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ABSTRACT
Presented in this paper is an approach to construct a C2-continuous surface for a mesh of arbi-
trary topology. The construction process is subdivision surface based, with modification performed
on extra-ordinary patches to ensure C2-continuity of the resulting surface. Implementation is easy
because modification is patch-based. The resulting surface has an explicit expression of the form
WMG for each extra-ordinary patch where W is a parameter vector, M is a constant matrix and G is
the patch-wise control point vector. Therefore, computing derivatives, normals and curvatures for
points in the domain of the given mesh is very easy and, consequently, the resulting surface is suit-
able for operations such as shape analysis, shape optimization, surface energyminimization etc. The
construction process includes constraints so that the shape of the resulting C2 surface is very simi-
lar to the surface generated by subdivision. More importantly, the resulting C2 surface satisfies the
convex hull property.
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1. Introduction

It has been a long desire and a long effort of the computer
graphics and geometric design community to have a nice
approach to construct smooth surfaces from meshes of
arbitrary topology. A nice approach should satisfy the
following requirements:

• simple: no linear or non-linear system needs to be
solved,

• local: changes to a control mesh only affect the result-
ing surface locally,

• smooth: the resulting surface is C2 everywhere, includ-
ing at any extra-ordinary points,

• convex: the resulting surface satisfies the convex hull
property,

• explicit: the resulting surface has an explicit expres-
sion of the form WMG for each patch, where W is a
parameter vector, M is a constant matrix and G is the
control point vector, so that surface evaluation, and
computation of the first and second derivatives, nor-
mal and curvature at any point can be easily done from
the simple representation.

When the degree (valence) of each vertex of the given
mesh is 4, the algorithm for generating tensor product
B-spline surfaces is such a nice approach. However, for
meshes not in this category, as far as we know, there is no
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such an approach reported in the literature yet, although
there are approaches that satisfy almost all of the above
requirements [19, 21, 26, 28, 12, 27, 16]. In this paper
we propose a new smooth surface construction technique
that satisfies all the above requirements. The concept of
the new approach is similar to the one presented in Levin’s
paper [12], that is, each extra-ordinary patch in a subdivi-
sion surface is replaced with aC2 surface patch generated
by blending two C2 surface patches together. Both the
new approach and Levin’s approach generate a C2 surface
that is similar to the surface generated by Catmull-Clark
subdivision. Themain difference is that the new approach
does not need to solve any equation in the construction
process, while Levin’s approach needs to solve a linear
least square equation for each extra-ordinary patch. Sec-
ond, our C2 surface is constructed patch by patch, it does
not require a global parametrization around an extra-
ordinary point. Therefore the new approach is local and
easy to implement. Third, the resulting surfaces produced
by Levin’s approachmay not satisfy the convex hull prop-
erty, which is a must-have property in many graphics
and geometric design applications. The new approach
guarantees the resulting surface is bounded by its convex
hull. Finally, the new approach can represent a result-
ing surface with a simple matrix form WMG, where W
is a parameter vector, M is a constant matrix and G is
the control point vector. With such an explicit matrix
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representation, one can easily find the location, partial
derivatives, normal vector, and curvature for any point
in the domain of the given mesh, including an extra-
ordinary point.

2. Previous work

The topic of smooth surface construction has been
studied extensively [11, 24, 15, 6, 22, 27, 16, 8, 2, 9,
17, 18]. Many smooth surface construction methods
have been proposed for meshes of arbitrary topology.
Basically these methods can be divided into two cat-
egories: piecewise polynomial schemes [3, 4, 20] and
non-polynomial schemes [26, 14]. Themost famous type
among the piecewise polynomial schemes is the subdi-
vision schemes [23, 1, 20]. In the last decade, subdi-
vision surfaces have become popular in graphics, geo-
metric modeling and computer animation [4] because
of their relatively high visual quality, numerical stabil-
ity, simplicity in coding and, most importantly, their
capability in modeling any complex shape with only
one surface [25]. They are widely used for represent-
ing models of irregular topology. However, most of
the general subdivision schemes suffer from irregulari-
ties at the extra-ordinary points. For example, although
Catmull-Clark surfaces are C2-continuous almost every-
where, they are only C1-continuous at the extra-ordinary
points.

Some techniques have been reported to improve the
smoothness of a subdivision surface at extra-ordinary
points [24], where the number of incident edges is not
equal to 4. In [19], an algorithm is designed to generateC2

surface everywhere. But the curvature at an extraordinary
point is forced to be zero, resulting in a flat-spot. TURBS
presented in [21] constructs Ck continuous surfaces and
in [26],C∞ surfaces can be constructed by blending poly-
nomial patches with exponentials. Box spline is adapted
to form C2 surfaces on an infinite mesh with a sin-
gle extra-ordinary point [28]. To directly improve the
limit surface, Levin [12] perturbed Catmull-Clark sur-
faces using polynomial blending functions between local
polynomial patches; Zorin [27] similarly perturbed Loop
subdivision surfaces to be C2 using a blending function
that is itself a subdivision surface.

There are also other algorithms reported to improve
smoothness by directly converting meshes to splines. For
example, free-form splines [19, 16] are used to build
Ck surfaces. In [15, 13] curvature continuous surfaces
are built from quad meshes using bi-degree 7 patches,
setting extra parameters by minimizing deviation from
bi-degree 3 patches. In [10, 7] guided subdivision is intro-
duced, which is capable of constructing Ck surfaces.

In general, non-polynomial schemes can yield C2 or
even smoother surfaces. For example, the approach pre-
sented in [12] can generate everywhere C2 smooth sur-
face, but it does not satisfy the convex hull property.
Recently, a polar subdivision technique [16, 8] has been
proposed. This new subdivision technique can generate
smooth surfaces that are curvature continuous with good
curvature distribution near extra-ordinary points. But
this technique may only be applied to meshes with polar
configurations.

3. Basic idea

The basic idea of our approach is that for every patch Pi
around an extra-ordinary vertex V of degree n, 1 ≤ i ≤
n, we construct twoC2-continuous patches Si and Ti (See
Figure 1) in a way such that

• Si is C2-continuously connected with Si−1 and Si+1,
except at V∞, where it is C0,

• Si is connected to Pi atCi withC2-continuity, whereCi
is the intersection curve of Si, Ti and Pi,

• Ti is C2-continuously connected with Ti−1 and Ti+1,
• all Ti’s are C2-continuously connected at the extra-

ordinary point V∞,
• Ti is connected to Pi at Ci with C0-continuity.

Note that if Si and Ti are constructed this way, then a sur-
face obtained by linearly blending Si and Ti together is
C2-continuous everywhere. The key is how to construct
Si and Ti, for 1 ≤ i ≤ n.

4. Construction of Si

For a givenmesh, we assume that all the faces are quadri-
laterals and all the extra-ordinary vertices are separated
by at least two faces. If it is not the case, simply perform
(at most) two Catmull-Clark subdivisions to reach such a
status. We consider all the patches Pi around an extra-
ordinary vertex V of valance n, 1 ≤ i ≤ n. It is well
known that Pi depends on its surrounding 2n+ 8 vertices
only [24]. See Figure 2(a) for notation of these vertices.
One can split Pi into four pieces (See Figure 2(b)) by per-
forming one subdivision on Pi. Three of these four pieces
can be represented explicitly as follows.

Let G1 = [V,E1,···,En,F1,···,Fn,I1,···,I7]T. Vertices for
Gi can be identified similarly from the notation given in
Figure 2(a). Let

W(u, v) = [1, u, v, u2, uv, v2, u3, u2v, uv2, v3,

u3v, u2v2, uv3, u3v2, u2v3, u3v3]. (1)
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Figure 1. Basic idea. (a) Requirements for Si . (b) Requirements for Ti .

Figure 2. Notationof vertices aroundanextra-ordinary vertex. (a) Extraordinary pointV. (b) layout of vertices aroundand its neighboring
vertices. V after one subdivision.

Then Pi can be defined as follows.

Pi(u, v)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

something we do not need, [0, 1/2]
×[0, 1/2]

W(2u − 1, 2v)M4K1AGi, [1/2, 1]
×[0, 1/2]

W(2u − 1, 2v − 1)M4K2AGi, [1/2, 1]
×[1/2, 1]

W(2u, 2v − 1)M4K3AGi, [0, 1/2]
×[1/2, 1]

(2)

where M4 is the B-spline tensor matrix of size 16 ×
16, K1,K2,K3 are constant picking matrices of size 16 ×

24, each of which picks 16 proper vertices from the
mesh if one subdivision is performed on patch Pi (See
Figure 2(b)). Matrix A is the extended Catmull-Clark
subdivision matrix [5] which is of size 24 × (2n + 8).

Now define Ci(t) = Pi(cost,sint), t ∈ [0,π /2]. Let
Li(r,t) = Pi(r cost,rsint). Then

Lri (1, t) = ∂Li(r, t)
∂r

|r=1, Lrri (1, t) = ∂2Li(r, t)
∂r2

|r=1

are the first and second derivatives of Pi at Ci(t) with
respect to r, respectively. Denote the limit point of V by
V∞. It is well known [24] that

V∞ = 1
n(n + 5)

(
n2V + 4

∑
Ei +

∑
Fi

)
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Let R = [1,r,r2,r3], then we can construct a Bézier
curve as follows such that it has the same first and second
derivatives at Ci(t) as those of Pi at Ci(t).

Si(r, t) = RMb[V∞, Li(1, t) − 2
3
Lri (1, t)

+ 1
6
Lrri (1, t), Li(1, t) − 1

3
Lri (1, t), Li(1, t)]

T

(3)

where 0 ≤ r ≤ 1, 0 ≤ t ≤ π /2 and Mb is the Bézier
matrix.

FromEq. (2) and the definition of Li(r,t), we know that

Lri(1, t) = costPiu(cost, sint)

+ sintPiv(cost, sint), and

Lrri(1, t) = cos2tPiuu(cost, sint) + sin2tPiuv

× (cost, sint) + sin2tPivv(cost, sint),

where Piu, Piv , Piuu, Piuv and Pivv are the first and second
partial derivatives of Pi (See Eq.(2)). We can see that Si is
a linear combination of Gi with parameters t, cost and
sint. Hence Si can be represented in matrix form. Based
on Eq. (1), we define Wt = W(cost,sint) and W̃(r,t) =
[Wt,rWt,r2Wt,r3Wt]. If we plug Li, Lri and Lirr into Eq.
(3) and fully expand the formula, we get a matrix form
representation for Si as follows.

Si(r, t) = W̃(r, t)M̃nGi,0 ≤ r ≤ 1, 0 ≤ t ≤ π/2, (4)

where An is a constant matrix of size 64 × (2n + 8) and
An can be pre-calculated for each n.

5. Proof of C2 between Si’s and Pi’s

Si(r,t), when t is fixed, is a Bézier curve of degree three
with

Si(1, t) = Li(1, t),
∂Si(r, t)

∂r
|r=1 = Lri (1, t) and

∂2Si(r, t)
∂r2

|r=1 = Lrri (1, t).

When t varies, Si(r,t) is a surface and we can similarly
find Lti(1,t), Ltti (1,t), Lirt (1,t). For example, Lti(1,t) =
−sintPiu(cost,sint) + costPiv(cost,sint). These are the
directional partial derivatives of Si(r,t) at Ci(t) in r and
t directions. And by design, they are also the directional
partial derivatives of Pi at Ci(t) in r and t directions.
Hence Si and Pi have the same position, same first and
second partial derivatives at the curve Ci(t) in r, t and
rt directions. According to the second fundamental form

of differential geometry, we obtain that Si and Pi have the
same first and second partial derivatives at any point of
Ci(t) in any direction. Hence Si(r,t) is connected with Pi
at curve Ci(t) with C2 smoothness.

To prove that when r �= 0, Si and Si−1 are connected
with C2, from the definition of Si(r,t), we just need to
show that in t direction, Li(1,t), Lri(1,t) and Lrri (1,t) are
C2 continuouswithLi−1(1, t), Lri−1(1, t) andL

rr
i−1(1, t),

respectively. From the definition of Li(r,t), we know that
when r and t vary, Li(r,t) becomes Pi. Because Pi is C2

everywhere except (0,0), by finding the corresponding
derivatives, one can verify that:

Li(1, 0) = Li−1

(
1,

π

2

)
, Lti(1, 0) = Lti−1

(
1,

π

2

)
,

Ltti (1, 0) = Ltti−1

(
1,

π

2

)
Lri (1, 0) = Lri−1

(
1,

π

2

)
, Lrti (1, 0) = Lrti−1

(
1,

π

2

)
,

Lrri (1, 0) = Lrri−1

(
1,

π

2

)
Lrtti (1, 0) = Lrtti−1

(
1,

π

2

)
, Lrrti (1, 0) = Lrrti−1

(
1,

π

2

)
,

Lrrtti (1, 0) = Lrrtti−1

(
1,

π

2

)
.

Hence The C2-continuity between Li(1,t) and Li−1
(1,t), Lri(1,t) and Lri−1(1, t), and, L

rr
i (1,t) and Lrri−1(1, t)

is proven, respectively.
Similarly, we can prove that Si and Si+1 are connected

with C2 smoothness when r �= 0. As a result, if we define
C(t) to be the union of all Ci(t)’s, 1 ≤ i ≤ n, then C(t) is
C2 everywhere. When r = 0, i.e., at the extra-ordinary
point, Si is at least C0 continuous because all Si’s pass
through the common point V∞.

6. Derivatives at PI(0,0)

The properties of a subdivision surface at an extra-
ordinary point have been studied extensively [5, 24, 23,
1]. It is well known that Pi has unbounded first and sec-
ond derivatives in either u or v direction at (0,0). But
the directions of these partial derivatives can be cal-
culated. For a given surface patch Pi, denote Di

u, Di
v

Di
uu, Di

uv , Di
vv the vectors that have the same direc-

tions as ∂Pi(0, 0)
∂u , ∂Pi(0, 0)

∂v
, ∂2Pi(0, 0)

∂u2 , ∂2Pi(0, 0)
∂u∂ , ∂2Pi(0, 0)

∂v2
,

respectively. For a patch with an extra-ordinary vertex
of valance n�=4, based on the results of the paper [24],
the directional∞ vector of each partial derivative can be
obtained by dividing the corresponding partial deriva-
tive by (2λ2), where λ2 is the second biggest eigen value
of the Catmull Clark subdivision matrix [24]. As a result
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we have

⎡⎢⎢⎢⎢⎣
Du
i

Dv
i

Duu
i

Duv
i

Dvv
i

⎤⎥⎥⎥⎥⎦ = 4
nδ

⎡⎢⎢⎢⎢⎣
�1�0�, �2�1�,
�1�2�, �2�3�,
4�1�4�, 4�2�5�,
2�1�6�, 2�2�7�,
4�1�8�, 4�2�9�,

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1
...
En
F1
...
Fn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

where �1 = [1, λ, λ2, λ3, λ4, λ5] and �2 = 4σ−1
c1+1 �1

with λ = 1
16 (c1 + 5 + √

(c1 + 1)(c1 + 9)), σ = 1
16 (c1 +

5 − √
(c1 + 1)(c1 + 9)), δ = (64λ − 1)(32λ − 1)

(16λ − 1)(λ − σ), �i, 0 ≤ i ≤ 9, are all constant matri-
ces of size 6 × 5 and

� =

⎡⎢⎢⎢⎢⎣
c2, c3, c4, c5, · · · cn, c1
c1, c2, c3, c4, · · · cn−1, cn
cn, c1, c2, c3, · · · cn−2, cn−1,
cn−1, cn, c1, c2, · · · Cn−3, Cn−2
cn−2, cn−1, cn, c1, · · · cn−4, cn−3

⎤⎥⎥⎥⎥⎦ ,

where cω = cos(2πω/n). Matrix �2, �3, �8, �9, �6 can
be obtained by switching column k, 1 ≤ k ≤ n/2, with
column n − k + 1 in the matrix �0, �1, �4, �5, �7,
respectively [5].

To simplify the notation, we define D′
i = (Du

i +
Dv
i−1)/2 and D′′

i = (Duu
i + Dvv

i−1)/2.With these two defi-
nitions, hereafter, when there is no possibility to get into
confusion, we just say Di

’ (or Di
’’) is the first (or sec-

ond) partial derivative along the edge V → Ei. Due to
the fact that cω = cn−ω and cω = −cω−n/2, using Eq.
(5), one can easily verify that when n is even, D’i =
−D’i−n/2 and D’’i = −D’’i−n/2. This means when n is
even, all the first/secondpartial derivatives are symmetric
with respect to the point V∞.

7. Construction of TI

Recall that the requirements for the construction ofTi are
that Ti itself has to be C2 everywhere, C2 with its neigh-
boring patches Ti−1 and Ti+1 including at (0,0), and at
least C0 with Ci(t). There are many ways to construct Ti.
One simple way is to construct it as a Bézier patch, using
an approach similar to the one given in the above section.
For example, if we use two coplanar circles for all the Bi
(t)’s andHi (t)’s in Figure 3(a) and letR = [1,r,r2,r3], then
the Bézier curve Ti(r, t) = RMb[V∞,Bi,Hi,Ci]T , 0 ≤
r ≤ 1 ,becomes a surface when t varies, and this surface
satisfies all the above requirements if the radius of Hi is
two times the radius of Bi. Note that two Bézier curves
constructed from [V∞,B,H,C] and [V∞, B̂, Ĥ, Ĉ ] are C2

smoothly connected atV∞ if and only if (1)B,V∞, and B̂
are collinear, (2) V∞ is the midpoint of B and B̂ and, (3)

Ĥ = H + 4(V∞ − B). The above defined Ti (r, t) sat-
isfies all the conditions because the two coplanar circles
are smooth and symmetric with respect toV∞. However,
the resulting surface from this Ti (r, t) may not be the one
the designer wants. So we needmore constraints on Bi (t)
and Hi (t). In the following, we will construct a Ti that is
similar to the original subdivision surface Pi at the extra-
ordinary point by requiring that Ti and Pi have the same
location, same first and second derivatives at V∞.

The basic idea is again to construct Bézier curves
that pass through V∞ and have the same partial deriva-
tives at V∞ as Pi. This is done through four steps (see
Figure 3(a)). First, we construct a B-spline curve Bi (t)
around the extra-ordinary point using the first partial
derivative vectors along each edge of the extra-ordinary
point. Second, we construct another B-spline curveHi (t)
around the extra-ordinary point using the second partial
derivative vectors along each edge of the extra-ordinary
point. Third, find four control points for a Bézier curve
such that it passes through V∞ and Ci (t), and such that
its first derivative at V∞ is Bi (t) and the second deriva-
tive at V∞ isHi (t). Finally, using the four points, we can
construct a Bézier curve which becomes a smooth sur-
face when t varies. Because Bi (t), Hi (t) and Ci(t) are C2

continuous, the constructed Bézier surface is C2 smooth
everywhere except at the extra-ordinary point. We can
make it C2 at the extra-ordinary point by adding one
more condition such that Bi (t) and Hi(t) are symmetric
with respect to the point V∞. The construction process
of Ti is shown below.

First Bi (t) and Hi (t) can be explicitly constructed as
follows. When n is even, we use the partial derivatives to
define Bi and Hi directly:

Bi(t) = V∞ + 
g(t)Msαn[D′
i−1,D

′
i,D

′
i+1,D

′
i+2]

T and

Hi(t) = V∞ + 
g(t)Msβn[D′′
i−1,D

′′
i ,D

′′
i+1,D

′′
i+2]

T

where 
g(t) = [1, t, t2, t3], 0 ≤ t ≤ 1,αn and βn are two
constant coefficients,Ms is the B-spline matrix, 1 ≤ i ≤
n.When n is odd, we add onemore control point between
each pair of consecutive derivatives, say the ith and (i +
1)th derivatives, by reversing the (i+ (n+ 1)/2)th deriva-
tives (See Figure 3(b)). Each of Bi and Hi is then defined
as a set of twopiecewise B-spline curves, as follows.When
n is odd and 0 ≤ t ≤ 1/2,

Bi(t) = V∞ + 
g(2t)Msαn

×
[
−D′

i+ n−1
2
,D′

i,−D′
i+ n+1

2
,D′

i+1

]T
,

Hi(t) = V∞ + 
g(2t)Msβn

×
[
−D′′

i+ n−1
2
,D′′

i ,−D′′
i+ n+1

2
, D′′

i+1

]T
.
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Figure 3. Using Bézier curve to construct Ti . (a) Construction of Ti . (b) Construction of Bi when n is odd.

When n is odd and 1/2≤ t≤1,

Bi(t) = V∞ + 
g(2t − 1)Msαn

×
[
D′
i,−D′

i+ n+1
2
,D′

i+1,−D′
i+ n+3

2

]T
,

Hi(t) = V∞ + 
g(2t − 1)Msβn

×
[
D′′
i ,−D′′

i+ n+1
2
,D′′

i+1,−D′′
i+ n+3

2

]T
,

where 
g(t), αn, βn and Ms are defined the same as the
even case. In both cases, αn (or βn) is chosen in a way
such that when V∞ +αnDk

’ (or V∞ + βnDk
’’), 1 ≤ k ≤

n, is represented by a linear combination of the vertices of
Gi, the coefficients of the representation are non-negative.
To satisfy this requirement, from Eq. (5), we can find
that the proper ranges are 0 ≤ αn ≤ α̂n and 0 ≤ βn ≤ β̂n,
where

β̂n = f
8�1

(
�5[c2, c1, cn, cn−1, cn−2]T

+ �9[c3, c2, c1, cn, cn−1]T
) ,

when n is even,

α̂n = f

2�1

(
�1

[
c2+ n

2
, c1+ n

2
, c n

2
, c n

2−1, c n2−2

]T
+ �3

[
c3+ n

2
, c2+ n

2
, c1+ n

2
, c n

2
, c n

2−1

]T)
,

and when n is odd,

α̂n = f

2�1

(
�1

[
c2+ n−1

2
, c1+ n−1

2
, c n−1

2
, c n−1

2 −1, c n−1
2 −2

]T
+ �3

[
c2+ n+1

2
, c1+ n+1

2
, c n+1

2
, c n+1

2 −1, c n+1
2 −2

]T)
,

where f = δ(c+1)
(4σ−1)(n+5) . All the symbols in the above

equations have the same values as those in Eq. (5).

For each n, α̂n and β̂n are constants and can be pre-
calculated. αn and βn can be used to adjust the final
surface appearance around an extra-ordinary point as
well. In our testing, we choose αn = α̂n/2 and βn = β̂n.

Now we can define Ti using basic Bézier curves as
follows.

Ti(r, t) = RMb

[
V∞,

2
3
V∞ + 1

3
Bi

(
2t
π

)
,
1
6
V∞

+ 2
3
Bi

(
2t
π

)
+ 1

6
Hi

(
2t
π

)
, Ci

(
2t
π

)]T
(6)

where 0 ≤ r ≤ 1, 0 ≤ t ≤ π /2.
FromEq. (5) we know that allD’i andD’’i can be repre-

sented by a linear combination ofGi. HenceBi andHi can
be represented by a linear combination of Gi as well. We
already know Ci and V∞ can be represented by a linear
combination of Gi in Section 4. Hence if fully expanded,
Ti (r,t) can be representedwith the followingmatrix form.

Ti(r, t) = W̃(r, t)M̂nGi, 0 ≤ r ≤ 1, 0 ≤ t ≤ π/2,
(7)

where W̃ is defined in Section 4 and M̂n is a constant
matrix of size 64 × (2n+8). M̂n can be pre-computed for
each n.

8. Proof of C2 among all TI’s

Define B(t) to be the curve consisting of all the Bi’s, and
H(t) to be the curve consisting of all the Hi’s, 1 ≤ i ≤ n.
It is obvious that B(t) andH(t) areC2 everywhere because
they are piecewise B-spline curves. In addition, as proven
in section 4, C(t) is also C2 everywhere. Define T(r,t) to
be the union of all Ti’s, 1 ≤ i ≤ n. Because Ti, as defined
in Eq. (6), only depends on Bi(t), Hi(t) and Ci(t), T(r,t)
is only depending on B(t), H(t) and C(t), which are all
C2 continuous curves. Therefore, T(r,t) is C2 continuous
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everywhere, except (0,0). This means Ti is C2 continuous
with Ti−1 and Ti+1 everywhere, except (0,0).

To prove T is C2 at T(0,0), we just need to prove that,
for any t, there exists a 3D plane Pt, such that Pt passes
through V∞, B(t) andH(t), and the intersection curve of
T and Pt is C2 atV∞. Note that for any t, T(0,0) = T(0,t)
= V∞. From Eq. (6), for any t, 0 ≤ t ≤ π /2 and i, 1 ≤
i ≤ n, we have

Ti
r(0, t) = Bi(t̂) − V∞, and Ti

rr(0, t) = Hi() − V∞,

where t̂ = 2t/π .
When n is even, because of the symmetry of B(t) and

H(t), we have that V∞ is the midpoint of Bi (t̂) and
Bi+n/2(t̂), andV∞ is themidpoint ofHi (t̂) andHi+n/2(t̂).
As a result, V∞, Bi (t̂), Bi+n/2(t̂), Hi (t̂) and Hi+n/2(t̂) are
on the same plane Pt. Because

Tr
i+ n

2
(0, t) = Bi+ n

2
(t̂) − V∞ = −Tr

i (0, t) and

Trr
i+ n

2
(0, t) = Hi+ n

2
(t̂) − V∞ = −Trr

i (0, t),

we have that the intersection curve of the plane Pt and
the surface T is C2 at V∞.

When n is odd, it can be proven similarly except
there are two cases. Again because of the symmetry of
B(t) and H(t), when 0 ≤ t ≤ π /4, we have that V∞
is the midpoint of Bi(t̂) and Bi+(n−1)/2(t̂ + 1/2), and
V∞ is the midpoint of Hi(t̂) and Hi+(n−1)/2(t̂ + 1/2).
As a result, V∞, Bi(t̂), Bi+(n−1)/2(t̂ + 1/2), Hi(t̂) and
Hi+(n−1)/2(t̂ + 1/2) are on the same plane Pt. Because

Tr
i+ n−1

2

(
0, t + π

4

)
= Bi+ n−1

2

(
t̂ + 1

2

)
− V∞ = −Tr

i (0, t) and

Trr
i+ n−1

2

(
0, t + π

4

)
= Hi+ n−1

2

(
t̂ + 1

2

)
− V∞ = −Trr

i (0, t)

we have that the intersection curve of the plane Pt
and the surface T is C2 at V∞. When π /4 ≤ t
≤ π /2, we know that V∞ is the midpoint of Bi(t̂)
and Bi+(n+1)/2 (t̂ − 1/2), and V∞ is the midpoint of
Hi(t̂) and Hi+(n+1)/2(t̂ − 1/2). As a result, V∞, Bi(t̂),
Bi+(n+1)/2(t− 1/2),Hi(t̂) andHi+(n+1)/2(t̂ − 1/2) are on
the same plane Pt. Because

Tr
i+ n+1

2

(
0, t − π

4

)
= Bi+ n+1

2

(
t̂ − 1

2

)
− V∞ = −Tr

i (0, t)and

Trr
i+ n+1

2

(
0, t − π

4

)
= Hi+ n+1

2

(
t̂ − 1

2

)
− V∞ = −Trr

i (0, t)

we have that the intersection curve of the plane Pt and the
surface T is C2 at V∞. Therefore C2 continuity of T(s,t)
at (0,0) is proven. Also from Eq. (6), for any i and any t,
we have

Ti
t(0, t) = 0, Ti

tt(0, t) = 0, and Trt
i (0, t) = 2

π
Bti(t̂)

One can easily verify that Bit , which is the first derivative
of Bi with respect to parameter t, is symmetric relative
to V∞ as well. Note that, when r = 0, Ti (r,t) becomes
a point for all t. As a result, when r = 0, the t direction
collapses into a single point. Although for any t, Ti

t(0,t)
= Ti

tt(0,t) = 0, the curvature at Ti (0,0) is not necessar-
ily equal to 0 because the partial derivatives at Ti (0,0) in
the r direction (which are Ti

r(0,0) = Bi(0) − V∞ and
Ti

rr(0,0) = Hi(0)−V∞) are not necessarily 0. Hence it is
not a flat spot at the extra-ordinary point. To calculate the
normal vector at Ti(0,0), instead of using Ti

t(0,0), which
is 0, we can use Ti

r(0,0) and Ti
r(0,π /2).

9. Blending Ti with Si

To construct a C2 patch Qi(r,t) in the ith face around an
extra-ordinary vertex V of valance n, we first construct
Ti and Si using the methods given in the previous sec-
tions and then blend them together smoothly with a C2

continuous blending function as follows.

Qi(r, t) = rSi(r, t) + (1 − r)Ti(r, t) = rW̃M̃nGi

+ (1 − r)W̃M̂nGi = WMnGi (8)

where 0 ≤ r ≤ 1, 0 ≤ t ≤ π /2, W = [Wt,rWt,r 2Wt,r
3Wt,r 4Wt] andMn is a constant coefficientmatrix of size
80× (2n+ 8). Wt is defined in section 4. Mn can be pre-
computed for each n involved.

Although other weight functions can be used in the
blending process, in our testing, we simply use linear
weights and they give satisfactory results and also sim-
plify the calculation of matrix Mn. If Q(r,t) is defined to
be the union of all the Qi(r,t), then Q(r,t) is C2 every-
where including (0,0) because all the Si(r,t)’s and all the
Ti(r,t)’s are connected with C2 smoothness. Eq. (8) is the
most important result of this paper. It gives us a direct
and explicit way to construct a C2 smooth surface for
any extra-ordinary patch. It also gives us a simple way to
calculate the partial derivatives and curvature of an extra-
ordinary patch at any parameter point, including (0,0),
by simply calculating the partial derivatives of W. There-
fore Eq. (8) can be effectively used for surface evaluation,
shape analysis, optimization, energy calculation . . . etc.
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Now we can define a new C2 patch P̂i(u, v) to replace
the whole patch Pi(u,v), as follows.

P̂i(u, v) =
{
Pi(u, v), when u2 + v2 ≥ 1,
Qi(r, t), when u2 + v2 ≤ 1,

(9)

where 0 ≤ u,v ≤ 1 and u = r cost,v = r sint.
It is clear that P̂i(u,v) is C2 itself and C2 with its neigh-

boring patches, Note that from Eq. (2) one can see that
Pi (u,v), when u2 + v2 ≥ 1, can also be represented by a
matrix form W MnGi, where W is defined in section 4,
Mn is a constant matrix of size 16 × (2n+8) and can
be pre-calculated as well. Hence at any parameter point
(u,v), P̂i (u,v) and its derivatives can be calculated explic-
itly using just simple matrix operations.

10. Proof of satisfying convex hull property

From Eq. (9) and the definition of Qi(r,t) we can see that
we only need to show that Si and Ti satisfy the convex
hull property. From Eq. (3), we can see that Si depends
onV∞, Li (1,t), Lri (1,t) and Lrri (1,t).V∞ and Li(1,t) are
on the surface Pi, hence they are within the convex hull of
Gi, i.e.,V∞ = akGi,k such thatak = 1 and ak ≥ 0 for
such that and for. Also because Lri (1,t), and Lrri (1,t) are
derivatives, they do not have absolute locations. If Gi is
translated to another location, Lri (1,t), and Lrri (1P,t)
will be the same. Hence we have Lri (1,t) = kGi,k such
that āk = 0 for 1≤ j ≤2n + 8, Lrri(1, t) = âkGi,k
such that āk = 0 for 1≤ k ≤2n + 8. If we plug them
into Eq. (3), we have

Si =
2n+8∑
k=1

Fk(r, t)Gi,k,

where

Fk(r, t) = (1 − r)3ak + r(r2 − 3r + 3)ãk

− r(1 − r)(2 − r)āk + r(1 − r)2âk/2

It is easy to verify that for any r and t, n
k=1Fk(r, t) = 1

due to the fact that ak = ãk = 1 and ak = âk =
0. Hence to prove Si satisfies the convex hull property, we
just need to prove Fk(r,t) is always non-negative.

From Eq. (4), we have Fk(r, t) = W̃(r, t)M̃n,k
where M̃n,k is the kth column of the constant matrix M̃n.
Hence we know that Fk(r,t) is a polynomial of r, cost
and sint defined in a bounded (hence, compact) domain
of [0,1] × [0,π /2]. As a result there exist extremes for
the continuous function Fk(r,t). The extremes are located
either at points where the first partial derivatives are zero
or on the domain boundary. Using a scientific visualiza-
tion tool, such as Matlab, we can visualize all the values

of Fk(r,t) in the domain of [0,1] × [0,π /2]. We have done
so using Matlab for 3 ≤ n ≤ 1000, and found that for
any (r,t) ∈ [0,1] × [0,π /2], 0 ≤ Fk(r,t) ≤ 1. Hence, Si
satisfies the convex hull property.

From Eq. (6), we can see that Ti depends on V∞, Bi,
Hi and Ci. V∞ and Ci are on the surface Pi, hence they
lie inside of the convex hull of Gi and can be represented
similarly by a linear combination of Gi with non-negative
coefficients whose sum is one. Bi and Hi are B-spline
curves defined by partial derivatives of Pi. All the deriva-
tives Di

′ and Di
′′ can be represented similarly by a linear

combination of Gi, but with sum of coefficients to be zero
(see Eq. (5)). Recall that in the definition of Bi (or Hi), αn
(or β) is chosen in a way such that when V∞ + αnDk

′
(or V∞ + βnDk

′′), 1 ≤ k ≤ n, is represented by a linear
combination of the vertices of Gi, the coefficients of the
representation are non-negative. Also, we can see that the
sum of all the coefficients of the representation of V∞
+αnDk

′ (or V∞ +βnDk
′′) is one. Hence for any k ∈

[1,n], bothV∞+αnDk
′ andV∞+βnDk

′′ arewithin the
convex hull of Gi. Therefore, Bi and Hi satisfy the convex
hull property because they are B-spline curves defined by
control points that are within the convex hull of Gi. As a
result, Bi and Hi can be represented similarly by a linear
combination of Gi with non-negative coefficients whose
sum is one.

With V∞, Bi, Hi and Ci all being able to be repre-
sented by a linear combination of Gi with non-negative
coefficients whose sum is one, using an approach similar
to the proof of Si’s convex hull property, one can verify
that Ti is within the convex hull of Gi as well.

11. Test results

The proposed approach has been implemented in C++
using OpenGL as the supporting graphics system on
the Windows platform. Quite a few examples have been
tested with the method described here (see Figure 4).
All the examples have extra-ordinary vertices. With Mn
pre-calculated for all different valences of n, the imple-
mentation is actually very easy. Although Mn is a big
matrix, the computation needed for each point is not big
at all because MnGi needs to be done only once.

Our method is designed to ensure the resulting C2

surface is similar to the subdivision surface. Figures 4(a-
d) show two cases of comparison between a C2 surface
and its corresponding Catmull-Clark subdivision surface
(CCSS). In either case, it is not obvious to tell the differ-
ence between the C2 surface and its corresponding CCSS
at all, although some very minor differences indeed exist.

Figures 4(f-h) demonstrate surface evaluation around
an extra-ordinary vertex of degree 13, using our approach
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Figure 4. Test examples. (a) C2 surface (b) CCSS (c) C2 surface (d) CCSS (e) Mesh (f ) Valance = 13 (g) C2 surface evaluation (h) CCSS
surface evaluation (i) C2 surface (j) Mesh (k) Isophotes on C2 surface (l) Isophotes on CCSS surface (m) CCSS surface

and CCSS approach [24]. All the displayed correspond-
ing points are evaluated using the same parameters. Fig-
ures 4(j-l) show the isophotes around extra-ordinary
points using also our approach and CCSS approach. Ten
isophotes are displayed around each extra-ordinary point
and each isophote is corresponding to a circle in param-
eter space. The radii for the C2 isophotes are the same
as those for the CCSS isophotes. From these figures we
can see that, when a point in the parameter space tends
to (0,0), the points generated by our approach are closer
to the extra-ordinary point than points generated by a
subdivision approach.When there aremore points closer
to the extra-ordinary point, there is more room for the
generated surface to overcome the oscillation problem
around an extra-ordinary point. As a result, our method
produces smoother surface in the neighborhood of an
extra-ordinary vertex. Figures 4(e, i, m) demonstrate that

ourmethod satisfies the convex hull property. Figure 4(e)
is a mesh that some of its edges overlap three times. Note
that in such a case, when the surface is evaluated, the
edges stay where they are.

12. Summary

An approach for the construction of a C2-continuous
surface from a mesh of arbitrary topology is presented.
The construction is subdivision surface based, with each
extraordinary patch modified so that the resulting sur-
face is not only C2 continuous everywhere, but has an
explicit representation for each extraordinary patch as
well. Implementation is easy because the construction
process is patch-based. The explicit representation for an
extraordinary patch is a simplematrix formWMGwhere
W is a parameter vector,M is a constant coefficientmatrix
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andG is the control point vector. Therefore, evaluation of
the surface position and computation of partial deriva-
tives, normal vector, and curvature for any parameter
point, including an extra-ordinary point, is very easy and,
consequently, the resulting surface is suitable for opera-
tions such as shape analysis, shape optimization, surface
energy minimization . . . etc. The construction process
includes constraints to ensure the shape of the resulting
C2 surface is very similar to the limit surface generated by
Catmull-Clark subdivision.More importantly, the result-
ing C2 surface satisfies the convex hull property. With all
these properties, we believe the new approach will have
broad applications in computer graphics and geometric
design. Our future work will focus on its applications.
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