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Using data indexing for remote visualization of point cloud data

Paul Rosen © and Les A. Piegl

University of South Florida, USA

ABSTRACT

We present a new approach for accessing and visualizing point-based data in CAD applications.
Instead of developing a traditional database around spatial data structures, our approach aug-
ments a data indexing engine to enable quick access to data. The primary advantage of an indexing
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engine is flexibility. The approach enables both range queries for accessing data spatially and res-
olution queries to access data at appropriate spatial resolutions. Our approach is robust to very
large datasets, naturally supporting remote visualization and near-real-time input data streams. We
demonstrate our approach on 2 large datasets, one 45M points, the other 53M points.

1. Introduction

For decades, point cloud-based datasets have been criti-
cal to a number of research communities, including com-
puter graphics, robotics, and CAD. In many ways, points
better represent many data sources than do triangula-
tions. Take a laser scan for example. The laser collects
a series of points that represent a surface. Then, algo-
rithms, such as triangulations, NURBS, etc., take over
to produce surfaces. These surfaces are, at their core,
assumptions about shape, continuity, and connectedness
that may or may not be valid. When the original points
are instead visualized, the human perceptual machinery
can reconstruct those surfaces instead. Point clouds also
have the advantage of being more naturally representable
at multiple resolutions. For example, points can be culled
from clusters to achieve a desired density. With polygonal
meshes, many options exist for simplification [17], but
they all optimize on different conditions, none of which
is clearly best. Parameterized surfaces can extract data at
any resolution, but choosing and tuning the sampling rate
can be challenging.

Visualizing points on remote devices remains some-
what problematic to this day. Very large datasets have
the problem that they needing to be transmitted, have
any data structures built locally, and be rendered on the
local machine. With advances in low-power computing,
such as tablets, the trend is to compute as little as possi-
ble locally and rely on cloud-based systems to store and
process large data. For point-based data this approach is
highly relevant. Point of fact, the amount of data to draw

should be directly linked to the resolution of the output
display. There is no value in rendering billions of points,
when the display only has 2 million pixels.

There are further challenges to visualizing points on
remote devices for in situ applications where, for exam-
ple, a mechanical part is being laser scanned. As new
points are scanned, they should be added to the database
and become visible in near-real-time. While not a techni-
cally impossible task, it can be practically challenging to
implement in an efficient manner without the assistance
of a database designed for just such a purpose.

To address these challenges, we have built a cloud-
based system that uses a data indexing engine to provide
remote access to point cloud data. The advantages of
the system are 3-fold. First, the system seamlessly deliv-
ers point-based data at a variety of resolutions over an
open API. Secondly, the system is able to import new
data, build data structures, and make it available to clients
in near-real-time. Finally, the system provides flexibil-
ity to heterogeneous data types. For example, each point
may have color, texture value, normal direction, etc. This
can be achieved without any modification to the system
beyond the rendering itself.

2. Background and prior work

For context to our approach, we discuss standard
approaches of using spatial data structures for visualizing
point cloud data. We also discuss how indexing engines
are currently being used in data analysis.
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2.1. Spatial data structures

Traditionally, storing and accessing point-based data has
been the job of spatial data structures, most commonly
including Octrees [13], Binary Space Partitions (BSP) [9],
Kd-Trees [4], Bounded Volume Hierarchies (BVH) [14],
etc. Though each of these techniques has a different take
on the problem, they generally approach the problem
the same way. First, a tree, or hierarchy, is created that
recursively subdivides the data into sets that are spatially
similar (i.e. close in Euclidean space). Then, in applica-
tions such as ours, queries can efficiently access objects
within subregions of space. Other operations can be per-
formed, such as nearest neighbor finding, but these tasks
often require additional data be stored or complicated
algorithms be developed. For example, the data struc-
tures have no sense of spatial resolution making a query
of that nature challenging to develop efficiently. The dif-
ference between the individual approaches (Octree, BSP,
etc.) generally lies in how the algorithms subdivide data.

2.2. Indexing engines

The traditional use of indexing engines is for fast searches
among large document collections. For example, when
you use your hard drive file search functionality, you
search for a paper on your favorite publisher’s website,
or you perform a Google search, you are using an index-
ing engine. Given a set of search criteria, the indexer
returns a set of documents. This is an ideal platform for
unstructured data, such as a document collection.
Increasingly however, indexing engines are supporting
mixing of both structured and unstructured data in docu-
ment queries. This seemingly minor change opens up the
possibility of using these engines in more data intensive
applications, including spatial data analysis.

2.2.1. Indexing engines in spatial data analysis

The traditional approach of accessing point data relies on
flat file storage. In the naive case this makes queries slow.
LAStools [11] rely on a data reorganization scheme to
make spatial queries of a flat point-based data files fast.
Such systems can scale to billions of points but require
direct access to the data.

On the other hand, the idea of using indexing engines
in spatial data analysis is a relatively new one. The
premise, first introduced by the ColumbuScout [10] and
its successor, STORM [7] is simple. By indexing data,
instead of storing it in rigid data structures, we can build a
system that enables fast queries on data of mixed-schema
(mixed structure). The ultimate goal of the approach is to
create “Google for data”. The architecture for STORM is a
tight one in which a powerful indexing engine is built that

supports a wide variety of queries related to data analy-
sis. Then, a lightweight frontend is applied. The crux of
STORM is that the power lies solely in the indexer itself
making it rigid and its functionality difficult to extend.

On the other hand, Klareco [16] (Fig. 1) is a decentral-
ized data indexing system. Klareco has a 4-layer architec-
ture that we will reference throughout the remainder of
this paper.

e At the bottom, the parser layer provides standard or,
as in our case, specialized functions for parsing data
sources and inserting them into the indexer.

e Next, Klareco uses an off the shelf indexer, Apache
Lucene [1], to store and query documents (i.e.
records). Apache SOLR [2] provides a web-based
interface to Lucene for both input and output of data.

e Third, microservices are hosted on Apache Tomcat
[3] webservers. Those microservices are lightweight
user-specified algorithms that provide the intelligence
for the architecture. 2-way communication between
the microservices and indexer are trivial to accom-
plish. This means that not only can microservices
return results to the front-end, but the calculations
performed by the microservice can be stored in the
index for later retrieval.

e Finally, lightweight visualization clients are connected
to these components using HTTP and JSON for com-
munication.

Visualization System

Indexing Engine

Parser
Layer

)

Local Data Sources

Remote Data Sources

Figure 1. The Klareco System Architecture.
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Figure 2. Schematic of the system outlined in this paper. The regions with dotted orange lines indicate the section that describes an

element.

Each Klareco component can run on a different
machine operating over standard communication tech-
nologies. Apache SOLR and Tomcat are Java-based,
enabling execution in the vast majority of hardware and
software environments. The front-end may be written in
any language with support for HTTP- and JSON-based
communication.

3. Remote visualization of point clouds

When attempting to render point cloud data at remote
locations, a number of problems present themselves. One
assumption should be that communication and compu-
tational resources are limited (bandwidth, power, etc.).
Thus, not all of the data can be transferred, nor should
all of the data be rendered. For example, the resolution
needed by the client varies based upon their display res-
olution, as well as viewpoint of the data. Additionally,
the data may come in a variety of resolutions. Rarely
are laser scans or other point cloud data sets sampled in
a spatially uniform manner. A final important assump-
tion is that there is an extensive variety in the metadata
associated with points. This may include scalar values,
color values, a texture location, etc. To address these chal-
lenges, we built a system for visualizing point cloud data
using Klareco. The final system construction is outlined
in Fig. 2. The following sections will build the system,
piece by piece.

3.1. Supporting range queries and metadata

The system we initially built included a custom parser, the
indexer, and a visualization frontend. First, the parser’s
job was to read a file and insert the point cloud data,
along with any metadata, into the indexer. Each data
point was stored as its own “document”, which is the
Lucene equivalent of a record. The parser would insert
the positional data into specially marked fields, enabling
the range queries already built into Lucene.

Second, we built a JavaScript/WebGL-based frontend
for visualizing the data. Our frontend directly queried

the indexer. Since the indexer automatically provided
the range query capabilities, the frontend merely needs
to specify the range of the view frustum, and the
indexer returned the relevant points with all of their
metadata.

This implementation had 2 very important shortcom-
ings. First, the time to index the entire dataset was very
high. Our datasets with 45M and 53M point would take
between 24 and 48 hours to load into the indexer. Never-
theless, once indexed, queries were swift, taking at most
a few seconds to execute and transmit (depending upon
data size). The second shortcoming was the lack of sup-
port for multiresolution queries. All the points within
the specified range would be sent with a query. We first
address the former problem, indexing time.

3.2. Using kd-trees to build multi-point documents

We considered 244 hour indexing as being a significant
enough problem that we made an effort to improve the
performance. As it turns out, the time to build the index
is more significantly impacted by the number of docu-
ments in the index, instead of the size of the documents.
So, the simple solution to the problem was to insert fewer
documents by merging multiple points into a single doc-
ument. However, that brings up the important question
of how best to merge points.

Given that our primary query of interest are spatial, we
chose to use a balanced kd-tree [6] to segment points into
equally sized, spatially similar documents. The parser
would load an input file and build the kd-tree (with a
stopping condition of 256 points). Then, each leaf of the
kd-tree would be converted into a single document in the
index.

With this change, the data returned by the indexer
is conservative—a document (kd-tree leaf) is returned
whenever a single point in that leaf fit the range search
criteria. Unfortunately, this also meant that points out-
side of the range would also be returned, breaking
one of our original design goals—keeping client band-
width and computation low. However, adding a simple
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microservice, the system can be realigned to the design
criteria. The new microservice takes the documents
returned by the indexer and filters out points that do not
fit the range criteria. This is a linear time operation per
query, but only on the subset of points returned by the
indexer.

With this change, indexing time is significantly
reduced, down to 30 minutes and 45 minutes, respec-
tively, for the 2 datasets. The query performance
takes only a negligible hit (practically impossible to
measure relative to the variance in bandwidth and
latency).

3.3. Supporting multiresolution queries

Originally, support for multiresolution queries was an
important design criterion. Unfortunately, the indexer
does not explicitly support multiresolution queries. How-
ever, with modifications to the parser and microservice
and some additional metadata, the system can support
multiresolution queries.

3.3.1. Selecting points at a specific resolution
We first discuss an algorithm for taking a set of points and
selecting those which are appropriate to keep for a given
resolution.
The algorithm is as follows:
Select a resolution and create a grid based upon it
Place points, one at a time, in the grid
If their grid cell is empty, do nothing else
If there is a conflict (i.e. a point already in the
cell)
The lowest left point (by Euclidean dis-
tance) is retained
The other point is discarded

The result is a set of points that best fit the given grid res-
olution. According the the Nyquist—Shannon theorem
[15,18], these points provide enough sampling for a res-
olution half that of the grid.

From an implementation perspective, if the space
is expected to be dense, the grid can be implemented
with a multidimensional array. If the space is expected
to be sparse, a map data structure can be used. We
expected mostly sparse space, leading us to chose the
latter approach.

3.3.2. Efficiently selecting points at multiple
resolutions

We next discuss the multiresolution technique used. We

use a hierarchical gridding approach where each level of

the hierarchy has twice the resolution in each dimension

as the previous.

The algorithm is as follows:
All points are marked with their minimum possible
resolution, L =0.
Starting at the highest desired resolution (2)

Run gridding algorithm from Section 3.3.1
Retained points are kept for additional pro-
cessing
Discarded points have resolution set to
L+1 and are ignored in future processing
Repeat for L-1, until reaching L=0

The algorithm is demonstrated visually in Fig. 3. Each
point is marked with its minimum possible level in the
hierarchy, starting with 0 (orange). We begin at L=2,
a grid resolution of 22 (ie. 4x4 cells). At this reso-
lution each point occupies its own cell. Therefore, no
further action is taken. Next, proceeding to L=1, the
grid resolution is 2! (i.e. 2x2 or 2x2x2 in the case
of 3D). We now have 3 conflict cells. The points that
are closest to the lower left corner retain their cur-
rent mark. Others are marked with L+1, 2 (green) in
this case, and disregarded from further computation.
Finally, the process is completed with L=0, grid res-
olution 2°. Only 1 conflicted cell remains. The lower
left point is untouched, and all other are marked with
L+1 (ie. 1). Once all the points have been marked, the
grid no longer needs to be stored. The marked reso-
lution for each point is stored in the index as addi-
tional metadata. Then, when queried, not only can
a spatial range be specified, but also only points at
or below a desired resolution can be requested (i.e.
resolution >=3).

Assuming the initial (maximum) resolution is selected
correctly, the first iteration of the algorithm requires pro-
cessing n nodes. Each additional iteration should only
require log n of the previous.

Initial Setting Grid Resolution 22 Final Point Markings
..° O @) | b .. )
(] O ¢ _&'z @ ®
(@) ©
Grid Resolution 2 Grid Resolution 2°
. " ¢ ® . Level 0 or higher

. Level 1 or higher
. Level 2 or higher

Figure 3. Multiresolution Gridding Algorithm.



This particular algorithm gets inserted into the parser.
The specific modification to the parser is that once the
data is read, it has the gridding applied. Then, the kd-tree
is applied once to each level of the grid hierarchy.

3.4. Supporting multiple files and large or
streaming data

The algorithms as described require having all of the
data points available in order to compute the proper
kd-trees and multiresolution index. However, this does
not need to be the case. We actually assume that the
grid and kd-trees are calculated on subsets of data
points. These can be from separate files, partial files for
large data, or subsets of points streaming from multiple
sources, such as a laser scanner. In fact, our datasets of
45M and 53M point are divided into 99 and 153 files,
respectively.

The main problem with computing subsets individ-
ually is that the gridding results from each subset need
to be merged with previous results. Two possible choices
present themselves.

The first option would be re-gridding results in the
parser at load time. When considering this option, a
number of problem present, including querying the
right ranges of data, rebuilding (and possible splin-
tering) of kd-trees, and not wanting to overload the
indexer with calls to add and delete documents (as this
causes rebuilds of the index that can be expensive in
time).

The second option, which is the option we chose, is
to perform the operation at runtime or query time in a
microservice. To do this, a client will perform a query
on a range and resolution. The microservice will query
the index for data fitting those requirements. First, the
points are filtered by range, as described in Section 3.2.
The gridding algorithm described in Section 3.3.1 is then
performed on that data, but the algorithm is only run at
one resolution, the maximum resolution requested in the
query. At the desired resolution, the grid level is calcu-
lated. Points in the grid are retained and output. Conflict
cases are discarded.

If desired, the results of the new gridding can be stored
back into the index. However, this carries the same lim-
itation of rebuilding and splintering the kd-trees and
potentially overloading the index with change requests.
Furthermore, we have no method for determining global
convergence. Thus, the operation would still need to be
performed on the dataset.

All told, this operation sounds worse than it actually is,
as the operation is not that costly, given that is only lin-
ear with the number of data points returned by the initial
range and resolution query.
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3.5. Visualization front-end

We have built two visualization frontends. The first is
web-based using JavaScript and WebGL, while the other
is desktop-based, using Processing [8], a Java-based visu-
alization sketching language. The visualization frontends
are responsible for 3 tasks: rendering the data, handling
user interaction, and querying and storing data at appro-
priate resolutions. The former 2 tasks are performed
using standard techniques. The latter task requires some
special attention.

For querying and storing the data, the spatial domain
is divided into a grid. The resolution of the grid has
to balance two aspects. On the plus, higher resolution
grids give more fine grained control of resolution. On the
negative, higher resolution grids demand a greater num-
ber queries—too many simultaneous queries will cause
bottlenecks at both the client and server.

Each grid cell retrieves data at a resolution that is
most appropriate to its needs. This is determined by look-
ing at a combination of the distance to the viewpoint
and position relative to the view direction of the camera.
The closer to each a grid cell lives, the higher the reso-
lution of data it needs. As the camera moves, any grid
cells whose resolution needs changing, updates their data
accordingly. In addition, the data in each grid cell can be
updated at regular intervals to accommodate streaming
data.

Finally, it is up to the frontend to decide what to
do with metadata. For both systems, we experimented
with coloring the data based upon the metadata val-
ues. However, the images we present do not use that
feature.

4. Results

To demonstrate our system, we have applied the approach
to point cloud datasets obtained from the internet, in par-
ticular the Andreas Haus and Andreas Garten datasets
[6]. The 1.3GB and 1.6GB datasets contain 45M and 53M
point that are divided into 99 and 153 files, respectively.
After gridding and kd-tree construction, the parser cre-
ated 253k and 318k documents, respectively, for index-
ing. The indexer and microservice were run on the same
machine, a Linux PC with an Intel Core i7-3770 CPU
@ 3.40 GHz and 24 GB of RAM. The web-based fron-
tend was tested using both a MacBook Pro (early 2015
model) and Apple iPad (Gen 3). The desktop-based sys-
tem was tested using only the MacBook Pro. The server
was located on the University of South Florida campus
in Tampa, Florida. The clients where tested in residential
locations in Tampa, Florida and Salt Lake City, Utah, both
with broadband internet.
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Figure 4. Example of web-based viewing system on Andreas Garten dataset (45M data points). Left shows the data at points from select-
ing grid levels 0-7 only (48 K data points). The center shows data from grid levels 0-10 (1.1M data points). The right image shows the data
points gathered for a view dependent (red arrow) resolution selection (635 K data points).

The parser is a Java-based application that can be
run in the background. For the two datasets tested, the
parsing portion of the process took 34 minutes and 45
minutes, respectively. The majority of this time is taken
by the indexer, not the gridding or kd-tree construction,
which each take a matter of seconds.

The indexer, Apache Lucene/SOLR, is also a Java-
based application. The indexer opens a port (8983 to be
specific) as a query interface. The indexer can then be
queried using a standard web browser, specifying query
parameters using the GET protocol. Results are returned
as XML or JSON type documents.

The microservice operates under the servlet model
with Apache Tomcat hosting the servlet. Under this
model Apache Tomcat hosts a webserver on port 8985.
Then, specific URLs can be used to launch Java servlet
applications, in our case, the microservice. The microser-
vice communicates with the client in much the same
way the indexer does (using the GET protocol but
returning JSON only). In addition, microservice com-
municates with the index directly to retrieve data for
processing.

Fig. 4 shows the results of loading the Andreas Garten
dataset into the web-based viewer. Andreas Garten is
an outdoor scene containing many trees (which is what
is mostly visible in the figure) and a few small struc-
tures. This viewer renders the data as point primitives
that are colored by their location relative to some origin.
The dataset contains approximately 45M points, far more
than needed for high quality rendering. When viewing
the scene, the loading takes a few minutes, depend-
ing upon the resolution and internet speed. Updates to
the data resolutions occur as the camera moves, with
each query taking 5-20 seconds, depending upon the
data size.

Fig. 5 shows the result of loading the Andreas Haus
dataset into the desktop-based viewer. The scene is a
laser scan of the inside of a house containing more than
53M data points. The points in this case were rendered

as spheres. Three colored lights were used to help dif-
ferentiate surfaces. This camera position used approxi-
mate 6.3M points totaling 185MB. The loading time for
those data points was 124 seconds on residential broad-
band. We suspect that this performance is bandwidth
limited, as those numbers point to 1.5 MB/s (or 12 Mbps)
downstream rate.

Figure 5. Image from inside of the Andreas Haus model that
contains over 53M data points in total. Points were rendered as
spheres, with 3 lights enabled to help differentiate surfaces. About
6.3M points were queried and drawn, which totaled about 185MB
of data.

Overall, the biggest problem we ran into in both
of these cases was downstream bandwidth limits. Two
remedies for this problem present themselves. First, data
compression could be very useful. A simple solution
would be to gzip the JSON data. JSON is a text-based for-
mat (containing mostly numbers, brackets, periods, and
commas in our case), so undoubtedly, this would yield
significant improvements. Lossless floating point com-
pression [12] could also be used. Given the structure of
our points (bounded in a region at regular intervals),
high-levels of compression are likely. The second rem-
edy would be improvements in the visualization systems.



The methods currently in use for querying data are quite
naive. Approaches such as progressive detail querying
and reuse of data on successive queries could prove quite
beneficial.

5. Conclusions

We have presented a new approach for remotely visu-
alizing point clouds using an architecture based upon
an indexing engine instead of a database specifically
designed for spatial data queries. This approach has a
number of important features. First, our system is able
to support both range and resolution queries on data.
This helps keep the bandwidth and computational load
low on the client. Second, the indexing engine supports
data type flexibility. We can trivially support storage and
association of any metadata. Furthermore, we can sup-
port fast queries on that metadata without building any
additional software. Finally, our system is loosely cou-
pled. This enables dividing resources among many dif-
ferent computer systems. It would be easy to have many
machines hosting microservices or even splitting data
among multiple machines hosting indexers. The only
major disadvantage we have been able to identify with our
system is in real performance. Flexibility does not come
without a cost. The cost is that our queries sometimes
take a few seconds to complete. A custom database built
using the same algorithms presented in this paper could
return results orders of magnitude more quickly. Speed-
ing up the application could easily be achieved by adding
additional servers index and/or microservice servers into
the mix. Nevertheless, given the nature of the application,
the bottleneck in bandwidth remains a larger factor in
performance than the indexer delay.
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