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ABSTRACT
As originally conceived, T-splines generalize both NURBS and Subdivision surfaces. Central to T-
splines is the knot refinement algorithm, which seems to successfully import the local characteristic
of B-spline and NURBS curve knot insertion. However, the mathematical decisiveness manifested in
curve knot insertion is nowhere to be seen in previously published versions of T-spline local refine-
ment. In this respect, this paper gives a tutorial exposition of T-spline local refinement, interpreted in
the spirit of a belief-revision metaphor. It also provides a detailed implementation of that, designed
following the architecture of rule-based systems. Both of these are classical topics in traditional
Artificial Intelligence Research.
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1. Introduction

The best known methods (B-splines, NURBS [7] and
recursive subdivision [5], for examples), for modeling
geometric surfaces, start from a so-called control mesh
on the basis of which the desired surface may be con-
structed. In this sense, T-splines1 [9, 10, and 11] are no
different, because modeling starts from an initial control
mesh.However, the initial controlmesh here is abstracted
away through having its constituents (i.e., vertices, edges
and faces) embedded inside a two-dimensional grid
called a T-mesh, presumably considered within the knot
domain.

By comparison with other modeling schemes, a T-
mesh permits fewer connections between pairs of con-
trol points, thus causing the appearance of so-called T-
junctions on the T-mesh. Less vertices, edges and faces
are adopted without jeopardizing the expressive power
of the scheme. Quite the contrary, this seems instead to
enhance the flexibility of T-splines by allowingmore free-
dom and ease of basic manipulations. At the same time,
this may be considered as more economical in terms of
space usage and in terms of processing time.

Furthermore, the T-mesh structure allows for the
automatic inference of the knot information associated
with its constituent control points and, more importantly
perhaps, it comes with a refinement routine whose local
effects make it comparable to the classical curve knot
insertion.
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However, T-spline local refinement is cast in an algo-
rithmic language lacking the mathematic decisiveness
manifested in the curve knot insertion, and keeping in
the shadow many details that need to be available for
implementation purposes.

Accordingly, this paper gives a tutorial exposition of
this routine portrayed using a belief revision metaphor
and further provides a rule-based implementation of that.
The flexibility of this interpretation motivates the intro-
duction ofmore features (such as edge-insertion) that are
never explicit anywhere in previously published versions
of this routine.

The rest of this paper is structured as follows: Section 2
includes a description of classical knot insertion of B-
spline and NURBS curves. Section 3 presents an alter-
native formulation of knot insertion as a rule-based
system, included for the purpose of motivating the
alternative implementation of T-spline local refinement.
Section 4 provides a review of the original T-splines lit-
erature including its characterizing features: automatic
knot inference and local refinement.

Section 5 presents a detailed account of the implemen-
tation of T-spline local refinement including the required
data structure. Section 6 includes a description of the exe-
cution of this algorithm on a selected example as well as a
brief mention of an application that made use of T-spline
local refinement and the edge insertion feature as for-
mulated in this paper. The final section concludes with a
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summary, a discussion and some suggestions for further
work.

2. Knot insertion for B-spline curves

This section provides a review of the classical knot inser-
tion algorithm for curves intended to make the material
that followsmore self-contained (see references in [3], for
further elaboration on that).

2.1. B-spline basis functions

Given a positive integer k (the order of the basis function)
and a sequence (τ ) of knots t0, t1, . . . , tm, such that ti ≤
ti+1, for all i where 0 ≤ i < m, Nk

i is the B-spline basis
function defined as follows:

• N1
i (t) = 1 when ti ≤ t < ti+1and 0 otherwise.

• When k > 1,Nk
i (t) is defined by the following expres-

sion: t−ti
ti+k−1−ti N

k−1
i (t) + ti+k−t

ti+k−ti+1
Nk−1
i+1 (t)

B-spline basis functions returnnonnegative values (i.e.
Nk
i (t) ≥ 0) satisfying: 0 ≤ Nk

i (t) ≤ 1. They all have par-
tition of the unity property:

∑n
i=0 N

k
i (t) = 1.

2.2. B-spline and nurbs curves

Given a knot vector (τ ) and a sequence (π) of con-
trol points p0, p1, . . . , pm forming a control polygon, a
B-spline curve is defined through the following equation:

p(t) =
∑n

i=0
Nk
i (t)pi, where tmin ≤ t < tmax (1)

This satisfies the fundamental identity m = n + k,
wherem + 1, n + 1 and k are respectively the number of
knots, the number of control points, and the order of the
B-spline curve. Note also that, sinceNk

i (t) = 0 only when
t < ti or t ≥ ti+k, a control point pi influences the curve
only when ti ≤ t < ti+k. This means that at most k con-
secutive control points influence the curve in any given
knot span.

NURBS curves directly generalize B-spline curves
by associating every point pi of the control mesh with
a weight coefficient wi, thus leading to the following
equation for the curve:

c(t) =
∑n

i=0 N
k
i (t)wipi∑n

i=0 wi
, where tmin ≤ t < tmax (2)

2.3. The knot insertion routine

As classically portrayed, the knot insertion routine adds a
new knot to an existing knot vector without altering the
shape of the corresponding curve.

Inserting a new knot increases the number of knots by
one. Thus, one way of maintaining the fundamental iden-
titymentioned above would be by an identical increase of
the number of control points. In actual fact, some existing
control points are replaced by new ones through cor-
ner cutting. This way, if the order of the curve is k, knot
insertion affects at most k consecutive control points (see
Fig. 1). This locality characteristic in particular is what
makes knot insertion interesting.

When the new knot t is such that ti ≤ t < ti+1,
it leads to the insertion of k-1 new control points:
qi on edge pi−1pi, qi−1 on edge pi−2pi−1, . . . , and
qi−k+2 on edge pi−k+1pi−k+2. Thus, the old sequence
between pi−k+1 and pi is replaced by a new sequence
pi−k+1qi−k+2 . . . qipi by cutting the corners of the old
polygon at pi−k+2 . . . pi−1respectively. No other con-
trol point is affected, which means that k − 2 control
points of the original control polygon are replaced by
k − 1 new points. In fact, each new control point qj, on
edge pj−1pj, is determined by: qj = (1 − αj)pj−1 + αjpj,
where:

αj = t − tj
tj+k−1 − tj

, where i − k + 2 ≤ j < i (3)

From now on, and without loss of generality, the dis-
cussion and examples will be restricted to cubic B-spline
curves; i.e. degree 3 (order 4). Consequently, each control
point will be associated with a subsequence consisting

Figure 1. B-spline Curve Knot Insertion.
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of five consecutive elements (that will be called the local
knot vector) of the global knot vector (τ ). Accordingly,
equation (2) may be rewritten as:

p(t) =
∑n

i=0
N4
0 [ti, ti+1, ti+2, ti+3, ti+4](t)pi, where

ti ≤ t < ti+4 (4)

Where ti refers here to the ithelement of (τ ). Thus,
for simplicity, when the local knot vector is known, both
subscript and superscript of the basis function will be
suppressed without causing any ambiguities.

3. Knot insertion as a rule-based system

In many respects, the material presented in this paper
may be considered as an elaboration on ideas that were
merely suggested in [2] and [3].

3.1. Themetaphor

Very briefly, thememory of an artificial intelligence agent
[8] may be considered as a set of consistent beliefs. Such
beliefs are interrelated in their consequences in the sense
that they involve varying relationships. Thus, in the face
of a new incoming belief, the system will undergo a
revision of all its beliefs, in order to preserve their con-
sistency. The nature of revision and the depth of pos-
sible modifications that may be undergone are related
to the interdependency of existing beliefs (and of their
consequences) with respect to the new incoming belief.

In the same vein, truth maintenance refers, among
other things, to the process thememory has to undergo to
preserve its consistency when one (or more) of its belief
elements is no longer true.

Accordingly, at initialization, a control polygon is
composed of a sequence of control points (π) will be in
a consistent state with respect to a global knot vector (τ ),
in the sense that it possesses the appropriate information
to calculate the summation in Eqn. (4). However, when a
new knot t is inserted in the sequence (τ ), inconsistency
may be introduced into the summation in Eqn. (4), in the
sense that one or more of the knot local vectors now have
invalid knot values caused by this insertion.

In this sense, the vocabulary used in the description
of local refinement in [9] may be interpreted against the
same spirit to that used in the above metaphors. In other
words, when a knot is inserted, the whole setup will
undergo a process similar to belief revision or to truth
maintenance, whose purpose is to restore consistency,
while keeping the value of the summation in Eqn. (4)
intact.

3.2. The rules

Given a local knot vector t = [t0, t1, t2, t3, t4] andN(t) =
N[t0, t1, t2, t3, t4](t), when a knot t∗ is inserted, one of the
following rules (taken from [9]) should fire:

Rule 1. If t′ = [t0, t∗, t1, t2, t3, t4] then N(t) = c1N[t0, t∗,
t1, t2, t3](t) + d1N[t∗, t1, t2, t3, t4](t) where c1 =
(t∗ − t0)/(t3 − t0)and d1 = 1

Rule 2. If t′ = [t0, t1, t∗, t2, t3, t4] then N(t) = c2N[t0, t1,
t∗, t2, t3](t) + d2N[t1, t∗, t2, t3, t4](t) where c2 = (t∗
− t0)/(t3 − t0) and d2 = (t4 − t∗)/(t4 − t1)

Rule 3. If t′ = [t0, t1, t2, t∗, t3, t4] then N(t) = c3N[t0, t1,
t2, t∗, t3](t) + d3N[t1, t2, t∗, t3, t4](t) where c3 = (t∗
− t0)/(t3 − t0) and d3 = (t4 − t∗)/(t4 − t1)

Rule 4. If t′ = [t0, t1, t2, t3, t∗, t4] then N(t) = c4N[t0, t1,
t2, t3, t∗](t) + d4N[t1, t2, t3, t∗, t4](t) where c4 = 1
and d4 = (t4 − t∗)/(t4 − t1)

Rule 5. If t∗ ≤ t0 or t∗ ≥ t4, N(t) does not change

These rules specify how the inconsistent knot vector should
be split to counter the effects of the inserted knot and the
weights that should be associated with each split compo-
nent in order to preserve the integrity of the original state
this vector is coming from (see Eqn. (4)).

From now on, and for ease of presentation, in the case
of curves, the term vertex will be used to refer to the
triplet: control point, weight coefficient and local knot
vector. However, in the case of surfaces, this will also
include a second local knot vector.

3.3. The data structure

When performing knot insertion, the control polygon
needs to hold the control points of the curve together
with the corresponding local knot vectors, since individ-
ual curve points can then be calculated on the basis of
such information, through Eqn. (4).

The process that is able to reproduce knot insertion
can manipulate the summation in Eqn. (4) directly and
simply substitute equals for equals. However, the descrip-
tion of that should start from the underlying data struc-
ture (see Fig. 2).

Accordingly, given the initial sequence of control
points (π) and the initial knot vector (τ ), a sequence
T[0..n + 4] is constructed such that each element holds
a sequence of vertices< p, t >, where p is a control point
and t is a local vector consisting of 5 consecutive knots of
the global knot vector (τ ).

At initialization, for any given index i of the sequence
T, T[i] will contain only a single vertex < pi, ti >, where
the first element of ti should precisely be ti.

In the treatment that follows, it would perhaps bemore
suggestive to associate each point of the sequence (π)
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Figure 2. Data Structure for Alternative Formulation of Knot Insertion.

with the middle knot of the corresponding local knot
vector (see Fig. 2).

3.4. The routine

Given the sequence of Fig. 2, when an inserted knot t∗
falls within the span of a local knot vector of a vertex in
this sequence, an appropriate rule should be invoked on
this local vector (see Fig. 3). This will replace this vertex
by pair of vertices thereby restoring consistency to this
particular slot of the sequence.

Each component of the replacing pair will be stored in
the appropriate slot of the sequence specified by the mid-
dle knot of the corresponding knot vector. This means
that some of these slots will need to accommodate more
than a single vertex. However, various vertices within the
same slot of the sequence will end up having the same
local knot vector.

The final step of the routine will add the vertices of
each slot together thus forming the refined control poly-
gon emanating from the original one the process started
offwith in Fig. 2. Note here that, the presence of t∗ among
the knots of Fig. 3will simplymean thatm = n + 1. From
the point of view off efficiency, this alternative algorithm
is still comparable to the classical knot insertion routine.

4. B-spline, NURBS and T-spline surfaces: a brief
overview

This section gives a brief overview of B-spline, NURBS
and T-spline surfaces which seems to be necessary before
delving into the main focus of this paper.

4.1. B-spline surfaces

Given two parameters u and v, a B-spline surface may
be obtained as a direct generalization of equation (2) by
taking a tensor product form:

∑m

i=0

∑n

j=0
Nk
i (u)N

l
j(v)pij where umin ≤ u

< umax and vmin ≤ v < vmax (5)

In the same spirit, inserting a knot pair< u, v > on the
(m + 1) × (n + 1) control mesh involves inserting the
knot u on every row and inserting the knot v on every
column of the control mesh. This ends up with adding a
whole row and a whole column of control points to the
control mesh in the respective places.

4.2. NURBS surfaces

NURBS directly generalize B-spline surfaces by associat-
ing every point pij of the control mesh with a weight wij
thus leading to the following expression for the surface:

∑m
i=0

∑n
j=0 Ni(u)Nj(v)wijpij

∑m
i=0

∑n
j=0 wij

, where umin ≤ u

< umax and vmin ≤ v < vmax (6)

Aside from weight association with individual control
points, everything else to do with NURBS surfaces
remains very much in the same spirit as those of B-spline
surfaces, including knot insertion.

4.3. T-spline surfaces

T-spline surfaces may be considered as a generalization
of NURBS surfaces in several respects. In fact, while T-
spline surface points are calculated in the same way as
NURBS surface points via Eqn. (6), T-spline surfaces rely
on several other distinctive basic concepts.

4.3.1. T-meshes
T-splines takemodeling up to a higher level of abstraction
called a T-mesh, which is a two-dimensional structure
presumably embedded in the (uw) parameter domain.
The control points of the T-spline surface are thus
embedded in the planar T-mesh, where edges (each con-
necting twopoints) are restricted to run along a given row
or a given column of the T-mesh (see Fig. 4(a)).

Furthermore, contrary to what is usually encountered
in B-splines and NURBS surfaces, an edge line in a T-
mesh does not have to run continuously from one border
of the T-mesh to the opposite border. Rather, it can be

Figure 3. The effects of Knot Insertion using appropriate rules.
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(a) (b)

Figure 4. T-spline: (a) A T-mesh (b) Knot Vector Inference.

broken at an inner control point of the T-mesh resulting
in a T-junction (see Fig. 4(a)). Thus, a T-spline surface
can in fact be composed of considerably less control
points than their counterparts in B-splines and NURBS
surfaces.

4.3.2. The knot inferencemechanism
Another use of the T-mesh is that it comes equipped with
a knot inference mechanism that is able to automatically
generate the two local knot vectors associated with any
control point of the T-mesh (see Fig. 4(b)).

In fact, since edges of the T-mesh run parallel to one or
the other of the (uw) coordinate system, the knot vectors
associated with any point of the T-mesh may be inferred
as follows: take a local coordinate system centered at this
point with axes parallel to those of the main coordinate
system. The knot vectors of this point then simply cor-
respond to the nearest intersections to the center of the
local system of the axis of this system with the control
points or with the edges of the T-mesh. In this sense, an
edge on the T-mesh does not seem to have any other role
to play other than determining the next knot value with
respect to a given control point on the T-mesh.

Fig. 4(b) shows five intersections in each direction of
the two axes. Therefore, the corresponding point has two
knot vectors composed of five knots each, simply because
the T-spline surface being considered here is assumed
to be bi-cubic (see Fig. 5). Moreover, contrary to the
B-spline andNURBS surfaces, the knot vectorsmight not
be the same for any two distinct points of the T-mesh.

Figure 5. Local Knot Vectors.

4.3.3. Local refinement
The two published versions of the T-spline local refine-
ment algorithm [10, 9] largely miss the mathematical
decisiveness of the classical knot insertion algorithm for
curves, as they are rather expressed in a language more
often encountered in the symbolic computing and auto-
matic theorem proving literature as briefly reviewed in
section 3.1.

The first version [10] bears a striking resemblance
to the so-called backward-chaining algorithm [8] often
used in those contexts. In fact, that version of the
algorithm insists that all knot vectors of vertices encoun-
tered in the neighborhood of where the knot pair
< u, v > is inserted, should not be disturbed. Otherwise,
the algorithm will embark on a chain of control point
insertions in order to remedy the possible effects of that
insertion.

Similar to backward chaining, this chain of insertions
usually resorts to recursive calls to the original insertion
process. This can run arbitrarily deep, depending on the
initial setting of the T-mesh. This second version of the
algorithm [9], which represents the main focus of this
paper, bears more resemblance to forward chaining [8].

The problems that this process is called to remedy
(which are referred to in section 3.1 as inconsistencies)
are called conflicts in [9]. In this respect, the first kind of
conflicts arises when the inserted knot interferes with the
knot vector of an existing control point, which is the kind
that occurs in the case of knot insertion for curves (see
section 3.4).

This conflict is resolved using knot vector splitting via
one of the rules listed in section 3.2. However, in the case
of T-splines, the other knot vector of the control point,
carried with one of split halves of the knot vector to a dif-
ferent location, potentially causing a new kind of conflicts
in the new location. In fact, one of the shifted knotsmight
miss its reason of existence in its new location.

One obvious and seemingly inexpensiveway to resolve
this second kind of conflict would be to explicitly insert
a new knot there. Thus, in contrast to the situation of
curve case, this carries the risk of the refinement process
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expanding its influence beyond the immediate neighbor-
hood of the position where the original knot is inserted.

In conclusion, the above details seem to favor an
implementation of the T-spline local refinement as a
rule-based system [2].

5. T-spline local refinement as a rule-based
system

This section is concerned with an implementation of the
T-spline local refinement as a rule-based system. How-
ever, before we carry on, it should perhaps be emphasized
here that this is an exposition of an in-principle imple-
mentation that responds to the basic requirements of the
algorithm as posed in Sederberg [9]. In this respect, par-
ticular attention will be paid to the locality characteristic
of this algorithm.

5.1. The data structure

In the case of B-spline andNURBS surfaces, themeshwill
be composed of a (full) regular grid of points, where the
knot vectors associatedwith each point are easily derived.

Regularity stems from the fact that the U-knots are
the same for each point on the same column, and the V-
knots are the same for each point on the same row (see
Fig. 6(a)). By Comparison, the T-spline mesh (T-mesh)
is composed of a (sparse) grid of nodes (see Fig. 6(b)).

5.1.1. T-mesh data structure
Accordingly, the data structure associated with this pro-
cess is partly depicted in Fig. 6(b), which is designed on
the basis of the requirements of the problem at hand [1].
It is composed of the following items:

• Grid dimensions:M andN, whereM is the number of
columns and N is the number of rows.

• The global knot vectors: Uand V , where U has M
knots andV hasN knots. These vectors are extendable
to permit the accommodation of possibly more knots.

• The gridG is simply anM × N sparsematrix of nodes.
This matrix is sparse in the sense that a sizable num-
ber of its elements are non-existent. Moreover, in the
same way as the vectors U and V , the grid is row-wise
and column-wise extendible, as this may be needed in
order to accommodate more nodes that are required
to be inserted on new rows and/or columns.

• Note that, in order to preserve consistency, a newly
inserted row into the grid needs to correspond to a
new knot that is inserted in the knot vector V . Sim-
ilarly, a newly inserted column into the grid needs to
correspond to a new knot that is inserted in the knot
vector U.

• Thus, a node element existing at position < i, j>
of the matrix will also have knot coordinates <

U[i],V[j] >. These latter coordinates will remain con-
stant no matter how many times and in how many
different ways the grid is extended.

• Moreover, this matrix representation provides a low-
cost method of navigation between various elements
of the grid, which will need to be performed very
frequently during the local refinement process.

• A node has four associated knot fields: L (left), R
(right), U (up) and D (down). These are used to
mark the existence of an edge joining a pair of node
elements of the grid. A default value is assigned to
the corresponding field in case such an edge is non-
existent.

• Finally, a node is also associated with a sequence of
vertices residing at that position of the grid. Initially,
such a sequence has only one element having two local
knot vectors u and v determined by the knot inference
mechanism explained in section 4.3.3. This sequence
indicates that the data structure being described here
is a straightforward generalization of that described
for the curve case in section 3.3.

• At termination, all vertex elements of each sequence
will have identical local knot vectors, which per-
mit their collapse into a single vertex through
addition.

(a) (b)

Figure 6. Control Meshes: (a) B-spline and NURBS Surfaces Meshes (b) The T-spline Mesh (T-Mesh).
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5.1.2. The revision list
The main task of the local refinement algorithm is to
detect then remove conflicts that may arise as conse-
quences of the first knot insertion. A key idea for the
success of this endeavor is the reduction of the amount
of checking for conflicts that will frequently be carried
out during the process. In other words, it would be
impractical to make an exhaustive scan of the whole T-
mesh looking for conflicts every time the need arises.
Instead, the algorithm will have at its disposal a list
of vertices that are the only possible suspects for caus-
ing conflicts, which should represent a small propor-
tion of the total number of vertices constituting the
T-mesh.

In this regard, each element of the revision list will
be composed of a vertex plus a (u or v) indicator as
to which of the two associated local knot vectors is the
potential cause of the conflict, if any. This revision list
will be continuously updated during the local refinement
process.

In fact, a conflict may arise precisely when a new ele-
ment (an edge or a node) is inserted in the T-mesh. For
instance, when a newly inserted edge crosses the knot
span of any of the two local knot vectors of an exist-
ing vertex of the T-mesh then this vertex will need to
be added to the revision list indicating that the corre-
sponding knot vector will need to be checked for causing
a possible conflict.

On the other hand, when a new node is inserted, two
cases may arise:

• If the node contain a vertex then that must have got to
its current position along a knot direction. This would
mean that this vertex will need to be added to the revi-
sion list indicating that its other knot vector will need
to be checked for causing a possible conflict.

• On the other hand, if this node is empty (i.e. does
not possess any vertex yet) and falling within the knot
span of any of the two local knot vectors of an exist-
ing vertex of the T-mesh then this vertex will need to
be added to the revision list indicating that the cor-
responding knot vector will need to be checked for
causing a possible conflict.

It should perhaps be noted here that the effort spent to
carry both tasks is minimal in these cases.

5.2. The control structure

In this section, some of the routines of concern are
described below in aC-like pseudo-code. The code refers
to the knot position of insertion <u, v> , a revision list
R and a T-mesh T.

5.2.1. Knot insertion
void Insert(<u, v> , R, T) {

if position < u, v > is on an edge E then
InsertOnEdge(<u, v> , E, R, T)

else {
if there exists a nearest position < u’, v’> to < u,

v > on a horizontal or a vertical edge E’
if < u’, v’> are not the knot coordinates of an

existing point in T then
InsertOnEdge(<u’, v’> , E’, R, T)
else {

find a nearest position < u’, v’> to < u, v > on
a populated row or column of T
Insert(<u’, v’> , R, T)}

InsertNode(<u, v> , R, T)
InsertEdge(<u, v> , <u’, v’> , R, T)}

BookKeeping(<u, v> , R, T) }
void InsertNode(<u, v> , R, T) {
make an empty node N
add N at position < u, v > of T
add all affected vertices to R}
void InsertEdge(<u, v> , <u’,v’> , R, T) {
connect positions < u, v > and < u’, v’> via an

edge in T
add all affected vertices to R}
void InsertOnEdge(<u, v> , E, R, T) {
InsertNode(<u, v> , R, T);
split E into two edges at < u, v> }

void BookKeeping(<u, v> , R, T) {
for any remaining nearest positions < u’, v’> of an

existing point in T
on the same row or column still unconnected
to < u, v > via an edge

InsertEdge(<u, v> , <u’,v’> , R, T)}

5.2.2. Thematching process
When a potential cause of conflict is attributed to a given
local knot vector (say u = [u0u1u2u3u4]) attached to a
given vertex of the T-mesh, it is essential to determine
the type of conflict in order to decide on a suitable reso-
lution. This is done by first inferring the current state of
this vector (say c = [c0c1c2c3c4]) then running both vec-
tors through a matching process that is able to detect the
offending knot (if any) that is a reason of this mismatch.

Because, themiddle knots of u and cmust be the same,
since they are the knot coordinates of the same vertex,
matching can be confined to the first (and the last) two
pairs of knots of these two vectors. We will present here
the matching the first two pairs. The other two pairs may
be done in very much the same way:

• If c1 > u1 then the offending knot is c1.
• Otherwise if c1 < u1 then the offending knot is u1.
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• Otherwise if c0 > u0 then the offending knot is c0.
• Otherwise if c0 < u0 then the offending knot is u0.

This, by itself, is sufficient to determine the cause of
the conflict, and therefore the way to resolve it (see the
following subsection).

5.2.3. The revision process
// revision depends on the flag of s which is could be u
or v
// let us suppose that it is u, the other case of v can be
handled similarly
void revise(s, R, T) {

Infer new knot vector u’ of s
match u’ against u
if the offending knot t belongs to u then

Insert(< t, v[2]> , R, T)
else if the offending knot t belongs to u’ {

split s into two halves s’ and s’’ at t
insert the first half in place of s and add all
affected vertices to R

insert the second half at < t, v[2] > and
add all affected vertices to R}}

5.2.4. Local refinement
voidmain () {

readMesh(T); // initialize with given dimensions,
points and edges (see Fig. 6(b))

Infer the local knot vectors of each point and add that
to the corresponding points in T

print-T-mesh(T); //printing done with reference to
the knot coordinates < u[2], v[2] > of each node

printSurface(T); // done with reference to the
Cartesian coordinates < x, y, z > of each point.

read u and v;
if < u, v > are the polar coordinates of an existing
node in T then stop.

else {
if either u or v is not on an existing row or column
then insert missing row or column in T.

Insert(<u, v> , R, T); // this is the core function in
the whole process

}
While (R != empty) { // revise
s = select-vertex-from(R);
revise(s, R, T);
remove(s, R);
}
tidy-up(T);
print-T-mesh(T);
printSurface(T);}

6. An example and an application

In this example, the starting configuration of the T-mesh
is depicted in Fig. 7.

Insert at knot position <10, 9 > in Fig. 7 (a).
Vlist: {10, 11, 12, 13} along the u direction
Revise 13: match old u: [9 12 15 18 21]

and new u: [10 12 15 18 21] of 13
Split u into: [9 10 12 15 18] and [10 12 15 18 21] ⇒

no further revision is needed here since
same v in all newly arising cases

Revise 12: match old u: [7 9 12 15 18]
and new u: [9 10 12 15 18] of 12

Split u into: [7 9 10 12 15] and [9 10 12 15 18] ⇒ no
further revision is needed here since same
v in all newly arising cases

Revise 11: match old u: [5 7 9 12 15]
and new u: [5 7 9 10 12] of 11

Split u into: [5 7 9 10 12] and [7 9 10 12 15] ⇒ no
further revision is needed for first half
since same v in all newly arising cases,
besides, 24 is now fully initialized

Revision for second half : match old v: [5 7 9 12 15]
and new v: [5 7 9 15 18] of 24

Insert at knot position <10, 12 > in Fig. 7 (b): insert
edge to closest node and in Fig. 7 (c).

Vlist: {7 and 8} along the u direction, no further
revision is needed here since same v in all newly

(a) (b) (c)

Figure 7. The T-spline Local Refinement Example: (a) Initial State (b) Intermediate State (c) Final State.
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arising cases and only {24} along the v direction,
no further revision is needed here since same u
in this newly arising case.

6.1. An application

Polygonal complexes [4] are structures that can be
embeddedwithin a control mesh of, ultimately, anymod-
eling scheme. Their purpose is to make it simple to
interpolate a B-spline curve by such surfaces [6]. This
notion has successfully been utilized within B-spline,
NURBS and several types of subdivision surfaces, and
lately within T-spline surfaces.

In the T-spline domain, this seems to require repeated
applications of local refinement, where edge insertion
seems to play a critical role, which is the reason for their
mention in this context.

7. Conclusions and suggestions for further work

Given the nature of this algorithm and the frequency of
its use in any given application [5], its implementation
has to respond to a number of concerns:

• Efficiency in terms of time and space
• The conflicts that a knot causes should be detected

easily preferably without causing too many checks,
especially when these checks could possibly become
exhaustive.

• Determining the nature of the conflict should be per-
formed efficiently so as to quickly determine how to
resolve it.

• The effects of the algorithm should remain local with
respect to entirety of the T-mesh.

• Finally during processing, when the system reaches
a situation where more than one alternative may be
taken, the system should be able to decide on the
optimal route to take, since the algorithm does not
have the means to backtrack from the position it is
currently at.

One might say that the above issues fall in the domain
of implementation and, as such, it should not belong
to the domain of the theory. However, an implementa-
tion issue immediately turns into a theoretical issue if it
cannot be suitably and efficiently resolved.

In addition to that, the data structure needed by the
algorithm is drawn on the basis of these requirements
[1]. In many respects, this pays more attention to trans-
parency of the basic operations of the algorithm, perhaps
at the cost of the efficiency.

Furthermore, the new additional edge-insertion fea-
ture is explicitly treated in this version of the implemen-
tation, something that, to our knowledge, has never been
addressed explicitly before in this context. This feature
should have a role to play with regard to the locality char-
acteristic of the algorithm as a whole, in addition to other
sub-routines of this algorithm.

As stated in [9], and as it is formulated there, T-spline
local refinement would have a worst case scenario, where
the chain of insertions will extend till the T-mesh land-
scape in Fig. 6(b)will reach a limit similar to that depicted
in Fig. 6(a). That is, the initial T-mesh will end up look-
ing like that of a NURBS surface. This comes as no
surprise; in fact, the resemblance of T-spline local refine-
ment to artificial intelligence forward chaining means
that, in the worst case, it will sometimes suffer the same
fate; i.e. trying all the possibilities before reaching a solu-
tion (see Fig. 8).

Figure 8. A Potential Source of a Worst Case Scenario.

Further research should examine whatever heuristic
can be employed to assign priorities to whatever deci-
sions are made during the search so as to avoid the worst
case scenario. In our opinion, this would revolve around
the function called select-vertex-from, in section 5.2.4.

Note

1. Our reference to T-splines here is restricted to the specifi-
cations of that mentioned in ref. [9] and [10], thus exclud-
ing any new features that may have been added to this
technology since then [11].
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