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ABSTRACT
The ability to compare the shapes of objects is crucial to the practice of engineering design. Spectral
shape signatures provide a high-quality similarity measure based on diffusion physics by means of
the spectrum of an estimate of the Laplace-Beltrami operator for the surface of an object.

However, point cloud and mesh models often have very large intrinsic sizes and subsequently
large Laplace-Beltrami estimate matrices. Recommendations from the current spectral shape sig-
nature literature are to use only a fixed number of arithmetically greatest eigenvalues and their
corresponding eigenvectors in the computation of a spectral shape signature. This recommenda-
tion “seems to work well”, but it is not yet understood the degree to which this fixed number of
eigenpairs approximates the full spectrum for the purposes of shape similarity measures or even
what fixed number to use. Using a fixed number of eigenpairs for all model sizes and samplings also
introduces inconsistencies between different samplings of the same shape at different intrinsic sizes
andmay cost unnecessary computational effort on resource-limited systems (e.g., drones or robots).

In this paper we briefly examine the performance of fixed numbers of eigenpairs on approximat-
ing the spectrum of models of different sizes, propose an adaptive cutoff selection method which
improves consistency betweenmodels for spectral signature use, demonstrate the method on Heat
andWaveKernel signatures (HKSandWKS) for point clouds, andbriefly discuss the trade-off between
running time and desired error or convergence properties.
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1. Introduction

Understanding and comparing the shapes of parts and
objects is fundamental to the design of functional struc-
tures. In the traditional of engineering practice, under-
standing shapes has been done intuitively by experts by
means of their experience or by mathematical compar-
isons of simplified or representative shapes (e.g. combi-
nations of primitives). In recent decades, methods have
been developed for comparing shapes which do not rely
on either disassembling shapes into representative prim-
itives or engineering experience. Among the most useful
for understanding three-dimensional shape is the class of
techniques called spectral signatures.

1.1. Spectral signatures

A shape signature is a compact representation of shape
which retains relevant information about the shape. A
useful signature should retain enough information to dis-
criminate completely between any two general shapes or
classes of shapes while allowing straightforward compu-
tations of degree of similarity and remaining manageably
sized.
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A particular class of shape signatures known as ‘spec-
tral’ shape signatures consists of signatures whose values
are computed by reference to the spectrum of the Lapla-
cian of a shape. Many of these signatures derive meaning
by analogy to physical processes which are governed by
the intrinsic geometry of the space in which they act.
The example spectral shape signature we select for our
investigations is the Heat Kernel Signature, although we
remark that other spectral shape signatures may be used
instead.

1.2. The heat kernel signature

The Heat Kernel Signature (HKS) is a spectral shape sig-
nature based on the physical process of heat diffusion. It
has a number of desirable properties: It is invariant up
to model isometry, intrinsically multi-scale, and stable
under perturbations on the scale of typical range cam-
era noise. In order to get a physical sense for the meaning
of the HKS of a shape, consider a point source of heat
applied to a point on a surface. As time passes, the heat
will diffuse on the surface away from that point. The heat
kernel signature’s value kt at that point is the sum total of
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all of the heat which has diffused away by time t. Since the
Laplacian describes the flux of a vector field on a surface,
it is intuitive that the Laplace operator will be of some
use in this computation. Indeed, the heat equation on a
manifold is defined as

∂u
∂t

− α∇Mu = 0 (1)

where α is a positive constant and u is the thermal energy
as a function of time and location on the surface [6].

The heat kernel is a fundamental solution to the gen-
eral heat equation [7]. The heat kernel in terms of the
eigensystem of the Laplace-Beltrami operator may be
written as

kt(x, y) =
∑e−λit

φi(x)φi(y) (2)

The quantity kt(x, y) may be considered equivalent to
a measurement, for time t, of the amount of heat trans-
ferred from point x to point y, for some initial distri-
bution of heat energy on the surface u0(x). Using this
quantity as a measure for similarity would require map-
pings between each of the neighborhoods, mappings
which would be difficult or time-consuming to define
between models.

The heat kernel signature (HKS) of a shape is a more
compact description of a shape than the heat kernel itself;
it is a restriction of the heat kernel to kt(x, x), the diag-
onal of the heat kernel. This restriction captures the
“amount of heat”which has diffused away frompoint x by
“time” t. This restricted version of the heat kernel is suffi-
cient to describe the local area of point x for the purposes
of similarity. Restricting the heat kernel to the “time”
domain over the model reduces the computational com-
plexity of the signature and obviates the need to develop
these local mappings for similarity. This form of the heat
kernel onM has the eigendecomposition

kt(x, x)M =
∑e−λit

φi(x)φi(x) (3)

where λ and φ are the eigenvalues and eigenvectors of
the Laplace-Beltrami operator of M. Thus, the first step
in calculating the HKS for a given shape must be the esti-
mation of the Laplace-Beltrami operator of the surface of
the shape.

1.3. Laplace-beltrami estimate

The Laplace operator or Laplacian is a second-order dif-
ferential operator �f which describes the variation of a

differentiable function f within a space. It is defined as
the divergence of the gradient of the function

�f = ∇ · ∇f (4)

which is equivalent to the sum of the unmixed second-
order partial derivatives. Intuitively, this describes the
flux of the gradient field of a function in that space.
The equivalent form on a Riemannian (i.e., real, smooth,
equipped with an inner product) manifold is called the
Laplace-Beltrami operator.

�M f = tr(H( f )) (5)

The Hessian H( f ) of the function is a square matrix of
second-order partial derivatives that describes the local
curvature of the function f over the manifold. Taking
the trace of the Hessian keeps only the unmixed second
derivatives, as in the definition of the standard Laplace
operator.

This description of local curvature makes the Laplace-
Beltrami operator of a surface a powerful tool for shape
analysis. Discretizations of the Laplace-Beltrami opera-
tor for various discrete representations of a surface have
been the subject of intense academic interest [12]. For
triangular surface meshes, the current state-of-the-art is
the Mesh Laplace Operator [2]. For point cloud mod-
els, the equivalent estimate is the Symmetric Point Cloud
Laplacian [13–14].

1.4. A fixed number of eigenpairs

Computing the values of a spectral shape signature
on a shape requires computing the eigensystem of the
Laplace-Beltrami estimate of that shape (see Equation 3).
The Laplace-Beltrami operator for an n point or n ver-
tex model is an matrix. The complete eigensystem for
such a model is n eigenvalues with n associated n-
length eigenvectors. For typical CAD system or range
scanner-generated models, n can easily be in the tens or
hundreds of thousands or higher. Computing the com-
plete eigensystem for a 200000×200000 matrix, even a
sparse matrix, is an incredibly computationally inten-
sive and time consuming process. It has been sug-
gested and broadly accepted that the “rapid conver-
gence” of the eigenvalues should allow for a signature
to be computed “using a moderate number of eigenval-
ues . . . determined by feasible numerical computations’
[9].

Thus, in order to make a spectral signature for a typ-
ical model amenable to computation, the developers of
spectral signatures have traditionally advised users to
use a fixed number of eigenvalues and their associated
eigenvectors for spectral signature calculation. For the
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Heat Kernel Signature, 300 eigenpairs is the recommen-
dation [11]. For the Wave Kernel Signature, 300 is again
the authors’ preferred number [1]. The developers of the
Global Point Signature used only 25 eigenvectors (though
operating on decimated models of no more than 25000
vertices) [10]. The Shape Google implementation of HKS
relies on only 100 eigenpairs [4]. In all of these cases
the decision to compute only 25, 100, or 300 eigenpairs
is justified only by experimental report that ‘it seemed
to work well’ for some test set. How many eigenpairs
should be computed to allow the “rapid convergence”
of the spectrum to converge appropriately for any given
model is still an open question. Other works have sug-
gested that some other subset of the spectrum provides
better discriminatory power for particular cases, but ulti-
mately conclude that the “first k eigenvalues” methods
perform at least as well as those alternative subsets in gen-
eral (see Table 2 in [8]). Additionally, alternative subsets
take significant offline processing to develop for a given
database [8].

1.5. In this paper

In this work, we characterize the level of approxima-
tion introduced to a typical spectral signature by fixed-
number methods, discuss the limitations of these meth-
ods, and elaborate on our new tunable model-adaptive
method of selecting the number of eigenpairs to use for
eachmodel in a database which helpsmitigate those limi-
tations.We also present analysis and discussion of tuning
our method to adjust the balance between the compu-
tational speed and the precision of the computed signa-
ture. Although we use point cloud models and the SPCL

estimate [14] of the Laplace-Beltrami operator through-
out the experiments, the approach presented in this paper
can be applied to compute spectral signatures for other
types of models as long as a convergent estimate of the
Laplace-Beltrami operator exists.

2. Understanding the impact of eigenpair cutoff

Spectral signatures are primarily used for shape sim-
ilarity, comparing a query shape with the shapes of
models in a database. Very rarely do all models in a
database have a very similar intrinsic size. Often, even
test databases containmodels with an order ofmagnitude
difference in the number of vertices or points, let alone
real-world examples of the kinds of databases in daily use
at engineering firms and manufacturing companies. For
example, the CERTH/ITI Kinect scan database includes
a model with 3657 points and another with 55808
points [15].

Figure 1 shows the difference in the amount of infor-
mation captured by the first 300 eigenvalues for two
differently-sampled models of the same object. The
eigenvalues are exponents in spectral signatures, so the
lower values captured by using N eigenvalues for the
smaller model means capturing information not present
in the larger model’s N eigenpairs. Put differently, this
means capturing excessive information (and therefore
using excessive computational effort) if the largermodel’s
amount of information is sufficient to the application.
Two different samplings of the same model are used here
rather than two different models of different sizes purely
for clarity. The analogy of sufficient information holds
even across models of different shapes.

Figure 1. The red points in each plot correspond to the larger 39k point robotmodel and the black points correspond to the smaller 26k
point robot model. a) The first 300 eigenvalues of eachmodel. The blue line marks the value of the 300th eigenvalue of the larger model
and the labeled point (168) is the first point below the line in the smaller model’s eigenvalues. b) eλ for the first 300 eigenvalues for each
model. The label marks the final value in the larger model’s plot.
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Figure 2. a) The HKS vector k0.03 for the 26k robot model sampling, scaled to a unit bounding box, computed with 200 eigenpairs.
The difference between this HKS vector as computed with different numbers of eigenpairs are shown in b)-d): b) shows the difference
between HKS100 and HKS50, c) the difference between HKS150 and HKS100, and d) the difference between HKS200 and HKS150. In these
plots, red is higher differences and blue is lower. Note that the final plot, d), shows no difference at all between the computedHKS vectors:
The vectors have converged somewhere between 100 and 150 eigenpairs of information for this model at this t-scale.

2.1. Limitations of fixed-numbermethods

The primary limitations of these fixed-number meth-
ods are reduced precision for larger models, excessive
computational effort for smaller models, and the intro-
duction of a lack of consistency between measures which
are supposed to be comparable.

In Figure 2, we offer an example of the kind of exces-
sive computational effort which themethodwe introduce
avoids without loss of precision. The figure shows the
convergence of a particular HKS vector with respect to
the number of eigenvalues and eigenvectors used in its
computation is shown for a 26k point robot point cloud
model. The HKS vector converges between 100 and 150
eigenpairs, as shown by the zero difference between the
150 and 200 eigenpair HKS vectors. This result implies
that, for this model and sampling, at this t-value, com-
puting any more than 150 eigenpairs is wasted compu-
tational effort. For online processing, that extra effort
and the time associated with it can be the relevant fac-
tor in the timely detection of a feature or identification
of an object.

3. Tunable model-adaptive selectionmethod

Instead of computing a fixed number of eigenvalues, our
method instead computes a quite small user-set number
of eigenvalues and then predicts approximate successive
eigenvalues λ̃ by regression. These estimated eigenvalues
provide a guide to what number of eigenpairs to compute
for the spectral signature of the model in question. The
estimated eigenvalues are examined for a point at which
the contribution of the eigenvalue in question to the
spectral signature is reduced below a parameter ξ (that
is, etλn−1 − etλn < ξ ). This allows analysts to compute
different numbers of eigenvalues for different models

while capturingmore similar portions of the information
encoded in those eigensystems.

This procedure can be performed for a given spec-
tral signature scale (t-value), ideally the smallest t-value
of interest for a given application, or with t = 1. Once
the estimated eigenvalues are examined, a point a short
distance past the estimated location of the cutoff n is
selected (we choose n+10 to avoid underestimating n)
and the eigenvalues and eigenvectors for the model are
computed up to that location. The new eigenvalues are
checked to ensure that ξ has been reached; if it has not,
the new set of eigenvalues just found are fed back into
the quadratic estimator and the process begun again,
using the additional information in the larger computed
eigenvalues list to better guide the estimator. This should
nearly always result in reaching ξ in a maximum of
two eigensystem computations after the first 50-length
computation.

The method (see Figure 3) is tunable mainly by two
user-set parameters. The main tuning parameter is ξ , the
cutoff difference, which specifies theminimumdifference
between pairs of subsequent eigenvalues. This parameter
controls most of the tuning performed by this method.
For our example in Figure 2, the value of eλ,99 − eλ,100
was 120E-15 and the value of eλ,149 − eλ,150 was 47E-
21. The contribution to the HKS vector dropped more
than a factor of a million across those fifty eigenvalues.
The eigenvalue seed parameter we have fixed at 50 for
convenience may be adjusted based on performance on
an analyst’s system. This parameter allows the user to
choose how many eigenvalues to compute before fitting
the quadratic and predicting the convergence of eλ̃.The
user can also choose a minimum and maximum num-
ber of eigenvalues to compute for any given model and
the t-value to use for the database, based on their specific
spectral signature and application.
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Figure 3. Our tunable method algorithm diagram.

We note that spectral signatures hypothesize as part
of their formulation that Laplace-Beltrami spectra will
not contain repeated eigenvalues [11]. As there is no gen-
eral understanding of the operation of spectral signatures
outside that restriction, we do not concern ourselves with
the possibility of high-multiplicity eigenvalues appear-
ing at a critical juncture and interfering with the cutoff
computation.

Setting ξ = 100E-18 for the 14k point sampling of the
robot model yields convergence at n = 113. For the 39k
point sampling of the same robot model, the same ξ set-
ting yields convergence at n = 126, thirteen eigenpairs
further than that at which the smallermodel achieved the
same degree of convergence and significantly less than
the 300 eigenpairs recommended in [11], but more than
the 100 recommended in [4]. The eigenvalues for each
of these samplings are shown in Figure 4 down to the
cutoff values recommended by our algorithm with ξ =
100E-18. Note that the eigenvalues reach approximately
the same real value despite requiring different numbers
of eigenvalues to be computed to reach that value.

3.1. Improved consistency, reduced effort

This tunable adaptive cutoff method addresses the limi-
tations of fixed-number methods discussed above. Com-
putational effort is reduced while yielding the same effec-
tive amount of information. This permits more efficient
signature development without effective loss of preci-
sion. Much larger or more complex models may require
more eigenpairs than recommended by the fixed num-
ber methods to develop a similar level of convergence to
smaller models in the same database.

The enhanced consistency of the spectral signature
result betweenmodels of different shapes and sizes allows
greater user confidence in matching candidates and seg-
mentations based on spectral signature outputs. Suffi-
cient inconsistency between spectral fraction used to

compute a shape signature between two models in a
database may lead to misidentification or misclassifica-
tion of shapes. This technique helps to avoid such incon-
sistency.

3.2. Tuning for speed vs. precision

We additionally note that while the example above
demonstrated tuning to the degree that no further con-
vergence of the signature vector was possible with addi-
tional eigenpair computation, the nature of the tun-
able method allows for intentional and well-understood
under-convergence. That is, if additional speed is
required for some online application or computational
effort must remain limited (e.g., by hardware or power
requirements), a cutoff ξ may be chosen to intentionally
get only “enough” eigenpairs to allow the degree of differ-
entiation between shapes that your application requires.
The tunable method allows this sort of designed “just
enough” quantity of eigenpairs to be consistently speci-
fied across models of different sizes and over a range of
scales.

Aswell, eigensystem computation speed does not scale
linearly, so even if computing a consistent number of
eigenpairs takes two or even three calls to the eigenvalue
solver, so long as the average final number of eigenpairs is
lower than would be chosen by a fixed-number method
the total time to compute the spectral signature will be
less. We note that nearly every model in the example in
Section 4 reached ξ in only two calls to the eigenvalue
solver (including the initial seed call of only 50 values).
For example, in the following demonstration, for the first
model of the CERTH/ITI database, the tunable cutoff
method eigensystem call takes less than half the time of a
traditional 300-pairs eigensystem call.

4. Further demonstration

In order to demonstrate the use of our method in a gen-
eral case for real scanner data, we present the following
example on the CERTH/ITI Range Scan Dataset [15],
a freely-available database of scanned point cloud mod-
els of a variety of small objects produced by a Microsoft
Kinect sensor with a depth resolution of about 1 cm [5].
See Figure 5 for photographs of a sample of the objects
from the database.

The objects in the database were scanned in eighteen
different rotations of a turntable. The database provides
an.XYZ file of the set of scans of each object rotated
into a common coordinate system (so-called “registered”
scans). Minimal cleaning has been performed to remove
points outside the bounds of the turntable (i.e., back-
ground removal), but outlier points remain, and the
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Figure 4. The value of eigenvalues for the 14k and 39k point samplings of the robot model from the first to the cutoff number rec-
ommended by our method. Note the similar final values despite the different numbers of total eigenvalues computed to reach that
point.

Figure 5. A sample of the kinds of shapes present in the CERTH/ITI database.

points of the aligned scans are often positioned so that a
reconstructed surface through the points would result in
self-intersections and other surface degeneracies. These
scans, which are similar to those produced by indus-
trial and hobby range scan systems, would be challenging
to mesh without human operator intervention. We use
the point cloud model HKS analysis method of [14] to
develop HKS vectors from the models and we a priori
select minimum n = 80, maximum n = 500, and cutoff
ξ = 100E-12. Figure 6 shows a handful of similarmodels
from the database colored by those HKS vectors.

The tunable model-adaptive selection method sug-
gested a variety of eigenvalue truncation levels for the

CERTH/ITI Kinect model database. The minimum size
suggested was 80 eigenpairs for a model of 5046 points
while themaximum suggestion was limited by an a priori
maximum of 500 eigenpairs. Figure 7 shows the number
of eigenpairs used in computing the heat kernel signature
vectors for each model plotted against model size.

Additionally, comparing the Top5 Hit Rate for HKS of
the CERTH/ITI database using fixed 300 eigenpairs ver-
sus using the tunable adaptive cutoff method described
above shows a marked improvement of 10% greater por-
tion of same-category matches in the top five matches
for each model. This demonstrates the importance of the
enhanced consistency provided by the tunable method
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Figure 6. A sample of the point cloud models from the CERTH/ITI database showing heat kernel signature vectors computed using the
truncated eigenvalues and eigenvectors suggested by the tunable adaptive cutoff method.

Figure 7. Number of eigenpairs suggested (limited to a mini-
mum of 80 and a maximum of 500 eigenpairs) by the tunable
model-adaptive cutoff method for the models in the CERTH/ITI
Kinect scandatabaseplottedbynumberof points in the (automat-
ically) trimmedmodel. The red line at 300 represents the canonical
suggested number of eigenpairs for HKS for each the model. For
any model above the line, 300 values underrepresents the Lapla-
cian reducing consistency and for any model below the line, 300
values represents more computational effort or over-specificity.
Note that the number of eigenpairs is not determined by model
size.

over a fixed number method in real application for
matching and categorization.

4.1. Wave kernel signature

To demonstrate that our methods are applicable to spec-
tral signatures other than the Heat Kernel Signature,
which we use for our other examples and explanations

Figure 8. The ∼ 26000 point robot model segmented based on
the WKS at e = -1.4756 using a) a fixed 300 eigenpairs as rec-
ommended in the original paper and b) using an automatically-
computed 222 eigenpairs chosen by our tunable model-adaptive
method. Note that colors are randomly assigned to segments
and similarity of color should not be taken to mean similarity of
segment between or within model.

in this manuscript, we demonstrate the usability of the
proposed approach on the Wave Kernel Signature [1] as
well. In Figure 8, we show a segmentation of a noisy
robot model by the Wave Kernel Signature using a) 300
eigenpairs and b) an automatically-computed 222 eigen-
pairs chosen by our tunable adaptive selection method
(using the same ξ and min and max ns as in the
CERTH/ITI example). Note the similarity of the segmen-
tations. Because the spectral signature has converged by
222 eigenvalues, the additional eigenvalues available to
the n=300 signature do not change the segmentation
significantly. Additionally, the adaptively-tuned model
required ∼7% less run time.
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5. Summary and conclusions

Spectral shape signatures are a popular class of sim-
ilarity measures and have seen a great deal of use
and many extensions in the literature in recent years.
The number of Laplace-Beltrami eigenpairs used in
computing these signatures was an important, but not
yet well-understood, parameter. We have discussed the
limitations of fixed-number-of-eigenvalue methods for
truncating model eigensystems for use in computing
spectral shape signatures and developed a user-tunable
method for adaptively determining required numbers
of eigenpairs for different models of different shapes
and scales.

Our tunable adaptive method improves consistency
between models of different samplings, enabling greater
confidence in matching results and segmentations across
large databases of different models from different scan-
ning systems. This method can also greatly reduce com-
putational overhead, enabling online use of techniques
on systems where total computational power may be
lower or resources may be in high demand, such as in
autonomous systems (e.g. drones) or in real-time appli-
cations. Because this method is a modification to the
general method of spectral shape signatures, the benefits
obtained thereby can be combined with the advantages
of any present or forthcoming published enhancements
to spectral signature technology.

Once spectral signatures have been generated for a
particular database, integrating additional scans may
be made even more efficient by developing a func-
tion mapper to guess the cutoff number of eigenvalues
for the new scan from information about the models
which are already in the database. Such a function
mapper could be a neural network or regression that
develops an estimate of eigenvalue cutoff number n
from implicit and explicit sizes of models already ana-
lyzed. This could enable closer-to-realtime scan anal-
ysis by reducing computational overhead for mesh or
point cloud models. Another recent paper proposed a
method for understanding which functions (e.g., sig-
nature values) are most discriminative for a shape
[3]. Applying their methods to co-segment a database
with signature values computed with enhanced inter-
model consistency by our tunable modification may pro-
duce a high quality database segmentation quickly and
consistently.

Acknowledgements

This work was supported in part by the National Science
Foundation grants CMMI-1462759, IIS-1526249, and CMMI-
1635103. Reed Williams was also partially supported through
the General Electric Fellowship for Innovation.

ORCID

Reed M. Williams http://orcid.org/0000-0002-8192-6053

References

[1] Aubry, M.; Schlickewei, U.; Cremers, D.: The Wave
Kernel Signature: A Quantum Mechanical Approach
To Shape Analysis, 2011 IEEE International Confer-
ence on Computer Vision Workshops, 2011, 1626–1633.
https://doi.org/10.1109/iccvw.2011.6130444

[2] Belkin, M.; Sun, J.; Wang, Y.: Discrete Laplace opera-
tor on meshed surfaces, Proceedings of the 24th Annual
Symposium onComputational Geometry, 2008, 278–287.
https://doi.org/10.1145/1377676.1377725

[3] Biasotti, S.; Spagnuolo, M.; Falcidieno, B.: Grouping real
functions defined on 3D surfaces, Computers & Graph-
ics, 37(6), 2013, 608–619. https://doi.org/10.1016/j.cag.
2013.05.007.

[4] Bronstein, A.M.; Bronstein, M.M.; Guibas, L.J.; Ovs-
janikov, M.: Shape google: Geometric words and expres-
sions for invariant shape retrieval, ACM Transactions
on Graphics (TOG), 30(1), 2011, 1–20. https://doi.org/
10.1145/1899404.1899405

[5] A. Doumanoglou, S. Asteriadis, D. Alexiadis, D. Zarpalas,
P. Daras, “A Dataset of Kinect-based 3D scans”, 11th
IEEE IVMSP Workshop: 3D Image/Video Technologies
and Applications, Yonsei University, Seoul, Korea, 2013.

[6] Evans, L.C.: Partial Differential Equations, American
Mathematical Society, Providence, RI, 1998.

[7] Hsu, E.P.: Stochastic Analysis on Manifolds, American
Mathematical Society, Graduate Studies in Mathematics
series (Book 38), Providence, RI, 2002.

[8] Marini, S.; Patané, G.; Spagnuolo,M.; Falcidieno, B.: Spec-
tral feature selection for shape characterization and classi-
fication, The Visual Computer, 27(11), 2011, 1005–1019.

[9] Reuter, M.; Wolter, F.; Peinecke, N.: Laplace-Beltrami
spectra as ‘Shape-DNA’ of surfaces and solids, Computer-
Aided Design, 38, 2006, 342–366. https://doi.org/
10.1016/j.cad.2005.10.011

[10] Rustamov, R.M.: Laplace-Beltrami eigenfunctions for
deformation invariant shape representation, Proceed-
ings of the fifth Eurographics symposium on Geome-
try processing, Eurographics Association, 2007, 225–233.
https://doi.org/10.1109/34.765655

[11] Sun, J.; Ovsjanikov,M.; Guibas, L.: A concise and provably
informative multi-scale signature based on heat diffu-
sion, Computer Graphics Forum, 28, 2009, 1383–1392.
https://doi.org/10.1111/j.1467-8659.2009.01515

[12] Wardetzky, M.; Mathur, S.; Kalberer, F.; Grinspun, E.: Dis-
crete Laplace Operators: No Free Lunch, Symposium on
Geometry Processing, 2007, 33–37.

[13] Williams, R.M.; Ilies, H.T.: Towards multi-scale heat ker-
nel signatures for point cloud models of engineering arti-
facts, Workshop on Algebraic Topology and Machine
Learning at Neural Information Processing Symposium,
2012.

[14] Williams, R.M.; Ilies, H.T.: Practical Shape Analysis and
Segmentation Methods for Point Cloud Models. Techni-
cal report, preprint, 2016.

[15] The CERTH/ITI dataset of Kinect-based 3D scans.
http://vcl.iti.gr/3d-scans/

http://orcid.org/0000-0002-8192-6053
https://doi.org/10.1109/iccvw.2011.6130444
https://doi.org/10.1145/1377676.1377725
https://doi.org/10.1016/j.cag.2013.05.007
https://doi.org/10.1016/j.cag.2013.05.007
https://doi.org/10.1145/1899404.1899405
https://doi.org/10.1145/1899404.1899405
https://doi.org/10.1016/j.cad.2005.10.011
https://doi.org/10.1016/j.cad.2005.10.011
https://doi.org/10.1109/34.765655
https://doi.org/10.1111/j.1467-8659.2009.01515
http://vcl.iti.gr/3d-scans/

	1. Introduction
	1.1. Spectral signatures
	1.2. The heat kernel signature
	1.3. Laplace-beltrami estimate
	1.4. A fixed number of eigenpairs
	1.5. In this paper

	2. Understanding the impact of eigenpair cutoff
	2.1. Limitations of fixed-number methods

	3. Tunable model-adaptive selection method
	3.1. Improved consistency, reduced effort
	3.2. Tuning for speed vs. precision

	4. Further demonstration
	4.1. Wave kernel signature

	5. Summary and conclusions
	Acknowledgements
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [609.704 794.013]
>> setpagedevice


