has far-
reaching potential. However, many basic questions remains unanswered, such as how many users
should work together on a given part. This research proposes and develops a set of methods to
determine the optimal number of users for a given part within a MUCAD environment, based on the
characteristics of the part itself. Two candidate models are evaluated with a set of 60 experiments
with design teams composed of different numbers of users. The models show modest correlations
with the test datawhilemore-refinedmodels are explored to improvepredictivepower. On theother
hand, highly significant correlations between the ability to predict completion time and multi-user
team size were identified in the experimental data. Observations regarding the speed and quality of
MUCAD teams are also made with future areas of research suggested.
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1. Introduction

Multi-user CAD (MUCAD) enables multiple users to
simultaneously contribute to a CAD part or assembly. All
users’ contributions appear in real time, providing a col-
laborative environment where all users visualize changes
to a CADmodel as they occur. This type of environment
allows for design tasks in CAD parts, which have been
traditionally limited to a serial workflow, to be performed
in parallel. Various research efforts related to collabora-
tive CAD have been conducted since the late 1990’s [2, 3,
5–8, 10, 12, 14, 16–22, 24, 28–31, 33, 36, 39].

Previous research shows that multiple users simulta-
neously working on a CAD part in parallel can signif-
icantly decrease the time it takes to complete the part
[15, 16]. As more users are added, the time to complete
the part tends to decrease. However, there is a point at
which adding more users no longer decreases the time
to completion, and in many cases it increases the time
[16]. Therefore, there is an optimal point at which either
increasing or reducing the number of users increases the
design time. This point, which is specific for each CAD
part, is what we call the optimal number of simultaneous
contributors.

Although previous research suggests that an optimal
number of simultaneous contributors for a specific CAD
part exists, no one has attempted to determine the factors
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that influence this number. Furthermore, no one has yet
determined any method to adequately predict this opti-
mal number. In this paper, we present factors related to
the part itself that appear to influence the optimal num-
ber of simultaneous contributors in a CAD part. We also
present two methods to determine or predict this value.
These methods use a taxonomy and a dependency tree
structure to classify the part and estimate the optimal
number of users. We then present experimental results
to determine empirically which of the twomethods most
accurately predicts the optimal number of multi-user
team members.

To support this prediction process, a taxonomy is
developed that classifies parts according to the num-
ber of features and structure of branching dependencies.
Once the classification is complete, the results are used to
develop two predictive models of the optimal number of
users for a given CAD part. These models are then vali-
dated through experiments to show the accuracy of each
model.

2. Background

2.1. Taxonomy

A taxonomy is a structured way of grouping or distin-
guishing a large and diverse set of specimens, which is
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useful in many fields such as biology [9], astrophysics
[35], or even systems engineering [13]. For example,
biological taxonomy, with its designations of kingdom,
phylum, class, order, family, genus, and species, allows
us to classify living things in a neatly structured fash-
ion. Todd et al. provide a similar method of classification
for manufacturing processes, beginning with whether a
process is shaping or non-shaping, and progressing all
the way to specific processes such as Ion Beam Cutting
and Swaging [37]. These taxonomies serve significant
practical purposes beyond simply organizing objects. It
is easy to see that much of biological research would
be impossible without a standardized way of under-
standing how different species are related. Similarly, an
organized way of thinking about manufacturing pro-
cesses allows designers and manufacturers to systemati-
cally consider alternatives formaking planned products a
reality.

In order to identify the optimal number of multi-
user teammates for a given part, a structured method of
classification must be established. Just as living creatures
and manufacturing methods can be classified and orga-
nized using a taxonomy, models of physical parts that
are created in CAD can also be organized using a similar
scheme.Our proposed taxonomicmethod is presented in
Fig. 1. Starting at the top with “All Parts,” the first level of
distinction includes determining whether the part has a
single feature or multiple features. In this research, a fea-
ture is defined as any of the geometry-creating methods
in a modern CAD tool such as Siemens NX or Dassault
CATIA. Examples include “Extrude” in NX or “Pad” in
CATIA, “hole,” “pattern,” or “loft” features. Sketches, by
themselves, are not considered features in this method.

These features and their dependencies are defining char-
acteristics of modern feature-based CAD systems [32].

If a part only has a single feature, it is considered
unsuitable for MUCAD. This is because the feature is the
atomic unit, meaning only one user can edit a feature at
a time [17]. If, at some future period, a MUCAD system
alters that paradigm and adds capability for MU sketch-
ing, this taxonomy would change (see “Sketch Domain”
on the far left of Fig. 1). The other option at this classifi-
cation level is for a part to have multiple features.

Level two of the taxonomy requires identification of
whether the part has linear or branching dependencies.
Dependencies occur when one feature in a part depends
on another feature in some way. For example, a hole may
depend on a surface or a solid on which it is based. If
multiple features depend on a single parent feature, these
children features are said to branch. An example of a
part with purely linear dependencies is shown in Fig. 2.
In contrast, Fig. 3 and Fig. 4 respectively show a piston
head and an automotive fluid reservoir with their fea-
ture dependency trees. The automotive fluid reservoir
tree demonstrates a relatively high number of branching
dependencies.

A visual representation of a part’s dependencies often
bears resemblance to the structure of a tree.How complex
the tree structure of any given part is, from mostly linear
to complex and bushy, is the third and final level of our
taxonomy.

Using this method, which is, as far as we are aware,
unique in the field, we have classified a sample of more
than 100 parts. To ensure a minimal breadth of part
variety, we selected parts from among nine different
manufacturing methods, such as blow molding, sheet

Figure 1. Proposed taxonomy for classifying parts for multi-user CAD. Note the “F” for the fan blade set, “P” for the piston head, and “R”
for the automotive fluid reservoir in the subsequent examples.
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Figure 2. Model of a fan blade set and its feature dependency
tree, which is completely linear.

Figure 3. Model of a piston head and its branching feature
dependency tree.

metal manufacturing, forging, and 3D printing. Next, a
researcher classified each part using the taxonomy (aided
by standardized classification forms) and created the
feature dependency tree for each applicable part. A sec-
ond and sometimes third researcher verified the classifi-
cation and tree structure to confirm the part’s taxonomic
definition. This collective set of classifications could then
be used to develop predictive models to estimate the
optimal number of users for a given CAD part.

Currently, CAD part classification is a manual process
requiring researchers to think extensively about how they
wouldmodel a part and then check each other’s proposed
structure. In the future, an automated tool that leverages
machine learning could be developed to automate this

process. However, such a tool would be required to han-
dle the ambiguity of multiple options for how to model a
given piece of geometry.

2.2. Predictivemodels

To accurately predict the optimal number of users for a
given CAD part, we proposed a set of models, an overall
methodology, and hypotheses. Since this researchwas the
first step in filling an apparent gap in MUCAD imple-
mentation, we have endeavored to follow a classic pattern
of increasing fidelity from simple to more complex mod-
els of prediction. This is not unlike various methods
for aircraft design and aerodynamics where lower-order
models are initially applied to obtain first-order approx-
imations, followed by more accurate and sophisticated
methods [1].

For example, during conceptual design, an aircraft
designer may simply apply Bernoulli’s incompressible
flow equations to extract simple estimates of drag polars
from a point design. During preliminary and detailed
design, one may invoke Euler’s and Navier-Stokes equa-
tions, which can include compressibility and viscosity,
respectively, resulting in more accurate predictions for
the aircraft’s various aerodynamic performance charac-
teristics. Finally, aircraft models are tested in wind tun-
nels validating the models’ predictive capability for a
particular geometry.

In the context of multi-user CAD, we proposed that
the lowest-order model to predict the optimal number
of multi-users working concurrently in a CAD part is
a simple function of the number of features within that
part. Selecting a part from the sample of parts classified
using the taxonomy previously described, the number of
features in a part is quickly calculated and the optimal
number of users can be extracted from a linear regression
model. Under this model, we hypothesized that for parts
with few features (i.e., less than 10) no significant bene-
fits will be obtained frommore than one concurrent user.
Therefore, a single user would be optimal. The additional
overhead of multi-user environments and the necessary
communication requirements may outweigh the benefits
with so few features in a part. However, we hypothesized
that with 10 or more features, the potential for multi-
ple users working simultaneously in the same CAD part
will become increasingly attractive. When these parts
are modeled by multiple users, the team can experience
reduced modeling time, reduced or accelerated error
checking, and enabling of earlier efforts by analysts and
subject-matter experts down-stream.

It is important to note that while there are many
ways of defining an “optimal” number of users, we
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Figure 4. An automotive fluid reservoir and its feature dependency tree.

have limited our research to consider the optimal num-
ber to be that which minimizes the “calendar time” or
“actual time” from beginning to completing the model
(as opposed to total man-hours). Given Brooks’ and
other’s research regarding increasing overhead costs with
increasing numbers of teammates, we do not consider
man-hours in this investigation [4].

A more sophisticated second-order model would take
into consideration not just the number of features but
the features’ locations and orientations with respect to
the feature dependency tree. We hypothesized that a tree
with little to no branching, even with many features, will
not allow multiple users to concurrently model a part.
On the other hand, a part with significant branching sug-
gests potential for many simultaneous users. This model
uses the feature dependency trees generated during the
taxonomic classification to count the number of features
within a particular tier or level of each tree’s hierarchy.
Then, a weighted sum across all branches and levels is
performed to predict an optimal number of multiple
users.Wehypothesized that thismodelwouldmore accu-
rately predict the optimal number of users for a given part
than the first-order model.

A third and more complex model would make fewer
assumptions about the feature dependency tree and
would consider the time and complexity associated with
modeling each featurewith an evaluation of the interfaces
between them. Additional factors could be included in
this model that would drive the optimal number of users,
including ideas from graph theory such as connectiv-
ity, path lengths, and cycles [38]. Since this third type of
model requires information beyondwhat was gathered in
the taxonomic classification of the part sample described,
it forms the thrust of future research efforts whereas this

paper will address the first twomodels described. Finally,
efforts to validate these models were performed through
60 design tests with teams of different numbers of users.

Brooks addresses attributes of teams of various sizes
and task types [4]. For teams working on tasks that
require communication, Brooks argues that adding more
members to the team does not shorten the time to task
completion in a linear fashion [4]. Instead, he shows
that each time a new teammate is added, the marginal
improvement decreases. For tasks with more complex
interrelationships, such as the software development
projects he studied, a point comes at which adding team
members begins to negatively affect the time to comple-
tion. Hepworth et al. demonstrated similar results in a
MUCAD environment [15].

3. Methods

The first and second models were investigated empiri-
cally by measuring the time required to model 13 “small”
parts (20 or fewer features) and two “larger” parts (more
than 20 features). Each part was modeled with one, two,
three, and four multi-user team members. Users were
never allowed to model the same part twice to control
for learning and reduce the bias in observed quality and
modeling time. Because of the number of models that
had to be created, 26 volunteers from the Brigham Young
University (BYU)CADLab and other student-volunteers
with significant NX CAD experience modeled the parts.
Students were mostly undergraduate mechanical engi-
neering majors.

In order to calibrate and compensate for the large
variety of modeling skill levels, each user took a mod-
eling speed test. This test, completed individually by
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each volunteer, required the examinee to model a basic
part. Trained proctors verified satisfactory completion
of the part and recorded the amount of time taken.
Equation (3.1) shows how a correction factor is cal-
culated to normalize the individual skill level for all
participants,

Rc = tavg.
tuser

(3.1)

whereRc is the correction factor, tavg . represents the aver-
age of all of the examinees’ speed tests, and tuser represents
the time for each individual’s speed test.

Another potentially confounding factor that we
attempted to mitigate is the beta status of the NXCon-
nect MU software. Software bugs did occasionally cause
individuals to spend time waiting or restarting the pro-
gram. To compensate for this, video recording of each
user’s screen was examined after each model was com-
pleted and the time a user spent waiting due to bugs was
subtracted fromhis or her totalmodeling time to produce
the active modeling time for each user. Each user’s active
modeling time was then added to the other members
of his or her team and averaged to produce the cor-
rected calendar time for each modeling effort described
in Eqn. (3.2).

Tc = Rc,min
∑k

1(tm − tbugs)
k

(3.2)

TC is the corrected calendar time for each model, k rep-
resents the total number of users on the team, tm is the
raw modeling time for each user, and tbugs represents the
time a given user spent waiting because of software bugs.

Steiner, Page, and Moynihan state that the perfor-
mance of teams whose members are highly interde-
pendent (those performing “conjunctive” tasks) depends
most on the team’s weakestmember, or the teammember

with the lowest rating in the relevant skill [23, 26, 34]. In
the case of the MUCAD teams in this study, RC was used
to indicate team member skill. In other words, the low-
est RC, or the RC,min, was applied to weight each team’s
TC. This assumption was supported based on the obser-
vations of MUCAD teams, which demand high levels of
interdependence: they must agree on how to orient the
part, decide who will model which sections, and depend
on each other’s sketches and features to create their own.

4. Results

Results of the part-modeling experiments can be seen
in Tab. 1, arranged in order from smallest number of
features per part to the highest. Some parts varied sig-
nificantly from the expected overall trends, but many
matched well.

Comparing the TC of the 13 small parts to the num-
ber of users per team, one can observe similar results to
those found by Hepworth et al. and Brooks [4, 15]. Fig. 5
shows the time to complete each part compared with the
number of users on each team, as well as a line connect-
ing the mean time in each category with 95% confidence
intervals.

Given the data’s non-normality and potential for
inequality of variances, a non-parametric,Wilcoxon each
pair comparison was used to compare the means of each
group. Mean values were 1 User: 27.1 minutes, 2 Users:
20.5 minutes, 3 Users: 15.3 minutes, and 4 Users: 13.5
minutes. The difference between the 4-User teams and
the 1-User teams was statistically significant (p = 0.04).
The next closest difference to statistical significance was
the difference between the 3-User and the 1-User teams
(p = 0.06).

The optimal number of MUCAD teammates was
determined for each part by identifying the point at

Table 1. Time completion results of the part modeling experiments.

Part Name
Total # of
Features

Avg. # of
Features/

row Tc 1-User (min) Tc 2-User (min) Tc 3-User (min) Tc 4-User (min)

Sintered Part 3 1.5 9.89 8.29 6.58 9.03
Cup 4 1 1.82 3.54 11.12 5.80
Ball Valve 4 1.33 2.20 6.07 3.43 2.51
3D Printed Hinge 7 1.75 8.83 16.91 11.95 7.93
Tablet Mount Arm 7 2.33 34.76 18.02 13.36 8.40
Chocolate Container 9 2.25 27.49 39.78 12.07 12.34
Mining Machinery 10 1.43 28.91 16.93 13.75 17.91
QuadCopter Arm 10 2.5 35.71 37.44 20.17 12.94
Fan Housing 13 6.5 27.17 22.16 12.91 13.56
Kitchen Sink 15 3 64.59 12.97 25.27 19.44
Car Door Panel 17 2.83 39.59 32.17 20.87 18.47
Gear Pump Housing 17 4.25 40.53 35.96 26.95 23.98
Pump Casing 19 3.16 30.38 16.55 21.37 22.71
Airplane Rib* 32 10.67 18.59 28.62 26.01 24.03
Tray* 59 5.9 25.08 27.03 25.28 31.93

*Included as case studies
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Figure 5. The average amount of time to complete a model
decreases as the number of teammates increases; improvement
or reduction in time begins to level off by four teammates.

which adding more users no longer saved time, or, in the
case that the classic Brooks pattern was not displayed,
the number of users correlated with the shortest time to
completion. A first-order linear regressed model of the
optimal number of teammates was determined from the
number of features per part and the average number of
features per row within the part’s feature dependency
tree. These curves are shown in black on both the left
and right hand side of Fig. 6. The linear relationships do
demonstrate a positive correlation, as expected, but both

are quite weak statistically with a small R2 value of just
0.065 when themodel is based on the number of features,
while the model for the average number of features per
row was only slightly better at 0.076.

However, since the true model would be constrained
to have “1” as the optimal number of users when the total
number of features equals one, and the model should
asymptotically approach a maximum number of users
for practical reasons (i.e., the overhead of integrating a
large number of modelers overpowers the benefits), var-
ious non-linear models were considered and applied to
the data set. A similar argument is made for the sec-
ond type of model using the average number of fea-
tures per row. One such approximation, based on the
Michaelis–Menten equation [25], offers a better model
to regress the experimental data and provide a predic-
tion for parts with numbers of features up to 20. The
Michaelis–Menten models, shown with the red lines in
Fig. 6, offer 2.37 and 2.72 times more predictive power
with R2 values of 0.206 and 0.153, respectively. Not only
do these models offer a more accurate prediction for the
optimal number of users, but they are also characterized
by a more feasible non-linear trajectory consistent with
literature on team or group size and performance [11,
27].

Another way of looking at the ability of the proposed
models’ predictive power is to consider time to comple-
tion vs. feature count (or average number of features per
row) by size of team. The results of this analysis are shown
in Fig. 7.

Figure 6. The optimal number of teammates by (a) the total number of features and (b) by the average number of features per row
(first-order linear regression (red), Michaelis–Menten model (black)).
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Figure 7. Time to complete eachpart vs. the number of features by the size of each teamwith 95%confidence intervals, linear regression
equations, and R2 values.

As demonstrated in Fig. 7, the number of features
shows a positive correlation with time to completion.
These correlations were statistically significant, with
p-values less than 0.05 in all cases except for the 2-user
teams (p = 0.08). It is also interesting to note the increase
in R2 values as the size of the team increases. Statisti-
cal results for comparing completion time with average
number of features per row yielded similar but weaker
results, with p-values ranging between 0.08 and 0.16.

5. Discussion

Results of our analysis show that the proposed models
using the number of features and the average number of
features per row do correlate with the optimal number of
users, althoughweakly. It is likely thatmore repetitions of
the same parts, and by larger sizes of teams (i.e., greater
than four), will be necessary to fully validate thesemodels
statistically. Furthermore, the parts used were all primar-
ily simplewith respect to the total number of part features
(i.e., less than 20). Team behavior and performance may
be different with more complicated parts and offer more
stable effects.

However, the theory that MU teams may allow more
accurate prediction of time to completion for a model
of a given size was observed and found to be statisti-
cally significant in most cases. This finding matches our
observations in other studies and experiences.One expla-
nation for this phenomenonmay be that teammates tend
to complement each other’s skill sets so that when one
user is less knowledgeable or skilled, other users can pro-
vide the needed ability or will naturally compensate out
of necessity. For example, clear instances were observed
where MU teammates learned from each other’s mod-
eling techniques during the experiments. The following
sections described some of the findings from these obser-
vations.

5.1. Trunking

One trend we observed during the experiments was the
types of strategies teams employed to try to deal with
“trunks.” Following the idea that a part’s dependency
branching is similar to the structure of a tree, the first ele-
ment of the tree structure aswe imagined it (see Fig. 3 and
Fig. 4 for examples) was a single feature created by one
user and gives the rest of theMU team the context it needs
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to model other features. In theory, while many different
features of a part could be chosen as the trunk, the classifi-
cation process identified features which seemed to be the
most likely chosen as the trunk. We assumed that most
teams, for the sake of avoiding confusion about how the
part was oriented, would choose to follow a “single trunk”
strategy. The obvious drawback to this strategy is that the
rest of the team must wait while one person creates the
trunk.

Test volunteers were not informed or instructed how
to organize their modeling efforts, and we observed
that most teams did follow a single-trunk strategy any-
way. However, we also observed several enterprising
teams attempt to improve on the single-trunk method
for MUCAD modeling. Some teams would attempt to
“shrink” the trunk of a part by having one user complete
a very simple version of a sketch of the trunk feature. The
user who sketched this initial feature would then quickly
exit the sketch to allow the other team members to view
it. In many cases, the sketch was not completely con-
strained or even dimensioned correctly, but it sufficiently
communicated the general size, shape, and orientation of
the feature well enough for the other team members to
begin creating their features. Often, the initial user who
modeled the trunk would return to refine it later on.

One example of this strategy can be seen in Fig. 8,
where, after discussing their strategy, one user created a
very rough, incomplete sketch. He then exited the sketch
so it would be committed to the server and his teammate
could see it. Then, he reentered the sketch to refine it
while his teammate began working on other portions of
the model.

Other teams attempted to “multi-trunk” their parts.
After attempting to explain the general orientation of the
part’s features to each other, two or more team members
would simultaneously sketch and create their features.
The risk taken by teams that attempted to multi-trunk,
of course, was that once completed, their features would
sometimes not properly relate to each other. Sometimes

this took little effort to correct, while other times it
meant completely redoing features, which increased con-
fusion among teammates. In most cases, multi-trunking
required much more effective coordination before initi-
ating modeling activities. Future research should investi-
gate this tactic, its potential, and its implications.

5.2. Quality difference for simple parts

It was initially predicted that small, simple parts, or those
we classified with 10 or fewer features, would see little
benefit from being modeled by a MU team. However, we
observed that in some cases, while MU teams completed
their simple parts slower than single-user teams, they also
greatly increased the quality of the part.

The Cup is one example of when larger teams took
longer to model the part than the single-user team.
Despite efforts to control for quality, MU teams often
insisted on including a higher level of detail in their part
as shown in Fig. 9. From the beginning of their mod-
eling efforts, some MU teams seemed to have a sense
of obligation to involve as many of their users as much
of the time as possible. This led to teams altering their
modeling strategy to make more, simpler features and/or
consider strategies such as subtractive modeling to allow
more users to contribute to the model simultaneously.
A ratio of features added per minute of modeling time
shows that even though the two- and three-user teams
weremuch slower than the single-user team, the features-
to-minute ratios of two of theMU teamswere higher than
the single-user team.

5.3. Case studies

Although many parts were expected to be suitable for
multi-user teams and the experiments confirmed our
predictions, a few parts were surprisingly not conducive
to MUCAD. Those that met our expectations included
the Car Door Panel, Fan Housing, Gear Pump Housing,

Figure 8. Example of (a) rough-trunking an initial sketch, and (b) the more fully developed model.
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Figure 9. The level of detail included in the model of the cup generally increased with the number of users.

MiningMachinery, PumpCasing,QuadCopterArm, and
Tablet Mount Arm. The Tray and Airplane Rib, two parts
with the highest number of features (more than twice
the average number of features of all the others), were
less appropriate for MUCAD based on the results of the
experiments. Completion times for each team size for
each of these nine aforementioned parts are shown in
Fig. 10.

Several parts, such as the FanHousing and PumpCas-
ing, appear to demonstrate Brooks style curves. Others,
such as the Car Door Panel and TabletMount Arm, could

also potentially be Brooks curves, but with their optimal
points at a higher number of team members than tested.
The Tray and Airplane Rib do not match these trends.
In fact, the Tray’s completion time remains relatively flat
for team sizes of one to three users, and finally increases
with four users. This is opposite of our initial predictions
that the Tray would be very suitable for MU modeling
considering its large and widely branching tree structure.

After reviewing the video and audio recordings of
the Tray’s teams, we discovered a large difference in
way the single user modeled a few important portions

Figure 10. Completion times for each team size for the nine parts considered.
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of the part compared to the MU teams. For example,
to add angular draft to the multiple negative extrudes
in the part, members of the three-person team speci-
fied the amount of draft as part of each extrude feature.
Meanwhile, the single user quickly created many sim-
ple extrudes, and then, using the draft feature, returned
and selectedmultiple extrusions towhich he applied draft
globally. This technique served the single user especially
well, perhaps unknowingly, on one particular portion of
the Tray, which was considered more complex. On the
three-person team, the contributor who worked on the
sameportion, despite having the second fastest speed-test
time, struggled significantly. In the end, he spent more
than double the time to finish the section as the single
user.Members of the four-person team experienced simi-
lar challenges.We suspect that the style of this single-user
may be rare and that additional repetitions would reveal
the Tray to be a strong candidate for MUCAD teams as
originally predicted.

The observations of the teams modeling the Airplane
Rib part, also predicted to be suitable for MUCAD,
revealed some interesting insights. The single-user team
was able to use a spline and model a satisfactory air-
foil shape in roughly four minutes. For contrast, the
four-member team decided to have each team member
attempt to sketch an airfoil and then choose the best
among the designs. After that effort failed, one team
member went onto the internet, found a set of coordi-
nates for a NACA airfoil, downloaded it, and created
points for a spline. This entire process took approxi-
mately 12 minutes and significantly delayed the team’s
completion time.

6. Conclusions

By classifying a sample of parts using a taxonomic scheme
we developed, we were able to test two proposed mod-
els for predicting the optimal number of multi-user team
members for modeling a given part. The empirical data
through testing strengthen the idea that an optimal num-
ber of members exists for MUCAD teams, and that the
optimal number of users can be predicted with vary-
ing accuracy by different kinds of models. We also find
strong evidence to support the theory that increasing
the size of a team from a single user to larger teams
can increase the accuracy when predicting the time for
completion.

6.1. Limitations

Although 60 different team size-part type combinations
were performed, the required constraint that no volun-
teer repeat a part limited the amount of collected data.

An enlarged dataset with additional repetitions could sig-
nificantly enhance this research and the validation of the
proposedmodels. Furthermore, only teams of one to four
users in size were tested with relatively simple parts com-
posed of few features. Both of these could be expanded in
future experiments. It should also be noted that the type
of work best represented by these experiments would
be the work done to create the CAD models after most
design decisions had been made. Design tasks such as
determining the best shape of a design for optimal func-
tionality were considered to be outside the scope of this
research.

6.2. Future work

Since this research considers the first step in closing an
apparent gap in MUCAD understanding, a number of
topics have been identified for future research. Experi-
ments testing a wider range in part complexity and team
size would help validate the models presented in this
research. More advanced models, including graph theo-
retic principles, should be developed and evaluated for
improved accuracy. Future testing should also include
additional methods for measuring the individual user’s
CAD skills and assessing the impact of combining users
with different or similar skill levels and their effect on the
multi-user teams. Explorations intowhether a correlation
exists between the type of manufacturing process used to
create a physical part and the model’s “MU-friendliness”
would likewise be beneficial. Finally, development and
testing of an automated tool for part classification would
be a major but useful undertaking.
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