
COMPUTER-AIDED DESIGN & APPLICATIONS, 2017
VOL. 14, NO. 6, 742–750
https://doi.org/10.1080/16864360.2017.1287676

Automatic construction of watertight manifold triangle meshes from scanned
point clouds using matched umbrella facets

Ji Ma a, Jack Szu-Shen Chen a, Hsi-Yung Feng a and Lihui Wang b

aThe University of British Columbia, Canada; bKTH Royal Institute of Technology, Sweden

ABSTRACT
Generation of watertight manifold triangle meshes from scanned point clouds has emerged as
a key task in computer-aided design and inspection. An effective algorithm is presented in this
paper, targeting the automatic creation of such triangle meshes from unorganized, scanned data
points. The algorithm builds on the initial version of the Umbrella Facet Matching (UFM) algorithm
developed by the authors. The mesh generation process starts with Delaunay triangulation of the
given point cloud to determine the Delaunay triangle set at each data point. The algorithm then
seeks to iteratively generate, in parallel, the local 2-dimensional manifold triangle mesh, resem-
bling the shape of an open umbrella, at each data point from its Delaunay triangle set that fully
overlaps with its neighboring umbrellas. Particularly, a four-level inheritance priority queuingmech-
anism is introduced to enhance the prioritization and ordering of the Delaunay triangles at each
data point in order to facilitate the iterative establishment of the fully matched umbrella according
to the most updated umbrella facet matching results. The presented method has been imple-
mented and validated through a series of minimally post-processed scanned point cloud data sets
from physical objects with complex geometry. Improved computational convergence has been
observed, which promotes the construction of watertight manifold triangle meshes. The compar-
ison results have demonstrated that the enhanced UFM algorithm outperforms the initial UFM
algorithm and an industrial software tool in creating quality triangle meshes from actual scanned
point clouds.

KEYWORDS
Watertight manifold mesh;
point cloud; Delaunay
triangles

1. Introduction

Due to the increasing applications of modern 3D scan-
ning technologies, point clouds have emerged as an effec-
tive data source to generate the complete surface model
of a scanned object. Converting a discrete point cloud
data set into a triangle mesh surface representation, com-
monly known as mesh surface reconstruction, is one of
the most widely employed approaches. One key require-
ment in the application field of computer-aided design
and geometric modeling is for the constructed trian-
gle mesh surface to be a watertight manifold surface
with correct topology. However, due to the inevitable
measurement noise in the scanned data as well as the
surface quality of the original scanned object surface,
it is still challenging to reconstruct a watertight mani-
fold mesh surface that is topologically equivalent to the
original scanned object surface. An effective and reliable
method for mesh surface reconstruction is thus in high
demand.

CONTACT Ji Ma jima605@gmail.com

2. Relevant studies

Existing surface reconstruction methods can essentially
be classified into three groups: implicit surface, region
growing, and Delaunay-based methods. The basic con-
cept of the implicit surface method is to use the input
point cloud to form a function in the Euclidean space.
The function is formulated to be negative inside the
modeled object surface and positive outside the mod-
eled object surface. The desired object surface is then
extracted as the zero level set of the formulated func-
tion. Typical studies in this group include a method
based on a spatial grid [14], a method that considers
the measurement noise in the scanned data [9], and
methods that employ radial basis functions to form the
implicit surfaces [11],[20]. In general, the implicit surface
method can output a watertight manifold mesh surface
and is robust for noisy input point clouds. Nevertheless,
this method can lead to poorly shaped triangle meshes
in some cases. More importantly, the generated mesh

© 2017 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/16864360.2017.1287676&domain=pdf
http://orcid.org/0000-0001-6536-2617
http://orcid.org/0000-0002-1225-6340
http://orcid.org/0000-0001-6189-6910
http://orcid.org/0000-0001-8679-8049
mailto:jima605@gmail.com
http://www.cadanda.com

COMPUTER-AIDED DESIGN & APPLICATIONS 743

surface only approximates the input point cloud and does
not normally pass through all the given points. This lim-
its its use in applications such as precision inspection
and geometric modeling where the scanned data points
are considered to be on or at least very close to the
reconstructed surface.

For the region growing method, the mesh reconstruc-
tion procedure begins with a seed triangle which is grown
incrementally to cover the entire point cloud data set. The
outstanding issue with this group ofmethods remains the
identification of appropriate seed triangles. The widely
applied ball-pivoting algorithm [5] is a region growing
method. In this method, a ball with a user-specified
radius pivots around an existing triangle edge. When the
ball touches another new data point, the point and the
edge form a new triangle. An improved triangle grow-
ing process [13] has also been proposed which is able
to construct the triangle mesh surface directly without
using a pivoting ball. These region growing methods
are essentially quite computationally efficient but a com-
mon weakness is that the quality of the reconstructed
mesh greatly depends on one or more user-specified
parameters. Applicable values of these parameters are
in general not readily available. Hence, a method that
excludes the user-specified parameters has been pro-
posed [18]. More recently, Li et al. [17] proposed a
priority-driven region growing method which attempts
to construct the surface mesh from flat to sharp regions.
Also,Delaunay-based region growingmethods have been
proposed [8],[15],[16]. These methods grow the mesh by
exclusively adding Delaunay triangles, which are the sur-
face triangles of the Delaunay tetrahedron at each data
point resulting from the Delaunay triangulation of the
entire 3D point cloud data set. For all the existing region
growing methods, it is known that the reconstructed
mesh much depends on the choice of the initial seed tri-
angle and post-processing is often needed in order to
attain a satisfactory watertight manifold triangle mesh.

The Delaunay-based method aims to extract a subset
of triangles from the complete set ofDelaunay triangles of
the point set when constructing the desired trianglemesh
surface. Boissonnat [6] appeared to be the researcher
introducing the first Delaunay-based mesh reconstruc-
tion algorithm. To date, many Delaunay-based algo-
rithms have been introduced [2],[4],[10],[12],[22][24].
The Delaunay-based method is systematic and gener-
ally considered to be robust. However, generating a
watertight manifold mesh without holes has consis-
tently been a challenge. To address this issue, Amenta
and her co-workers [2],[3] have introduced a Delaunay-
based method with a theoretical guarantee for topologi-
cal correctness of the generated mesh for points sampled
from a smooth surface. The resulting triangle mesh is

guaranteed to be topologically equivalent and geomet-
rically close to the original smooth object surface if the
particular sampling condition is met. The applicability of
this condition to scanned point clouds with noise to con-
struct a topologically correct mesh surface is, however,
uncertain. It should be pointed out that an umbrella filter
algorithm [1] has been introduced along with a topo-
logical post-processing module for triangle mesh sur-
face reconstruction. In this method, numerical difficulty
would occur in non-smooth or under-sampled surface
regions.

To address the outstanding issues of the existingmeth-
ods, a new Delaunay-based method is presented in this
paper, which enhances the preliminary Umbrella Facet
Matching (UFM) algorithm reported by the authors
[19]. The fundamental concept of the UFM algorithm
is derived from the fact that the neighborhood of each
point in a reconstructed closed surface mesh is home-
omorphic to a full disc and resembles the shape of
an open umbrella. The umbrella contains neither non-
manifold edges or vertices nor self-intersections. The
UFM algorithm essentially seeks to iteratively generate,
in parallel, a fully matched, local 2-dimensional manifold
triangle mesh at each point from its Delaunay triangle
set. An umbrella of manifold triangle facets is regarded
as a fully matched umbrella when it fully overlaps with its
neighboring umbrellas. To establish an umbrella at each
point requires sequential removal of unwanted Delaunay
triangles from its Delaunay triangle set. A prioritized tri-
angle removal sequence is, thus, of critical importance. To
effectively perform this task, a priority queuing mecha-
nism to generate the Delaunay triangle removal sequence
at each point is introduced in order to iteratively find the
fullymatched umbrella based on the current facetmatch-
ing results. Different from the method of Adamy et al.
[1], once the algorithm converges and a fully matched
umbrella at each data point is found, the generation of
a watertight manifold triangle mesh is guaranteed with-
out the need for additional mesh post-processing. Fur-
thermore, the mesh interpolates all the data points and
the quality of the meshing results is not dependent on
any user-specified parameters. The preliminary UFM
algorithm is seen to work well and outperforms many
existing mesh surface reconstruction methods; however,
its performance on minimally processed scanned data
points still leaves some room for improvement. Themin-
imally processed scanned data are raw point cloud data
with only data outliers removed. These data are the most
typical input data for a mesh reconstruction algorithm
but often cause notable issues in constructing the mesh
surfaces. A large amount of processing on the scanned
data points is typically required from the user before the
current mesh reconstruction methods can work well.

744 J. MA ET AL.

N

Y
Has the

matching percentage
increased?

Triangle mesh

Scanned Point cloud

Delaunay triangulation of the
scanned point cloud

Build an initial umbrella at each
data point

Evaluate current matching results
(no. of matched triangles)

Establish the priority queue
based on the matching results

Update umbrellas according
to the priority queue

Evaluate new matching results

Figure 1. A flowchart for the Umbrella Facet Matching algorithm.

In this paper, an enhanced version of the prelimi-
nary UFM algorithm is presented that further promotes
numerical convergence. An additional matching index
is introduced to the UFM’s three tiered priority queu-
ing mechanism. The new matching index adds further
insight to each Delaunay triangle regarding its priority to
be part of the local umbrella at each data point, leading
to amore efficient algorithm and bettermesh reconstruc-
tion results. A flow chart of the overall algorithm is shown
in Fig. 1. The rest of this paper is organized as follows: the
fundamentals of the UFM algorithm are outlined in the
next section along with the details on the new matching
index; Section 4 provides the implementation results; and
conclusions are given in the last section.

3. Proposedmethod

Building an umbrella at each data point in this work
is basically a process that sequentially removes all the
redundant (non-manifold) triangle facets according to a
priority queue [19]. The process will go through three
fundamental topological types of Delaunay triangle clus-
ters incident to a data point as depicted in Fig. 2. The
original cluster of all the Delaunay triangles is composed

ofmany pockets formed by the triangle facets as shown in
Fig. 2(a). Existence of a pocket indicates the existence of
a non-manifold triangle facet which has at least one of its
two outgoing edges connecting with two or more other
triangle facets. After a triangle facet has been removed,
another type of non-manifold triangle facets called fins is
formed, which has at least one of its outgoing edges not
connecting with any other triangle facet as shown in Fig.
2(b). In this work, a redundant triangle facet is a non-
manifold facet either as part of a pocket of triangle facets
as highlighted in pink in Fig. 2(a), or as a fin as high-
lighted in pink in Fig. 2(b). The redundant triangle facet
removal process starts with removing a non-manifold
facet within a pocket, followed by a fin cleaning proce-
dure. This facet removal process ends when there are no
more non-manifold edges or vertices in the updated tri-
angle facet cluster, meaning there are no more pockets
and fins and thus, no more non-manifold triangle facets
to remove. The remaining triangle facets then correctly
form an umbrella as depicted in Fig. 2(c).

It is evident that different priority queues for removing
the triangle facets would lead to different umbrellas. This
means that a specific priority queue at a data point has
to be established in order to build the desired umbrella.

Figure 2. Types of Delaunay triangle clusters: (a) umbrella with pockets, (b) umbrella with fins, and (c) manifold umbrella.

COMPUTER-AIDED DESIGN & APPLICATIONS 745

Since the desired umbrellas are the fullymatched umbrel-
las, the corresponding priority queue at each data point
should be attainable by updating the priority queue
according to the matching results of all the umbrella
facets. For an existing umbrella, the matching results of
its triangle facets are to be evaluated and then used to
establish an updated priority queue via a priority queu-
ing mechanism. The updated priority queue then leads
to an updated umbrella. This process repeats until a fully
matched umbrella is found. Hence, the priority queuing
mechanism and how the umbrella facet matching results
are evaluated and used to update the priority queue are
clearly the core modules of the automatic mesh recon-
struction algorithm in this work.

3.1. Priority queuingmechanism and the initial
queue

To construct the desired fully matched umbrella at every
data point, a priority queuing mechanism with four-level
inheritance is introduced, where a sub-level always inher-
its the queuing from a super-level. This means that the
queuing rules should be prioritized and placed in an
ordered sequence starting from the most superior level.
For the priority queuing mechanism proposed in this
work (Fig. 3), the queuing rule at the first (top) level is
the absolute matching index Mf , representing the basic
matching result; at the second level is the relative match-
ing indexMf (v), representing the refinedmatching result;
at the third level is the neighboringmatching indexMf (e),

Figure 3. Priority queuing mechanism with four-level
inheritance.

representing the extended matching result; and at the
fourth (bottom) level is the size of the Delaunay trian-
gle. Details of the matching indices Mf , Mf (v) and Mf (e)
will be presented in the next subsections. As stated in
the authors’ previous work [19], in the initialization stage
of building the initial/first umbrella, only the triangle
size information is available (as no matching results exist
yet). The diameter of the minimum circumsphere of the
triangle is employed to quantify the triangle size. The
initial priority queue is then established to remove redun-
dant non-manifold triangles according to their sizes. If
an umbrella cannot be constructed, the algorithm then
resorts to the complete Delaunay triangle set to ensure
that an initial umbrella is established at each data point.

3.2. Absolute and relativematching indices

After the initial umbrella at each point is established,
three matching indices are evaluated to indicate the
degree of overlap among the established umbrellas. In
essence, these matching indices are introduced to eval-
uate how much an umbrella overlaps with its neigh-
boring umbrellas. The first two matching indices were
introduced previously: basic and refined [19]. The basic
matching result is quantified by the absolute matching
indexMf and the refinedmatching result is quantified by
the relativematching indexMf (v). The absolutematching
indexMf is devised to indicate the degree ofmatching for
a facet f . The relative matching indexMf (v) is devised to
indicate the degree of matching for the facet f relative to
the vertex v.

There are a total of six possible cases ofMf andMf (v).
as illustrated in Fig. 4. In principle,Mf (v) is a first exten-
sion ofMf . In the figure, the facet f has three vertices: v1,
v2, and v3. When Mf equals 3, this means that all of
the three umbrellas respectively incident to v1, v2, and
v3 include the facet f . The last (right most) triangle in
Fig. 4 depicts this case. A solid dot for a vertex indi-
cates that the umbrella of this vertex includes the facet f
and an empty dot for a vertex indicates that its umbrella
does not include the facet f . When Mf equals 2, only
two of the three umbrellas respectively incident to v1, v2,
and v3 include the facet f . In this case, there exist two

Figure 4. Absolute and relative matching indices of f at v1.

746 J. MA ET AL.

possible situations. Relative to the vertex v1, one situa-
tion is that the umbrella at v1 does not include the facet
f (the fourth triangle in Fig. 4) and the other situation is
that the umbrella at v1 includes the facet f (the fifth figure
in Fig. 4). Their relativematching indices are then respec-
tively expressed as:Mf (v1) = 0 andMf (v1) = 1. The first
triangle in Fig. 4 illustrates the situation when all of the
three umbrellas incident to v1, v2, and v3 do not include
the facet f . As a result,Mf = 0 andMf (v1) = 0.

As stated previously, the presented UFM algorithm
centers on the sequential removal of redundant trian-
gle facets from the candidate triangle facet cluster. This
is achieved via the priority queuing mechanism with
multi-level inheritance according to the umbrella facet
matching results. The priority queue is formed accord-
ing to the evaluated values of the absolutematching index
Mf followed by the relative matching index Mf (v). More
specifically, for all the triangle facets from the candi-
date facet cluster at a vertex v, the sequence is formed
from Mf = 0 to Mf = 3 first and then from Mf (v) = 0
toMf (v) = 1. Those facets with the sameMf (v) value are
then ordered by the neighboring matching index Mf (e)
as the third-level rule in the priority queuing mechanism
(Fig. 3).

3.3. Neighboringmatching index

As repeatedly stated in the previous sections, a generated
priority queue at a point will lead to a specific umbrella.
The objective of the UFM algorithm is to establish the
priority queue at each point that would result in fully
matched umbrellas for the complete data set. This objec-
tive is to be achieved by iteratively updating the priority
queue at every point according to the current umbrella
facet matching results. As reported in the authors’ pre-
liminary work [19], there remain regularly many triangle
facets incident to a vertex v which are characterized with
the same Mf (v). These facets were prioritized according
to their triangle sizes (minimum circumsphere radii) in
the same way as in the initialization stage. This sequenc-
ing much affects the convergence rate, if not the eventual
convergence of the algorithm. To promote convergence
of the UFM algorithm, an additional matching index has
been introduced in order to enable triangle facets with
the sameMf (v) but larger sizes to be placed behind those
with smaller sizes in the priority queue of facet removal
if so indicated by the current facet matching results. In
other words, the removal priority of facets with the same
Mf (v) should not be simply based on their sizes. Current
matched facets should carry decisive weights to promote
neighboring facets that expedite the generation of fully
matched umbrellas and the overall watertight manifold
triangle mesh surface.

A neighboring matching index, Mf (e), is employed as
the third-level queuing measure in the priority queuing
mechanism presented in this work (Fig. 3). As depicted
in Fig. 5, there are three edges e1, e2 and e3 in the
triangle facet f (v1, v2, v3) and each edge has some
connected neighboring umbrella triangle facets. Each of
these neighboring facets is characterized by an absolute
matching index value from the current facet matching
result. Let the maximum absolute matching index value
among the neighboring facets of edge e1 be denoted by
Mf 1max and its value could be 3, 2, 1 or 0. To evaluate the
neighboring matching results of the facet f (v1, v2, v3),
the following index is devised:

Mf (e) =
3∑

i=1
Mfimax (1)

where the value ofMf (e) ranges from 0 to 9. For the trian-
gle facets with the same Mf (v) value, those with smaller
Mf (e) values (not much neighboring support) are to be
placed in front of those with largerMf (e) values in the pri-
ority queue of facet removal. Those facets with the same
Mf (e) value are then ordered by their sizes (minimum
circumsphere radii) as the bottom-level rule in the prior-
ity queuing mechanism. Evidently, the priority queue at
each point will be continually updated until all the fully
matched umbrellas are successfully found. The success is
attributed to the four-level inheritance priority queuing
mechanism that allows the proposed UFM algorithm to
effectively converge to the desired fully matching of all
the umbrellas.

Figure 5. Neighboring matching for facet f (v1, v2, v3).

4. Implementation results

The enhanced UFM algorithm presented in this paper
has been implemented and evaluated using many
scanned point cloud data sets. To perform 3D Delau-
nay triangulation on a point set, the existing codes in the
Computational Geometry Algorithms Library CGAL [7]
were employed. Also, to effectively manage the topologi-
cal information of amesh in themesh generation process,
another open-source template library, the VCG Library

COMPUTER-AIDED DESIGN & APPLICATIONS 747

[21], was referenced for manipulating and processing the
triangle mesh. The VCG Library supports complete non-
manifold and manifold mesh manipulation and process-
ing via an adjacency-indexed data structure, which is dif-
ferent from the traditional half-edge and Weiler’s radial
edge data structure [23]. This data structure facilitates the
fundamental iterative procedure in the UFM algorithm
to identify the matched triangle facets. The reported case
studies were carried out on a Windows-based PC with a
3.50GHz processor and 8GB memory.

The objective of this work is to enhance the UFM
algorithm so that minimally post-processed scanned
point cloud data can be directly used to construct a qual-
ity triangle mesh surface. Users prefer not to spend time
in preparing well-processed scanned point cloud data for
mesh construction. Quite often, the raw scanned data
are only processed for outlier removal. Thus, the prac-
tical tests in this section will focus on execution of the
enhanced UFM method on minimally post-processed
scanned point clouds. For tests on highly post-processed
scanned data and comparison of theUFMalgorithmwith
other existing algorithms, please refer to the authors’
preliminary UFM work [19].

Fig. 6 shows the implementation results of the
enhanced UFM algorithm on 7 scanned point cloud data
sets with minimal post-processing. The scanned point
clouds were obtained by an LDI Surveyor WS3040 3D
laser scanner. Only outlier removal was performed on the
scanned data sets without any noise reduction process-
ing. It can be seen that for both organic and mechanical
objects, the algorithm succeeds in constructing visually
well-behaved triangle mesh models. To examine these

results further at a quantitative level, Tab. 1 lists and
compares the mesh reconstruction results of the pre-
liminary and current/enhanced UFM algorithms as well
as the Mesh Doctor module of the Geomagic Studio
12 commercial software. As indicated in the table via
the matching percentage, which is defined as the ratio
of the number of the data points with fully matched
umbrellas to the total number of data points in the input
scanned point cloud, the enhanced UFM algorithm in
general achieves better convergence. It should be noted
that for practical scanned point clouds with minimal
post-processing, 100% matching or full convergence is
difficult to attain. The enhanced UFM algorithm is bet-
ter at reaching full convergence but it does not always
achieve 100% matching. It is evident that without full
convergence, some umbrellas are not fully matched. This
is expected since practical scanned point clouds are often
quite noisy. The enhanced UFM algorithm attempts to
achieve 100%matching results in an iterative manner but
it cannot guarantee convergence forminimally processed
scanned point cloud data sets. Nevertheless, the match-
ing percentages for the non-converged cases are close to
100% and the number of matched triangle facets is con-
sistently larger for the enhanced UFM algorithm. In par-
ticular, compared with the widely used Geomagic soft-
ware tool, the outputs from the enhancedUFMalgorithm
are clearly superior. The triangle meshes resulting from
the UFM algorithm are guaranteed to be manifold with-
out the triangles crossing each other (self-intersections).
Triangle self-intersections in a generatedmesh are highly
undesirable in manifold mesh surface reconstruction
from scanned point clouds since the surface of a physical

Figure 6. Reconstructed meshes fromminimally-processed scanned point cloud data sets.

748 J. MA ET AL.

object cannot possibly cross itself. With the presented
UFM algorithm, such a digital artifact is avoided, lead-
ing to topological correct reconstructed mesh surfaces.
Such reconstructed mesh models represent and model

their physical counterparts better even if the matching
percentage is not 100%.

It should be pointed out that the topological improve-
ment in the generated triangle mesh is acquired at the

Table 1. Comparison of mesh reconstruction results.

Geomagic Studio 12 Preliminary UFM Current/Enhanced UFM

Matching: 100% Matching: 100%
Dog1 No. of Facets: 199,502 No. of Facets: 199,502

(99,753 points) Time: 77 seconds Time: 76 seconds

Non-Manifold Edges 0 0 0
Self-Intersections 0 0 0
Spikes & Creased Edges 283 1,803 1,949
Small Components 0 0 0
Small Holes 0 0 0

Matching: 99.98% Matching: 100%
Dog2 No. of Facets: 199,843 No. of Facets: 199,846

(99,925 points) Time: 135 seconds Time: 113 seconds

Non-Manifold Edges 0 0 0
Self-Intersections 0 0 0
Spikes & Creased Edges 2,457 14,247 14,431
Small Components 0 0 0
Small Holes 0 0 0

Matching: 92.37% Matching: 94.20%
Dog3 No. of Facets: 195,831 No. of Facets: 198,223

(99,596 points) Time: 654 seconds Time: 663 seconds

Non-Manifold Edges 0 0 0
Self-Intersections 563 0 0
Spikes & Creased Edges 13,789 42,022 42,902
Small Components 1 259 86
Small Holes 0 150 129

Matching: 99.86% Matching: 99.81%
Plane1 No. of Facets: 201,344 No. of Facets: 201,375

(100,700 points) Time: 174 seconds Time: 205 seconds

Non-Manifold Edges 0 0 0
Self-Intersections 30 0 0
Spikes & Creased Edges 2,099 4,853 4,855
Small Components 0 3 1
Small Holes 1 4 1

Matching: 99.92% Matching: 99.91%
Plane2 No. of Facets: 201,049 No. of Facets: 201,068

(100,538 points) Time: 151 seconds Time: 212 seconds

Non-Manifold Edges 0 0 0
Self-Intersections 20 0 0
Spikes & Creased Edges 1,931 3,617 1,949
Small Components 0 0 0
Small Holes 0 0 0

Matching: 100% Matching: 100%
Plane3 No. of Facets: 200,466 No. of Facets: 200,466

(100,235 points) Time: 96 seconds Time: 88 seconds

Non-Manifold Edges 0 0 0
Self-Intersections 0 0 0
Spikes & Creased Edges 1,455 5,707 5,627
Small Components 0 0 0
Small Holes 0 0 0

Matching: 99.93% Matching: 99.97%
Adaptor Plate No. of Facets: 200,038 No. of Facets: 200,040
(100,013 points) Time: 183 seconds Time: 212 seconds

Non-Manifold Edges 0 0 0
Self-Intersections 64 0 0
Spikes & Creased Edges 4,969 15,638 15,588
Small Components 0 0 0
Small holes 0 0 0

COMPUTER-AIDED DESIGN & APPLICATIONS 749

expense of surface smoothness. The outputs from the
UFM algorithm are inherently “rougher” compared to
the Geomagic outputs. Surface spikes and creases are
more extensive on theUFMmeshes (Tab. 1). Even though
the surface roughness is higher for the UFM meshes,
they are still favorable as surface roughness reduction
is much easier than self-intersection correction. Surface
roughness reduction simply involves averaging of the
mesh vertex locations of a well-constructed mesh while
self-intersection correction typically requires additional
and often complex mesh reconstruction steps. It is, thus,
much preferable to create a non-smooth mesh than a
topologically flawed mesh.

Compared with the authors’ preliminary UFM work
[19], the current enhanced UFM algorithm with the
added neighboring matching index is seen to con-
verge faster, improve the matching percentage, and/or
the reconstructed mesh quality, as shown in Tab. 1.
For the cases of Dog1 and Plane3, both the prelimi-
nary and enhanced UFM algorithms were able to attain
full convergence. The enhanced UFM algorithm is seen
to converge faster. For the case of Dog2, the added
neighboring matching index helped the enhanced UFM
algorithm achieve full convergence which was not attain-
able for the preliminary UFM algorithm. For the cases
of Dog3 and Adaptor Plate, the matching percentages
from the enhanced algorithm are improved. In particu-
lar, the Dog3 point cloud data was very noisy. Hence, the
algorithm execution reached the maximum number of
iterations, leading to extensive computing time. It should
be noted, however, that there are much fewer small com-
ponents (small detached or isolated mesh patches) and
small holes (only a few triangles in size) in the mesh gen-
erated by the enhanced UFM algorithm. For the cases
of Plane1 and Plane2, although the matching percent-
ages are a bit less for the enhanced UFM algorithm,
the overall matched triangle facets are in fact more in
number. More importantly, the number of small compo-
nents and small holes in the Plane1 mesh are reduced for
the enhanced UFM algorithm and the number of sur-
face spikes and creases are much reduced in the Plane2
mesh. These mesh reconstruction results clearly demon-
strate the effectiveness of the enhanced UFM algorithm
presented in this work.

5. Conclusions

By improving the priority queuing mechanism in the
authors’ preliminary work [19], an enhanced UFM
algorithm to automatically generate watertight manifold
triangle meshes from scanned point cloud data sets has
been presented in this paper. The generated mesh will

interpolate all the input data points and be topologi-
cally very close to the original scanned object surfaces
with no influential or apparent mesh defects. The addi-
tion of the neighboring matching index and the result-
ing four-level inheritance priority queuing mechanism
allow the enhanced UFM algorithm to better promote
umbrella facet matching convergence, thereby improv-
ing the generated mesh quality and the mesh generation
speed. From the series of case studies, it is found that
the enhanced UFM algorithm in general outperforms
the preliminary UFM algorithm in generating the water-
tight manifold triangle meshes. Still, full convergence of
the UFM algorithm for minimally post-processed noisy
scanned point cloud data sets cannot be guaranteed. As
a possible approach for improvement, geometric heuris-
tics could be introduced as an additional index to control
the shape of the umbrella at some specific data points
to offer some control over the local geometry. With this
additional index, convergence for noisy scanned point
cloud data sets could be further improved and the objec-
tive of fully automatic construction of watertight mani-
fold triangle meshes from scanned point clouds can be
fulfilled.

Acknowledgement

This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

Funding

This work was supported by Natural Sciences and Engineering
Research Council of Canada (NSERC).

ORCID

Ji Ma http://orcid.org/0000-0001-6536-2617
Jack Szu-Shen Chen http://orcid.org/0000-0002-1225-6340
Hsi-Yung Feng http://orcid.org/0000-0001-6189-6910
Lihui Wang http://orcid.org/0000-0001-8679-8049

References

[1] Adamy, U.; Giesen, J.; John, M.: Surface reconstruction
using umbrella filters, Computational Geometry, 21(1),
2002, 63–86. http://dx.doi.org/10.1016/S0925-7721(01)
00040-2

[2] Amenta, N.; Bern, M.; Kamvysselis, M.: A new Voronoi-
based surface reconstruction algorithm, Proceedings of
SIGGRAPH ‘98, 1998, 415–421. http://dx.doi.org/10.11
45/280814.280947

[3] Amenta, N.; Bern, M.: Surface reconstruction by Voronoi
filtering, Discrete & Computational Geometry, 22(4),
1999, 481–504. http://dx.doi.org/10.1007/PL00009475

[4] Amenta, N.; Choi, S.; Kolluri, R. K.: The power crust, Pro-
ceedings of the 6th ACM Symposium on Solid Modeling
and Applications, 2002, 249–266.

http://orcid.org/0000-0001-6536-2617
http://orcid.org/0000-0002-1225-6340
http://orcid.org/0000-0001-6189-6910
http://orcid.org/0000-0001-8679-8049
http://dx.doi.org/10.1016/S0925-7721(01)00040-2
http://dx.doi.org/10.1016/S0925-7721(01)00040-2
http://dx.doi.org/10.1145/280814.280947
http://dx.doi.org/10.1145/280814.280947
http://dx.doi.org/10.1007/PL00009475

750 J. MA ET AL.

[5] Bernardini, F.; Mittleman, J.; Rushmeier, H.; Silva,
C.; Taubin, G.: The ball-pivoting algorithm for sur-
face reconstruction, IEEE Transactions on Visualiza-
tion and Computer Graphics, 5(4), 1999, 349–359.
http://dx.doi.org/10.1109/2945.817351

[6] Boissonnat, J. D.: Geometric structures for three- dimen-
sional shape representation, ACM Transactions on
Graphics, 3(4), 1984, 266–286. http://dx.doi.org/10.1145/
357346.357349

[7] CGAL, Computational Geometry Algorithm Library,
[Online], Available: http://www.cgal.org

[8] Cohen-Steiner, D.; Da, F.: A greedy Delaunay-based sur-
face reconstruction algorithm, The Visual Computer,
20(1), 2004, 4–16. http://dx.doi.org/10.1007/s00371-003-
0217-z

[9] Curless, B.; Levoy, M.: A volumetric method for building
complex models from range images, Proceedings of SIG-
GRAPH ‘96, 1996, 303–312. http://dx.doi.org/10.1145/
237170.237269

[10] Dey, T. K.; Goswami, S.: Tight cocone: A water-tight
surface reconstructor, Proceedings of the 8th ACM Sym-
posium on Solid Modeling and Applications,
2003, 127–134. http://dx.doi.org/10.1145/781606.781627

[11] Dinh, H. Q.; Turk, G.; Slabaugh, G.; Reconstruct-
ing surfaces by volumetric regularization using radial
basis functions, IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 24(10), 2002, 1358–1371.
http://dx.doi.org/10.1109/TPAMI.2002.1039207

[12] Edelsbrunner, H.; Mücke, E. P.: Three-dimensional
alpha shapes, ACM Transactions on Graphics, 13(1),
1994, 43–72. http://dx.doi.org/10.1145/174462.156635

[13] Huang, J.; Menq, C. H.: Combinatorial manifold mesh
reconstruction andoptimization fromunorganized points
with arbitrary topology, Computer-Aided Design, 34(2),
2002, 149–165. http://dx.doi.org/10.1016/S0010-4485
(01)00079-3

[14] Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.;
Stuetzle, W.: Surface reconstruction from unorganized

points, Proceedings of SIGGRAPH ‘92, 1992, 71–78.
http://dx.doi.org/10.1145/133994.134011

[15] Kuo, C. C.; Yau, H. T.: A Delaunay-based region-growing
approach to surface reconstruction from unorganized
points, Computer-Aided Design, 37(8), 2005, 825–835.
http://dx.doi.org/10.1016/j.cad.2004.09.011

[16] Kuo, C. C.; Yau, H. T.: A new combinatorial approach
to surface reconstruction with sharp features, IEEE
Transactions on Visualization and Computer Graph-
ics, 12(1), 2006, 73–82. http://dx.doi.org/10.1109/TVCG.
2006.2

[17] Li, X.; Han, C. Y.; Wee, W. G.: On surface reconstruction:
A priority driven approach, Computer-Aided Design,
41(9), 2009, 626–640. http://dx.doi.org/10.1016/j.cad.
2009.04.006

[18] Lin, H. W.; Tai, C. L.; Wang, G. J.: A mesh recon-
struction algorithm driven by an intrinsic property of a
point cloud, Computer-Aided Design, 36(1), 2004, 1–9.
http://dx.doi.org/10.1016/S0010-4485(03)00064-2

[19] Ma, J.; Feng, H. Y.; Wang, L.: Delaunay-based triangu-
lar surface reconstruction from points via umbrella facet
matching, Proceedings of the 6th IEEE Conference on
Automation Science and Engineering, 2010, 580–585.

[20] Turk, G.; O’Brien, J. F.: Shape transformation using varia-
tional implicit functions, Proceedings of SIGGRAPH ‘99,
1999, 335–342. http://dx.doi.org/10.1145/311535.311580

[21] VCG Library, [Online], Available: http://vcg.sourceforge.
net

[22] Veltkamp, R. C.: The γ -neighborhood graph, Computa-
tional Geometry, 1(4), 1992, 227–246. http://dx.doi.org/
10.1016/0925-7721(92)90003-B

[23] Weiler, K.: The radial edge structure: A topological rep-
resentation for non-manifold geometric boundary mod-
eling, Geometric Modeling for CAD Applications, 1988,
3–36.

[24] Xu, X.; Harada, K.: Automatic surface reconstructionwith
alpha-shape method, The Visual Computer, 19(7), 2003,
431–443.

http://dx.doi.org/10.1109/2945.817351
http://dx.doi.org/10.1145/357346.357349
http://dx.doi.org/10.1145/357346.357349
http://www.cgal.org
http://dx.doi.org/10.1007/s00371-003-0217-z
http://dx.doi.org/10.1007/s00371-003-0217-z
http://dx.doi.org/10.1145/237170.237269
http://dx.doi.org/10.1145/237170.237269
http://dx.doi.org/10.1145/781606.781627
http://dx.doi.org/10.1109/TPAMI.2002.1039207
http://dx.doi.org/10.1145/174462.156635
http://dx.doi.org/10.1016/S0010-4485(01)00079-3
http://dx.doi.org/10.1016/S0010-4485(01)00079-3
http://dx.doi.org/10.1145/133994.134011
http://dx.doi.org/10.1016/j.cad.2004.09.011
http://dx.doi.org/10.1109/TVCG.2006.2
http://dx.doi.org/10.1109/TVCG.2006.2
http://dx.doi.org/10.1016/j.cad.2009.04.006
http://dx.doi.org/10.1016/j.cad.2009.04.006
http://dx.doi.org/10.1016/S0010-4485(03)00064-2
http://dx.doi.org/10.1145/311535.311580
http://vcg.sourceforge.net
http://vcg.sourceforge.net
http://dx.doi.org/10.1016/0925-7721(92)90003-B
http://dx.doi.org/10.1016/0925-7721(92)90003-B

	1. Introduction
	2. Relevant studies
	3. Proposed method
	3.1. Priority queuing mechanism and the initial queue
	3.2. Absolute and relative matching indices
	3.3. Neighboring matching index

	4. Implementation results
	5. Conclusions
	Acknowledgement
	Funding
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

