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On the nesting of a contour dataset and its use in repair
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ABSTRACT
A contour dataset is a common source of data in biomedical imaging and GIS. In practice, many
contour datasets violate key assumptions: contours self-intersect or intersect other contours, which
can disrupt the performance of algorithms. We call such data dirty. Avoiding this issue, algorithms
in the literature assume clean data. This paper considers the issue of dirty datasets, in the context of
nesting.

Contours areoftennested insideother contours, and thenesting level of a contour is important, as
it affects thepositionof the insideof the shape. Thispaper analyzes thenestingof adirtydataset, then
shows how to use this nesting analysis to repair the data. A theme is the power of image space algo-
rithms in the presence of noise. Image space algorithms for polygon area and Boolean operations of
polygons are provided.
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1. Introduction

A contour dataset is a common source of data in biomed-
ical imaging and GIS. It can arise from a CT/MR scan
that models anatomy (Fig. 1) or from a topographic
map that models terrain. In practice, a contour dataset
is often imperfect, violating key assumptions. Such dirty
data causes problems downstream in working with the
dataset, and we would like to repair the data. We explore
this issue through the lens of nesting, an important prop-
erty of a contour dataset. We first show how to analyze
nesting in a dirty dataset. We then show how to use this
nesting analysis to repair the dataset.

The rest of the paper is structured as follows. The rest
of this section introduces the issue of nesting and dirty
datasets, including the importance of nesting to contour
reconstruction. Section 2 considers a naive algorithm
to compute nesting level, and how it breaks down with
dirty datasets, then gives our robust algorithm to com-
pute nesting level and nesting parent. Section 3 discusses
the image space algorithms for area that this nesting
algorithm requires, then shows how to repair a dirty
dataset using the nesting analysis and the image space
algorithms. Section 4 discusses the complexity of our
algorithm, evaluates the algorithm against a collection
of datasets, including timing and the preponderance of
nested and dirty datasets, and discusses how to encode
nesting in a dataset. We end with some conclusions and
ideas for future work.

CONTACT John K. Johnstone jkj@uab.edu

1.1. Contours and their nesting

Definition 1.1. A curve or surface is simple if it does not
self-intersect. A Jordan curve is a simple closed curve in
the plane. The interior of a Jordan curve is well defined,
by the Jordan curve theorem. A contour is a point sequence
defining a Jordan curve. A contour dataset is a point cloud
arising from the slicing of a set of simple orientable 2-
manifolds without boundary by a series of parallel planes.
It is composed of contours.

In principle, two contours C and D from the same slice
have only three possible relationships: the interiors of
C and D are disjoint, C lies completely inside D, or D
lies completely inside C (since a contour dataset is sam-
pled from simple 2-manifolds). Thus, some contours are
nested inside other contours.

Definition 1.2. The nesting level of a contour C is the
number of contours in the same slice that contain C. A
contour is nested if it has a positive nesting level. A nested
contour, say of level n, has a nesting parent: the unique con-
tour of nesting level n-1 in the same slice that contains C.
A contour dataset is nested if it contains a nested contour.

Example 1.3. Consider Fig. 2. In Fig. 2a, there is one con-
tour C of nesting level 0 and three contours of nesting level
1, all of which have C as their nesting parent. In Fig. 2b,
there are six nested contours, all of level 1. In Fig. 2c, there
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Figure 1. Contour dataset of a jaw. Nested contours are
highlighted.

are six unnested contours of level 0, many nested contours
of level 1, and three nested contours of level 2.

The nesting behaviour of a contour dataset is impor-
tant, because it defines the inside of the shape defined
by the dataset. Contours at even nesting levels represent
the shape of interest, while contours at odd nesting lev-
els represent holes in this shape. Since nesting captures
the position of the inside of a shape relative to a contour,
the nesting level of a contour dictates its treatment. For
example, during reconstruction, contours at odd nesting
levels should be connected only to other contours at odd
nesting levels.

Most interesting datasets are nested. 23 of the 29 con-
tour datasets in Barequet’s repository [1] are nested, and
9 of the 12 in Geiger’s repository [6]. Datasets with a
high percentage of nested contours are also common,
especially in biomedical datasets. In one of Barequet’s
mandible datasets, 4688 of the 5012 contours are nested.

As the nesting behaviour of a contour dataset affects
most downstream analysis of that contour dataset, it is
important to analyze nesting early in the processing of

a dataset, essentially the first analysis after reading. The
challenge, as we shall see in the next section, is to make
the nesting analysis robust to dirty datasets.

Definition 1.4. A nesting analysis of a contour dataset is
a computation of the nesting level of every contour, and the
nesting parent of every nested contour.

This paper will develop a robust algorithm for nest-
ing analysis. The complicating factor is that contours are
often dirty.

1.2. Dirty contours

A contour is clean if it is free from all types of intersec-
tion. In principle, all contours of a contour dataset are
clean, since a contour dataset is sampled from simple 2-
manifolds. However, although in theory the boundary of
a contour should not self-intersect, in practice it often
does; and although in theory two contours are either dis-
joint or one is nested entirely inside the other, in practice
this relationship may be violated slightly and the con-
tours intersect.We can view these as noisy versions of the
Platonic ideal (Fig. 3).

Definition 1.5. A contour is clean if it is simple and its
interior does not intersect any other contour’s interior. A
contour is dirty if it is not clean (not simple or its inte-
rior intersects the interior of another contour). A contour
dataset is clean (resp., dirty) if none (resp., any) of its
contours are dirty.

Dirty datasets are common. Natural sources of dirty
data are noise in image acquisition and noise in image
segmentation. For example, most of the contour datasets
we received from a major biomedical company were
dirty, much of the topographic data from the USGS
is dirty, and a slicing of the biomedical meshes from
some other research groups reveals that they are some-
times self-intersecting, indicating that they probably
arose from dirty contour datasets.

Figure 2. A single slice of a contour dataset typically contains some nested contours and some unnested contours. (a) A pelvis slice. (b)
A brain slice. (c) A skull slice.
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Figure 3. Dirty contours. (a) A non-simple contour from a jaw dataset. (b) Intersecting contours from a USGS topographic map. (c-e)
Intersecting contours from a brain dataset.

Unfortunately, the contour reconstruction literature
uniformly assumes clean contour datasets. A few exam-
ples will illustrate. Barequet and Sharir [2] assume
the contour dataset is ’a series of parallel planar
slices . . . each consisting of a collection of non-crossing,
but possibly nested, closed and simple polygonal curves’
(our emphasis) and in a later paper [3], ’a set of n con-
secutive slices . . . , each composed of closed simple con-
tours (that can be nested but otherwise not intersecting)’.
Geiger [7] assumes ’the object contours are given as a
set of straight line segments, forming one or several sim-
ple closed polygons’. Ju et. al. [8] assume ’a set of non-
intersecting curve networks’. In other words, the algo-
rithms in the contour reconstruction literature depend
on clean data for correct behaviour. Although it is likely
that all of these algorithms do some cleanup to ensure
clean datasets, none is discussed. The lack of treatment
of the issue of dirty datasets, despite their prevalence, was
the inspiration for this paper.

Themajor goal of this paper is nesting analysis, even of
dirty datasets. We will also show how this nesting analy-
sis can be used to clean up a dirty dataset. A theme of
the paper will be the success of image space algorithms
in handling dirty data.

1.3. The importance of nesting analysis

To illustrate the importance of nesting in contour
reconstruction, consider the reconstruction of two

neighbouring sections, first in an unnested dataset (Fig
4a) and then in a nested dataset (Fig. 4d) of a torus. In
both cases, one section contains a single contour and the
other section contains two contours (Fig. 4c,f). When a
contour branches to two contours C1 / C2 on the next
section, and none of the contours are nested, the cor-
rect reconstruction has the contours C1 / C2 merging
(Fig. 4c). However, when a contour branches to two con-
tours C1 / C2 on the next section, and C1 is nested
inside C2, the correct reconstruction has the singleton
contourmerging with itself (Fig. 4f). This example shows
how nesting can affect the behaviour of a reconstruction
algorithm.

Another example of the importance of nesting infor-
mation is in the popular strategy of computing contour
topology using overlap. Nesting needs to be taken into
account when computing overlap, since a contour of odd
nesting level represents a hole (its interior is empty).
For example, in Fig. 4f, the region inside the contour of
nesting level 1 is empty.

2. Nesting analysis

If datasets were always clean, the computation of nest-
ing level would be straightforward. In a clean dataset, two
contours either have no intersection or one is contained
in the other. Therefore, if a pair of contours on the same
slice overlap, the nesting level of the contour of smaller
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Figure 4. Nesting affects reconstruction. Consider an unnested dataset of a torus (a). If unnested contours C1 / C2 on section i (b) branch
to a contour D on section i+1 (c), then C1 and C2 should merge. On the other hand, consider a nested dataset of a torus, using different
slicing planes (d). If two nested contours C1 / C2 on section i branch to a contour D on section i+1 (e-f ), then D should merge with itself.

area should be incremented. This suggests an algorithm
using intersection.

initialize the nesting level of all contours to 0
compute the area of all contours
for each pair of contours C, D in the same slice,

if C intersectsD, increment the nesting level of the
contour of smaller area

However, this algorithm is brittle to the types of noise
present in dirty datasets: if two contours at the same nest-
ing level slightly overlap, they will be assigned the wrong
level. Also note that object space algorithms for intersec-
tion are difficult and are designed for simple polygons [9].
Consider another algorithm that uses point location.

initialize the nesting level of all contours to 0
for each pair of contours C, D in the same slice,

choose an arbitrary point c inside C and an arbi-
trary point d inside D

if c lies inside D, increment the nesting level of C
else if d lies inside C, increment the nesting level

of D

This algorithm is also brittle to dirty datasets: if two
contours at the same nesting level slightly overlap and
a point in the overlap is chosen as the candidate for
point location, the two contours will be assigned different

nesting levels. Another problem is the challenge of devel-
oping a robust implementation of point location [4]. If a
contour is not simple (or almost not simple), problems
may arise with point location against this contour [5].
We see that the challenge is a robust implementation of
nesting analysis in the context of dirty datasets.

Now consider our algorithm for nesting analysis,
robust to dirty datasets. Its preprocessing phase is:

for each contour C,
compute its area a(C)

for each pair of contours C, D in the same slice,
compute their area of intersection a(C,D)

followed by the nesting level phase of nesting analysis:

initialize the nesting level of all contours to 0
for each pair of contours C, D in the same slice,

if a(C,D) > .5 * min (a(C), a(D))
increment the nesting level of the smaller

contour

This algorithm uses area of overlap as the dominant
diagnostic tool: if two contours overlap bymore than half
the area of the smaller contour, they have a nesting rela-
tionship. Why half the area? To explore this constraint,
first note that there is a limit to the amount of noise that
an algorithm can withstand. If two unnested contours
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mistakenly intersect by a little bit, we can recognize this
error and correct it by pulling the contours apart so they
have no overlap. On the other hand, if a nested contour
mistakenly intersects its parent contour by a little bit, we
can recognize this error and correct it by pulling the child
inside the parent so they overlap completely. But to dis-
tinguish these two cases, wemust assume that if a contour
intersects more than half of another, it is nested within it;
while if a contour intersects less than half of another, it is
not nested within it. Otherwise, there is no way of distin-
guishing nested contours from unnested contours. This
sets the limit of mistaken overlap to half the size of the
smaller contour.

In theory, the intersection of two contours should be
either empty or the size of the smaller contour; therefore,
in practice, it is either close to 0 or close to the size of
the smaller contour. Since we are comparing to half the
area of the smaller contour, this algorithm yields accurate
results even in the presence of significant noise (overlap
of up to half the area of the smaller contour, violations of
simplicity). Fortunately, the errors in a dirty dataset are
usually limited: a contour will be close to simple, or two
contours will overlap slightly.

The algorithm above is robust to both types of noise
in a dirty contour: two contours at the same nesting
level may overlap slightly, and a child need not fully lie
inside its parent. More subtly, a contour need not be sim-
ple, as long as we can compute its area. Another way in
which the algorithm is robust to noise is that comput-
ing the exact area of a contour is not important, only its
relative size. The precise intersection of two contours is
also not important, just its relative size. Therefore, both
calculations are robust to noise.

An image space algorithm for area of a polygon is used,
one that is robust to non-simple polygons (see the next
section). The intersection of two polygons can also be
computed in image space, again amore robust and simple
computation.

A robust algorithm to compute nesting parent is as
follows (the nesting parent phase of nesting analysis):

compute the nesting level of all contours
for each contour C of positive nesting level n

for all contours D in C’s slice of nesting level n-1
if a(C,D) > .5 * min(a(C), a(D))

D is the nesting parent of C

That is, the nesting parent D of a contour C of level
n>0 is the unique contour in C’s slice of nesting level n-
1 that intersects C nontrivially. If there are two or more
contours with this nontrivial overlap with C, the contour
dataset is too dirty for our algorithm. This can be used
to evaluate when a dataset cannot be handled, so that

the algorithm fails robustly rather than computing a false
answer. Notice again that exact areas are not important,
and that area must be computed robustly in the presence
of dirty contours.

We next look at how image space algorithms can be of
help in implementing this algorithm, both for robustness
and simplicity.

3. Image space algorithms and their use in
repair

This section first develops robust image space algorithms
to compute the area of a polygon and the area of inter-
section of two polygons, even if the polygons are dirty.
Not only are these algorithms fundamental to the nest-
ing analysis, but they can also be used for the repair of
a dataset, which is addressed at the end of this section.
Since exact areas are not needed for nesting analysis, only
relative areas, it is fine that these areas are measured in
pixels in image space. However, if exact areas are wanted,
they can be computed easily: if the scaling factor used in
mapping to the unit cube (see the next paragraph) is s,
multiply the calculated areas by s2.

3.1. Image space algorithms for area

First a preprocessing step. In these algorithms, the poly-
gon or pair of polygons must be entirely visible to the
camera, and orthogonal to the camera so that rendering
does not change its area. To accomplish this, the scene
is rendered by a camera that looks down the z-axis at
the unit cube, using orthographic projection. The con-
tour dataset is rotated so that the normal of the contour
planes agrees with the z-axis, and translated/scaled so
that the entire contour dataset fits in the unit cube. This
guarantees that each contour fits in the frame buffer and
its area is not warped. Also note that, since our analy-
sis of nesting requires the frame buffer, it should be done
independently of downstream analysis.

The area of a polygon is computed in image space, as
follows: clear the color buffer to black, fill the polygon in
red, and count the red pixels. The area of the intersection
of two polygons is computed in image space by clearing
the color buffer to black, filling the first polygon in red,
filling the second polygon in blue using addition blend-
ing, and counting the purple pixels (Fig. 5a). To count
purple pixels, read the pixels with any red component
(say using OpenGL’s glReadPixels), read the pixels with
any blue component, and count the pixels that are both
red and blue. A polygon is filled in image space, as fol-
lows. The filling algorithm is provided for completeness,
as filling a polygon is well understood. The color buffer
is cleared and disabled, the stencil buffer is cleared and
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enabled, and the draw mode is set to fill. The polygon P
is drawn into the stencil as a triangle fan (as if it were
convex), inverting the stencil with each fragment render.
Pixels inside the polygon are associatedwith pixels whose
lowest order stencil bit is 1, since pixels inside the poly-
gon are covered by an odd number of triangles and so
have an odd number in the stencil. The color buffer is
enabled and the polygon P is redrawn (again as if it were
convex) but onlywhere the stencil is odd. The color buffer
now contains the filled polygon. Although this algorithm
is designed for a simple polygon, it fails gracefully if the
polygon is almost simple (Fig. 5b,c).

Figure 5. Filling. (a) Boolean operations on two polygonsmay be
computed in image space by filling one polygon in red and the
other polygon in blue: the intersection is now purple, the two dif-
ferences are redandblue, and theunion is red, blueorpurple. (b-c)
The filling of a nonsimple polygon repairs it.

Note that our construction for the intersection of two
polygons actually computes all Boolean operations of the
polygons, not just intersection (Fig. 5a). The intersection
is purple, the union is red, blue or purple, one difference is
red, and the other difference is blue. This availability of all
Boolean operationswill be useful during repair. Also note
that these image space algorithms are oblivious to con-
tour orientation (unlike some object space algorithms),
which is a good thing since orientation may be incorrect
in dirty data.

3.2. The repair of intersecting contour pairs

The nesting analysis of a dataset that we have just intro-
duced (Sections 2 and 3.1), which works even on dirty
datasets, may be turned around and used to guide a
repair of the dataset into a clean dataset (Defn. 1.5). It
turns out that the repair may be implemented using the
same image space algorithms developed in Section 3.1.
Although repair could be approached in other ways, the
novelty of the proposed algorithm is that the repair is
incorporated into the same infrastructure as the nest-
ing analysis, using the same image space algorithms for
area and intersection and using the nesting analysis to
diagnose and guide the repair.

Consider two intersecting contours (see Fig. 3e). A
repair strategy is to remove the intersection by pulling

the contours apart. Since repair must preserve the nest-
ing levels, nesting gives a hint to the direction of motion
of the contours during repair and which contours should
change. If two contours of the same nesting level inter-
sect (Fig. 3d), they should be contracted away from each
other, and each move towards its inside. But if a child,
say of level i+1, intersects its parent, say of level i (Fig.
3e), the child should be contracted away from the par-
ent, towards the child’s inside, but the parent should not
contract towards its inside, since this motion of the par-
ent would only increase the intersection with the child.
The parent could move outwards, but we decide to keep
it stationary.

An interesting case to consider is the case when three
or more contours intersect, all at different levels. Con-
sider a contour C of level 2 inside a contour B of level
1, both of which intersect their parent (grandparent)
A of level 0. Our principle will be to repair two con-
tours of neighbouring levels at a time, moving down
through the levels. In other words, the contour of level
1 first moves inside the contour of level 0. Then the
contour of level 2 moves within the contour of level
1. Note that this also repairs its intersection with the
contour of level 0. This restriction to neighbouring lev-
els limits the number of contour pairs that need to be
considered.

Now that we know which contours to change, con-
sider how to repair the contour. There aremany strategies
to consider: translation of the entire contour, motion
of a local subset of points near the overlap, or removal
of the intersection from both contours. We use the last
option: simply removing the violating intersection, since
the other repair options can have a ripple effect and create
other violating intersections.

Consider two intersecting contours c1 and c2 of nest-
ing levels n1 and n2. Since we only repair contours at the
same level or neighbouring levels, we may assume that
n1 = n2 (same level) or n1 = n2 + 1 (c1is nested inside
c2). If n1 = n2, c1 is set to c1 − c2 and c2 is set to c2 − c1,
both ofwhich remove the intersection. Recall that the dif-
ference of two contours can be computed using our image
space algorithm (Fig. 5a). The image of the difference
c1 − c2 or c2 − c1 can be converted into a polygon by trac-
ing its boundary (we suggest the use of the ’findContours’
operator in OpenCV). Now consider the other case. If
n1 = n2 + 1, c1 is set to c1 ∩ c2 (moving the child c1
inside the parent c2). As with the n1 = n2 case, the image
of the intersection c1 ∩ c2 is converted into a polygon by
tracing its boundary. Finally, we must lift the repaired
2D contours into 3-space, by giving them a z-coordinate:
the ratio of the perimeter of the original contour to the
perimeter of the new image space contour gives the scal-
ing, which is used to reset the original distance between
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sections, which defines the z-coordinate. In conclusion,
we have the following repair algorithm.

for each slice
for each nesting level i in this slice

for each pair of intersecting contours c1, c2 of
level i
c1 is replaced by c1 − c2 and c2 is

replaced by c2 − c1
for each pair of intersecting contours c1 of

level i+1 and c2 of level i
c1 is replaced by c1 ∩ c2

Note that the intersecting contours were already detected
during the preprocessing phase of nesting analysis
(Section 2): they are the contour pairswhose area of inter-
section is positive. Finally, we observe that if a single dirty
contour is discovered, the entire dataset is replaced, mov-
ing it to image space: since one of the contours must be
replaced by its image space version, all must be replaced
for consistency. Note that this makes repair an expensive
operation.

3.3. The repair of a nonsimple contour

An image space algorithm can also be used to repair non-
simple contours. When a nonsimple polygon is filled in
image space, the resulting shape has a simple bound-
ary (Fig. 5b-c). Therefore, a nonsimple contour can be
repaired by replacing it by its boundary when it is filled
in image space.

We end this discussion of repair by noting its weak-
nesses. We have already noted its expense. Since image
space is used, the speed of the repair depends on the qual-
ity of the GPU, and the quality of the repair is bounded by
the image space resolution. For example, very small con-
tours can be lost during repair in huge datasets. Accuracy
could be improved by dividing the dataset into subsets,
effectively increasing the resolution. Another weakness is
that there is a limit to the size of error that can be cor-
rected. For example, if a contour’s topology is changed
by its self-intersection (say adding a hole), this mistake
in topology cannot be repaired by our algorithm. Fortu-
nately, most segmentation errors are small and local in
biomedical datasets. Another approach is to avoid repair
by developing algorithms that are robust to imperfect
data, like our nesting analysis.

4. Results and validation

We now report some results, based on our C++ imple-
mentation of these algorithms. We concentrate on nest-
ing analysis, since that is the main result of this paper.

First consider the complexity of our nesting analysis
(Section 2). Let ns be the number of contours in slice s, ca
be the cost of a polygon area computation, and ci be the
cost of an intersection area computation. Since a nesting
analysis requires computation of the area of all contours
that lie in slices that contain more than one contour, and
the area of intersection of all contour pairs that lie in the
same slice, the cost of the nesting analysis of a contour
dataset is: ∑

s,ns≥2
ns ∗ ca +

(
ns
2

)
∗ ci

Of the 52 contour datasets we analyzed, 38 (73%) are
nested, more than 10% of the contours are nested in over
half of the datasets (29), 27 datasets have more than 10
nested contours, 17 (33%) have more than 100, and 7
datasets (13%) have more than 1000 nested contours.
Somedatasets have a huge number of nested contours: for
example, a mandible dataset from Barequet’s repository
has 5012 contours, 4657 of which are nested. In short,
contour datasets are usually nested and some datasets
are very nested. Fig. 6 shows examples of nesting as
computed by our code.

The median time required for a nesting analysis is 9.5
seconds. The mean time for a nesting analysis is 1.5 sec-
onds for datasetswith up to 100 contours, and 9.5 seconds
for datasets up to 1000 contours. Since nesting analy-
sis is inherently quadratic, it can be expensive for huge
datasets: an extreme case would be the 5012 contours of
the mandible dataset, which required almost 15 minutes.
Since this is an image space algorithm, the limiting factor
is the quality of the GPU (our results are based on a 4 year
old NVIDIA GeForce GTX 675MX).

26 of the 52 datasets are dirty: 24 datasets (46%) have
contours that are not simple, and 7 datasets (13%) have
intersecting contours. An extreme case is a kidney dataset
with 4160 contours, 1472 of which violate the simplic-
ity constraint; and a brain dataset with 44 contours, 25 of
which intersect. The median time for a cleanliness analy-
sis (finding dirty contours) is 2.1 seconds. Huge datasets
are again expensive, because of the quadratic nature of
testing for intersections, which is done in image space.
The 5012 contours of a mandible dataset took 8.3 min-
utes. As we have noted, repair of a dirty dataset is also
expensive: for example, repair of a typical dataset took
over 8 minutes. Fig. 7 shows an example of the repair of
a brain dataset. Fortunately, nesting and cleanliness anal-
ysis are preprocessing steps that can be parallelized and
decoupled from later analysis.

The nesting level and nesting parent can easily be
encoded in a contour dataset. In our format, a contour
of nesting level 0 is recorded as ’C < indices of points
in contour> ’, while a contour of positive nesting level n
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Figure 6. (a) The nesting of a spine dataset: red contours are nested. (b) The nesting of a skull dataset, as computed by our implemen-
tation, showing one section colour coded by nesting level.

Figure 7. Intersecting contours (left), and zoomed in on one of the intersecting regions (top right). The repaired contours, as computed
by our implementation, are shown on bottom right. At the small scale of this repair, note the pixelation of the contours due to the image
space nature of the repair.

with nesting parent p is recorded as ’CN n p < indices of
points in contour> ’.

Once nesting has been analyzed, contours should be
oriented consistently with their nesting level: contours of
even nesting level should have counterclockwise orien-
tation, while contours of odd nesting level should have
clockwise orientation. The inside of the shape is now
consistently to the left, and has been encoded into the
contour dataset.

5. Conclusions and future work

A robust algorithm to analyze the nesting of a contour
dataset has been developed, even if the dataset is dirty.
Since noise in data is common, it is important to develop

algorithms that handle noise.Most nontrivial datasets are
nested and knowledge of nesting is important for their
reconstruction. A lesson learned is that an analysis of
nesting benefits from the use of area rather than point
location, and image space rather than object space. Area
in image space is an analog computation, forgiving of
error. Even though the use of image space algorithms
was motivated by the need for robustness, these algo-
rithms are also simpler to implement than their object
space counterparts. We conclude that, by using compo-
nents that fail gracefully on dirty datasets, embedded in
an algorithm that only requires approximate answers, a
perfect analysis of nesting is possible even for an imper-
fect dirty dataset. The nesting analysis can then be used
to repair the dataset.
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In future, we want to use our knowledge of nesting
directly in contour reconstruction.We also want to apply
our nesting analysis to computation of the topology of a
contour dataset (how contours connect between differ-
ent sections): nesting is an important clue since nesting
encodes holes. Finally, we want to explore the interac-
tion between the nesting of contours within a slice and
the branching of contours between slices, which exhibit
some duality.
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