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A fast and automatic hole-filling method based on feature line recovery
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ABSTRACT
In this paper, an automatic method to fill holes in triangle mesh models is proposed. Different types
of holes can be handled by recovering feature lines that pass through them, and then the recovered
feature lines are used for splitting complex holes into small and simple ones, which simplifies the
hole-filling problem. Two kinds of splits are considered, curve split and corner split. For curve split,
Euler spirals are constructed as feature lines. The required end-points and their corresponding tan-
gent vectors can be automatically identified to initialize the curve. For corner split, the corner point
contained in the hole is recovered by optimizing a quadric equation, then multiple feature lines can
be constructed automatically. An advantage of this method is that it works on the neighborhood of
each hole, which makes it possible to handle huge models with high efficiency compared to other
state-of-the-art methods.
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1. Introduction

With the fast development of data acquisition equipment,
such as LIDAR, Kinect, it becomes much easier to get the
three dimensional representation of a real object. Nev-
ertheless, due to constraints of the equipment and sur-
rounding conditions, the digital data acquired is usually
incomplete and contains flaws. As a result, the trian-
gulated mesh model always contains self-intersections,
gaps, and holes, and might bring errors to following pro-
cess or applications. Self-intersections can be solved by
adding and deleting mesh faces based on topology, and
gaps can be filled by simply connecting them together.
The problem is how to deal with holes properly. Holes
usually appear at unexpected areas and always have com-
plex boundaries and topology.What’s worse, the shape of
the missing part is unclear. In this way, hole-filling plays
a challenging and indispensable role in the fundamental
process of 3D models.

Now that hole-filling is such an important issue to deal
with,many effectivemethods have been employed, which
can be grouped into two categories: volume-based meth-
ods andmesh-basedmethods. The basis of volume-based
methods is the voxelization of input mesh models. This
type of methods process the model globally. Filippov[5]
set three requirements to voxels: separability, accuracy,
and minimality, in order to ensure a good discrete repre-
sentation. To be specific, separability means that the dis-
crete surface can avoid ray penetration; accuracy entails
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requirements on error metrics to ensure that discrete
surface satisfies the separability condition; minimality is
achieved when the discrete surface contains no voxels
that of no use. Nooruddin[16] presented two new meth-
ods of voxelization: parity-count and ray-stabbing, which
help identifying whether a voxel is interior or exterior
to the model by the number of intersections. Admit-
tedly, Nooruddin’s method could handle models with
holes, double walls, and intersecting parts, however, they
worked merely on a global volume space which is very
hard to be constructed. In addition, a tiny fault in ray-
stabbing may cause a large part on the model of wrong
sign. Ju[10], employing an octree grid, converted the
input model into a volume, which saved much space and
made it possible to deal with huge and complex mod-
els. Afterwards, Ju et al., labeled each edge of the octree
grid, managed to show the sign of each vertex and recon-
struct the surface by contouring. This method is robust
and can process models in high efficiency, but cannot
recover the missing feature properly. In general, volume-
based methods can handle complex holes and get har-
monious results, but they are relatively time- and space-
consuming.

This researchmainly focuses onmesh-basedmethods,
which are easier to implement and consume less time and
space. Among these, some manage to fill holes directly
by usingAdvancing FrontMethods (AFM), triangulation
or Radial Basis Function (RBF). For example, Zhao [6]
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filled the holes withAFM, and then used topology adjust-
ment to refine newly-inserted faces. In their research,
Zhao et al., calculated the desirable normal of each face,
rotated the face to the normal’s direction, and recovered
themissed feature by solving a possion equation. Sharf[2]
presented a context-based method. Having found the
most similar part to the hole on the model or among a
large set of examples, they replaced the filled part with
the similar part so that sharp features could be restored.
Moreover Sharf’s method enabled the requirement of
mesh models with textures. Harary[7]’s research, which
was based on the similarity descriptor, was an extension
of Sharf’s method[2] and was able to handle more com-
plexmodels with better results.Moraru[15] came upwith
a toolbox to fill the holes on the meshmodel. Firstly, they
cleaned the hole boundary due to scanner noise, and then
used a topological grid built from boundary vertices and
an ellipse to fill the hole. Finally, the grid was deformed
to satisfy the condition set by surrounding meshes of the
hole. Moraru’s toolbox worked well on holes with topol-
ogy like an ellipse. As for other complex topology, future
work is needed to adapt the topology and shape of the
grid to the original hole. Generally speaking, although
themethodsmentioned above are effective inmany cases,
they cannot fill well the holes in large size and with com-
plex topology. Consequently, scholars comeupwith some
methods to split holes into small ones. Jun[11] split holes
into sub-holes and applied smoothing and optimizing
methods to repair them one by one, however, the pro-
cess occasionally iterated too many times to converge.
Ohtake[1] proposed a hierarchically piecewise function
to split a hole, which made it possible to figure out the
corner point and feature boundary in it. In order to get
the function model suitable for the surface, Ohtake et al.,
had to conduct many experiments. Apparently the pro-
cedure required much time and simplified complicated
constraints. What’s more, in some cases, Ohtake’s func-
tion cannot ensure the correctness of the results. Li [13]
appliedmixed polynomial to restore sharp features in the
hole region. They first detected feature points along the
hole boundary, and then recovered feature lines with the
equation, so that each hole was split into several small
ones and was filled by Bézier-Lagrange surface. Ngo [12]
made crest-line detection for feature points recognition,
and then used Catmull-Rom curve to interpolate sample
points of the feature line into the hole area. Then, they
projected small holes onto a 2D tangent plane for trian-
gulation. This method is a semi-auto one, which asks for
user intervention. Among the above methods, most can-
not fill or split the holes automatically, even worse, some
are time-consuming. Besides, when it comes to holes of
large size and with complex topology, the result is hard to
recover the original topology inside the hole.

In this research, the authors endeavor to recover the
topology inside a hole by splitting it into small and sim-
ple ones. Two ways to split are proposed: curve split and
corner split. The experiment starts with automatically
recovering the corner points inside a hole and construct-
ing feature lines by feature detection near the hole area.
After that, sample points are interpolated along the fea-
ture curve to split the hole. During this process, the fea-
ture lines help to retain consistency between the repaired
part and its neighborhood.

2. Algorithm overview

The method proposed in this research operates on trian-
gular mesh models, which are supposed to be connected,
manifold, and oriented, with no self-intersections. More-
over, no common points exist between any two holes,
and no islands are allowed inside each hole. The input
model is constructed from clean point clouds, with no
noise. The mesh models are represented with half-edge
data structure, and the holes can be filled one by one.
It is worth mentioning that this novel method manages
to split the hole in accordance with features. Two kinds
of split are considered as shown in Fig. 1: (a)curve split:
the hole contains no corner point, each split line is con-
structed from two end-points on the hole boundary;
(b)corner split: there exists a corner connecting several
surfaces inside the hole, the corner point and a feature
point on the hole boundary make up the two end-points
of the split line.

Figure 1. Illustration of two kinds of split and Euler spiral con-
struction. (a)curve split; (b)corner split. Red points are points on
the hole boundary, blue lines are recovered feature lines, orange
points are sampling points on feature lines.

The whole procedure of this algorithm is: (a)decide
whether the hole needs to be split, and how to split, i.e.
make curve split or corner split; (b)apply different feature
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detectingmethod according to the split type; (c)construct
split lines with feature points and corner point(if any) to
divide the hole into sub-holes; (d)repair each sub-hole
by AFM. In order to determine the split type, first the
normals of 1-ring faces of the hole are collected, then
k-means clustering is applied. If the normals distribute
evenly in a small range or if only one cluster exists, it
implies that these normals change slightly along the hole,
so the hole does not need to be split; if they distribute into
two ranges, two clusters will be obtained, then the curve
split approach is a better choice; and if they distribute into
several clusters, the corner split approach will be chosen.
In addition, users can choose the split typemanually. The
flow diagram is shown in Fig. 2.

Figure 2. Flow diagram for the hole-filling procedure.

The main contribution of this work can be summa-
rized as follows:

• An automatic method that can split holes containing
corner points is presented;

• The number of surfaces intersected at the corner can
be obtained by clustering face normal of the 1-ring
hole boundary faces;

• The consistency of the recoveredmesh can be retained
with the neighborhood of the hole.

3. Curve split construction

Split curve construction is the key point in splitting com-
plex holes. With boundary conditions, a common way is
to construct Hermite curves, but Euler Spiral [14] seems
to be more eye-pleasing: extensible, invariant to sim-
ilarity transformation, symmetric, smooth and round.

Therefore, it is much preferred by the human visual sys-
tem [9]. To fit an Euler spiral, the two end-points of
the curve and their corresponding tangent vectors are
needed. In Harry’s work [8], researchers chose two end-
points and two other points manually to determine the
corresponding tangent vectors. By contrast, the point
selection procedure, in this research, runs automatically.

First, crest-line detection [3] is used to locate ridge
and ravine areas on the model, which are referred as fea-
ture faces. The ridge and ravine face strips are labeled
in green and red respectively in Fig. 3 and Fig. 4. The
boundary points that belong to feature faces are chosen as
candidates of feature points. In order to determine which
candidate is a feature point, the 1-ring neighborhood of
the point is usually used. In this research, due to the fact
that crest-line detection is not so robust and precise when
a model is incomplete, e.g. with holes, both 1-ring and
2-ring faces of a point are used, so as to ensure the contin-
uousness of feature and the accuracy of the result. To be
specific, for each candidate point ‘v’, if feature face exists
in both its 1-ring neighborhood and its 2-ring neighbor-
hood, and the two faces are both ridge or ravine faces that
share a common point or edge, then point ‘v’ is picked as
a feature point, labeled in RIDGE or RAVINE.

Figure 3. Feature points identification.

As shown in Fig. 3, faces {f1, f2, f3} are 1-ring neigh-
bor faces of point ‘v’, and f2, f3 are feature faces. Like-
wise, the authors iterate the procedure from point p2
to p3 to find the 2-ring neighbor of ‘v’, and get faces
{f1, f2, f4, f5, f6, f7}. Face f1 and f2 are 1-ring faces of ‘v’
and f4 is on the boundary, so only faces f5, f6, f7 are taken
into consideration. Since f7 is a feature face of 2-ring, f2 is
a feature face of 1-ring faces of ‘v’, and both f2 and f7 are
ridge faces who share the same point ‘p2’, then point ‘v’ is
a RIDGE point. In Fig. 3, the points ‘v’, ‘a’, ‘b’, ‘c’ in green
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Figure 4. Illustration of a constructed Euler spiral. Purple points are the best pair. (a) The inserted feature line consistent to the feature
line which goes through the hole; (b)Euler spiral splits a complex hole into two parts.

are RIDGE, points ‘d’, ‘e’ in purple are RAVINE. These
ridge and ravine points are referred as feature points on
the hole boundary.

The feature normal of a feature point is defined as
the average normal of two boundary faces that share
the point. What’s more, for each feature point, its 1-ring
faces lie on different sides of the feature line, so the two
faces chosen to calculate the feature normal must belong
to different sides. In this way, the feature normal con-
duce to maximize the difference of different feature lines
and the similarity of the same feature line, so that the
paired feature points will be more accurate. In Fig. 3,
the feature normal of point ‘v’ is equal to the average
of f1’s normal and f3’s normal. Then the feature points
are paired. In order to ensure the correctness of pairing,
some constraints are set in advance: (a)the two points
paired together are both RIDGE or RAVINE; (b)the
paired points are not neighbors; (c)the distance between
the paired points along the hole boundary should be
larger than a pre-set threshold; (d)the feature normal
variance between the paired points should be the mini-
mum among all the pairs. In (c), the distance is measured
by the number of points between the paired points along
the hole boundary, and the threshold is set to be 1/5 of
the number of boundary points. The above constraints
help ensuring that the two end-points are of the same fea-
ture, while not to be very close to each other along the
hole boundary. The reason to satisfy the latter require-
ment is that if two points near to each other are paired,
only a small part of the hole will be split, which has lit-
tle contribution to the final result. Thus the second rule
contributes to filtering out some wrong pairs. On each
specific feature curve, the normal of each point is always
similar, so the constraints on feature normal variance also

help to find the best pair. For example, in Fig. 3, the best
pair is {v, b}. In this research, the best pair is treated as
the two end-points of the Euler split curve.

Afterwards, the tangent vector of each end-point is
calculated. For instance, let D be the vector between
two end-points, which indicates the trend that the curve
moves on. For each end-point ‘v’, researchers search
among its 1-ring points to find the vector. Although, each
neighbor point can form a vector with point ‘v’, only the
vector that has the minimum angle with D is referred as
the tangent vector of point ‘v’. In this way, researchers
obtain the initial conditions to construct an Euler spiral.
Fig. 4 shows the result of a constructed Euler spiral.

4. Corner split construction

First, Cao’s corner recovery method [4] is employed
to locate the corner point. It used boundary edges and
boundary points along the hole to formulate two kinds
of tetrahedrons. By optimizing a quad programming
equation, the position of the corner point is acquired.
Then the feature points on the hole boundary are to
be found out. As is well-known, corner points usu-
ally appear on CAD models. In addition, the variance
between changes to normals of adjacent faces is smaller
within each surface; as for the faces separated by feature
lines, the difference between them tend to be big. In this
way, this research takes a different measurement for fea-
ture point detection. The first step is to get 1-ring neigh-
bor faces of the hole boundary and their corresponding
normal, after that, k-means clustering will be used to
classify the face normal set. The problem lies in how to
determine the value of k, which is equal to the number of
surfaces that a corner point connects. Two concepts need
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Figure 5. Illustration of feature points, purple points. (a) Five feature points are figured out on the hole boundary, three surfaces intersect
together; (b)three feature points are figured out, three surfaces intersect together; (c)four points are figured out, four surfaces intersect
together.

Figure 6. Illustration of chain point calculation.

to be defined: (1) face normal variance: the normal vari-
ance between two neighbor faces; (2)point-related face
normal variance: the largest face normal variance among
the 1-ring neighbor faces of a point. The k feature points
are obtained in the following steps: (a)considering that a
corner connects at least three surfaces, researchers iter-
ate k from the lower bound(which is equal to three) to
a pre-set upper bound, and denote the k with minimum
variance as kmin; (b)iterate back from kmin to the lower
bound, and set the k where each cluster has a reasonable
number of elements as the number of surfaces a corner
connects, which is denoted as ks; (c)select ks points on
the hole boundary in decreasing order of point-related
face normal variance. Here the upper bound is set to be
1/4 of the number of boundary vertex. If the upper bound
is too large, then a cluster will contain only few elements,
it is of none sense; if it is too small, the clustering will be
at the risk of losing generality.

Another factor that has crucial impact on the result is
the initial center of each cluster. Many methods choose
the center randomly, but in this research, each center is

decided by the largest distance between each other where
every cluster can distribute evenly. In Fig. 5, the pur-
ple points illustrate the feature points figured out by our
method. We observe that the number of feature points
is larger than or equal to the exact surface number, but
it will not bring negative effects on the final result. The
reason is that for all the points on the hole boundary,
only the ones on feature lines have larger point-related
face normal variance. Therefore once these points are
selected, whether other points are selected or not makes
no difference.

Secondly, the split lines will be constructed with the
points gathered above. In order to get better-looking
results, Euler spiral is chosen to fit feature lines, just like in
the curve split procedure. Therefore the tangent vector of
each end-point needs to be calculated. For a feature point,
such as point ‘p’ in Fig. 6, face pair {f1, f2} has the largest
normal variance among the 1-ring neighbor faces {f1, f2},
so point ‘a’ is chosen as a chain point. Likewise, it is pos-
sible to find the following chain points ‘b’, ‘c’, ‘d’, and ‘e’,
and the line on which these chain points are connected
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Figure 7. Comparison of hole-filling part on a pig model. (a) The original hole of a pig ear; (b)the hole filled directly by AFM; (c)the hole
filled by curve split.

Figure 8. Comparison of the hole-filling result for a hole on Stanford bunny base. (a) The original hole; (b)the hole filled by AFM; (c)the
hole filled by curve split.

is regarded as the feature line. When searching for a new
chain point, it is important to notice that the faces shared
with former chain point must be excluded from its 1-ring
neighbor face set. For example, having got the chain point
‘a’, face f1 and f2 should be excluded from its 1-ring neigh-
bor faces in finding new chain point. In other words, only
{f3, f4, f5, f6} should be considered. Moreover, although
a set of chain points is collected, some of them should
not be used in the following process. In order to do the
selection, researchers calculate the tangent vector of each
chain point starting from boundary point ‘p’, if a vector
has a large variance to the ones ahead of it, the procedure
stops at that point. Eqn. (1) is used to calculate the tangent
vector of the corner point:

Tn − Tp

Tp − Tb
= Arcnp

Arcpb
= Dnp

Dpb
(1)

Where T represents tangent vector, Arc represents arc
length, D represents Euclidean distance. As is shown in
Fig. 6, since tangent vector at ‘d’ has a large variance

from point ‘p’, ‘a’, ‘b’ and ‘c’, the procedure has to stop
at point ‘c’.

After the curve or the corner split, large and complex
holes are decomposed into simple and small sub-holes,
which can be filled easily by AFM. In most cases, it is
possible to automatically split and fill the hole.

5. Results

Different split methods can be used according to the
types of holes. When it comes to holes which contain a
corner point connecting several surfaces, corner split is
employed; as for holes through which feature lines pass,
curve split is chosen. Fig. 7–10 are the demonstration
of some results. In Fig. 7 and Fig. 8, we compare our
hole-filling results with those directly filled by AFM, it
shows that our results can recover the feature in the hole.
In Fig. 9, we make comparison of our method, hole-
filling with curvature preserving, and the original part,
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Figure 9. Comparison of the filled part, original part and other algorithm of a man-made hole on Stanford bunny ear. (a) The hole on
the ear; (b)the filled result by our method; (c)the original part on the model; (d) the hole filled by curvature preserving.

Figure 10. Hole-filling results. (a1) Filled part of Stanford bunny leg; (b1)filled part of a fandisk hole with a corner pointmissed; (c1)filled
part of the lampmodel; (d1)filled part of octa flower. (a2), (b2), (c2), (d2) are zoom in version.
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Figure 11. Hole-filling results on noise. (a) Original model with no noise; (b)model with little noise; (c)model with much noise; (a1), (b1)
and (c1) are corresponded automatic split results.

Table 1. Result on input size and time consuming.

Model
Number of
Input Faces

Number of
Input Points

Number of
Hole Points

Number of
New Faces

Number of
New Points

Time of Crest-line
Detection(s)

Time of Filling
Hole(s)

Pig(Fig. 7) 30969 16181 76 638 282 0.517 0.313
Bunny(Fig. 8) 68354 34339 42 158 59 0.987 0.132
Fandisk(Fig. 10(b)) 13801 6995 32 144 57 NA 0.015
Lamp(Fig. 10(c)) 60399 30257 117 1747 816 0.741 2.206

it shows that our result is very similar to the original
part.

The comparison in Fig. 7–10 shows that with feature
line recovery, large complex holes could be split into small
ones, and the filled region is much more similar to the
original shape of the input model compared to results
directly filled by AFM, which is the basis of most mesh-
based hole-fillingmethods. Fig. 11 shows the feature split
result of a hole on a clean model and on models with
noise. We can observe that if the noise is not too much,
we can get a satisfying result.

Tab. 1 shows the sizes of some input models and the
time spent in filling the hole. The research program runs
on a 2 core i5 CPU with 16G memory. In the process of
Fandisk, corner split is used, so there is no need for crest-
line detection, and thus no data is shown in this cell.

6. Conclusion

In this paper, we propose a fast and automatic method
to fill holes in mesh models. This novel approach can
handle both CAD models and free-form ones. It also

enables researchers to automatically pair two feature
points together and construct an Euler spiral to separate a
hole into sub-holes. In cases that a hole contains a corner
point, a quad programming equation is applied to opti-
mize its position, and a local method is proposed accord-
ing to the face normal variance so as to figure out the
feature points on the hole boundary. What’s more, this
research presents a new way to automatically find chain
points of a specific feature point along its feature line,
which helps to calculate the tangent vector of the cor-
ner point. For each sub-hole generated from splitting the
original hole, AFM is employed to fill the hole. Undoubt-
edly, there are some limitations of the method proposed
in this paper. It is well-known that the input models
must contain no noise or self-intersections. Although, the
pre-set thresholds in this program are suitable for most
cases, when it comes to some holes with very complex
topology, the thresholds still need to be adjusted manu-
ally in order to get accurate results. Additionally, granted
that the hole-filling procedure of this research is fast, the
crest-line detection for feature points costs much more
time compared to hole-filling. Furthermore, machine
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learning algorithms are considered to be employed in
future work so as to obtain more suitable thresholds
automatically, and other feature detection methods will
be used to improve the stability as well as the speed of
this method.

Acknowledgements

This work was supported by the National Key Technologies
R&D Program of China (2015BAF23B03), the National Nature
Science Foundation of China (61373070), and Tsinghua Uni-
versity Initiative Scientific Research Program (2012Z02170).

ORCID

Chunhong Xia http://orcid.org/0000-0001-6935-6142
Hui Zhang http://orcid.org/0000-0001-6563-9890

References

[1] Alexa, M.; Belyaev, A.; Ohtake, Y.: Multi-level parti-
tion of unity implicits, ACM Transactions on Graphics,
22(3), 2003, 463–470. http://dx.doi.org/10.1145/882262.
882293

[2] Alexa,M.; Cohen-Or, D.; Sharf, A.: Context-based surface
completion, ACM Transactions on Graphics, 23(3), 2004,
878–887. http://dx.doi.org/10.1145/1015706.1015814

[3] Belyaev, A.; Seidel, H.-P.; Yoshizawa, S.: Fast and robust
detection of crest lines on meshes, Proc of ACM Sym-
posium on Solid & Physical Modeling, 2005, 227–232.
http://dx.doi.org/10.1145/1060244.1060270

[4] Cao, J.; Li, B.; Liu, X.; Lu, L.; Shi, X.; Wang, X.; Yin,
B.: Automatic hole-filling of CAD models with feature-
preserving, Computers &Graphics, 36(2), 2012, 101–110.
http://dx.doi.org/10.1016/j.cag.2011.12.007

[5] Filippov, V.; Huang, J.; Yagel, R.: An accurate method for
voxelizing polygon meshes, Volume Visualization, IEEE
Symposiumon IEEE, 1998, 119–126. http://dx.doi.org/10.
1145/288126.288181

[6] Gao, S.; Lin, H.; Zhao, W.: A robust hole-filling algorithm
for triangular mesh, The Visual Computer, 23(12), 2007,
987–997. http://dx.doi.org/10.1007/s00371-007-0167-y

[7] Grinspun, E.; Harary, G.; Tal, A.: Context-based coher-
ent surface completion, ACM Transactions on Graphics,
33(1), 2014, 57–76. http://dx.doi.org/10.1145/2532548

[8] Grinspun, E.; Harary, G.; Tal, A.: Feature-preserving sur-
face completion using four points, Computer Graphics
Forum, 33(5), 2014, 45–54. http://dx.doi.org/10.1111/cgf.
12430

[9] Harary, G.; Tal, A.: 3D Euler spirals for 3D curve com-
pletion, Computational Geometry, 45(3), 2012, 115–126.
http://dx.doi.org/10.1016/j.comgeo.2011.10.001

[10] Ju, T.: Robust repair of polygonal models, ACM Transac-
tions onGraphics, 23(3), 2004, 888–895. http://dx.doi.org/
10.1145/1015706.1015815

[11] Jun, Y.: A piecewise hole filling algorithm in reverse engi-
neering, Computer Aided Design, 2(2), 2005, 263–270.
http://dx.doi.org/10.1016/j.cad.2004.06.012

[12] Lee, W.-S.; Ngo, T.-M.: Feature-first hole filling strategy
for 3Dmeshes, Computer Vision, Imaging and Computer
Graphics, Theory and Applications, 274, 2013, 53–68.
http://dx.doi.org/10.1007/978-3-642-32350-8_4

[13] Li, Z.; Meek, D.-S.; Walton, D.-J.: Polynomial blending in
a mesh hole-filling application, Computer-Aided Design,
42(4), 2010, 340–349. http://dx.doi.org/10.1016/j.cad.
2009.12.006

[14] Meek, D.-S.; Walton, D.-J.: G1 interpolation with a
single Cornu spiral segment, Journal of Computa-
tional & Applied Mathematics, 223(1), 2009, 86–96.
http://dx.doi.org/10.1016/j.cam.2007.12.022

[15] Moraru, G.; Pernot, J.-P.; Véron, P.: Repairing triangle
meshes built from scanned point cloud, Journal of Engi-
neering Design, 18(5), 2007, 459–473. http://dx.doi.org/
10.1080/09544820701403797

[16] Nooruddin, F.-S.; Turk, G.: Simplification and repair
of polygonal models using volumetric techniques, IEEE
Transactions on Visualization and Computer Graphics,
9(2), 2003, 191–205. http://dx.doi.org/10.1109/TVCG.
2003.1196006

http://orcid.org/0000-0001-6935-6142
http://orcid.org/0000-0001-6563-9890
http://dx.doi.org/10.1145/882262.882293
http://dx.doi.org/10.1145/882262.882293
http://dx.doi.org/10.1145/1015706.1015814
http://dx.doi.org/10.1145/1060244.1060270
http://dx.doi.org/10.1016/j.cag.2011.12.007
http://dx.doi.org/10.1145/288126.288181
http://dx.doi.org/10.1145/288126.288181
http://dx.doi.org/10.1007/s00371-007-0167-y
http://dx.doi.org/10.1145/2532548
http://dx.doi.org/10.1111/cgf.12430
http://dx.doi.org/10.1111/cgf.12430
http://dx.doi.org/10.1016/j.comgeo.2011.10.001
http://dx.doi.org/10.1145/1015706.1015815
http://dx.doi.org/10.1145/1015706.1015815
http://dx.doi.org/10.1016/j.cad.2004.06.012
http://dx.doi.org/10.1007/978-3-642-32350-8_4
http://dx.doi.org/10.1016/j.cad.2009.12.006
http://dx.doi.org/10.1016/j.cad.2009.12.006
http://dx.doi.org/10.1016/j.cam.2007.12.022
http://dx.doi.org/10.1080/09544820701403797
http://dx.doi.org/10.1080/09544820701403797
http://dx.doi.org/10.1109/TVCG.2003.1196006
http://dx.doi.org/10.1109/TVCG.2003.1196006

	1. Introduction
	2. Algorithm overview
	3. Curve split construction
	4. Corner split construction
	5. Results
	6. Conclusion
	Acknowledgements
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [609.704 794.013]
>> setpagedevice


