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ABSTRACT
CAD assemblies are essentially reduced to a set of components, often solids, and a user-defined
tree structure. Given the generation process of CAD assembly models where the user may instan-
tiate several times a given component, some solids may occur more than once. If this tree structure
incorporates some functional information, this is not mandatory and it cannot be regarded as a
reliable functional description. Similarly, component occurrences may not always end up being
simple copies of a given solid. To this end, we introduce the concept of intrinsic assembly model
and describe and illustrate an associated set of geometry processing operators that can produce
an intrinsic shape descriptor of assembly components and extract assembly structure using sym-
metries, alignments, . . . As a complement, it is described how this intrinsic model can become an
intrinsic knowledge-based assembly model. Some geometric concepts are mapped to symbolic
information using ontology and new structural assembly information is derived using inferences.
All these automated processes and mappings enforce the consistency of the proposed model. Illus-
trative examples show that this model is a first basis toward a functional description of an assembly
where new inference rules can be added to express and characterize functional information. A web-
site http://3dassblyanlysis.gforge.inria.fr/3d/ gives a public access to a knowledge-based assembly
example (available with IE and Firefox navigators).
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1. Introduction

CAD assembly models reduce to sets of B-Rep mod-
els, often solids, without explicit geometric relationships
between them, i.e., each component is located using its
reference frame position with respect to a sub-assembly
reference frame or to the assembly reference frame.
When exported through STEP files, these files can con-
tain the assembly tree that structures the assembly and
dependencies between solids and sets of solids, i.e., sub-
assemblies that express the occurrence of components
or sub-assemblies through the whole assembly. Here,
occurrences designate components or sub-assemblies
that share the same shape. However, this assembly struc-
ture derives from the generation process of a CADassem-
bly, which is a user-driven process. Indeed, the generation
of sub-assemblies is up to the user’s interpretation of a
product and there can be no unique solution to group
components to form sub-assemblies (see Figure 1). Fur-
thermore, dependencies between components expressing
occurrences of components, either as set into a CAD
assembly or as described into an assembly STEP file, is
also subjected to user’s interactions.Hence, creating these
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occurrences is error prone [18]. If it is straightforward
for a user to instantiate many times the same compo-
nent when it is a product-specific component, standard
components extracted from libraries like TraceParts [41]
can be extracted multiple times, possibly by different
engineers, thus generating different components shar-
ing the same shape. All these observations show that
any assembly model possibly contains an inconsistent or
incomplete structure.

From a complementary standpoint, it can be observed
that 3D CAD models can be inserted into knowledge-
based approaches to structure design knowledge that
interact with 3D shapes [10]. Given the difficulty to
extract and formalize design knowledge, knowledge-
based approaches have found industrial applications
often limited to routine design and modifications where
the 3D shapes are not evolving significantly [19] because
they are constrained by CAD modeler dependencies.
Knowledge-based approaches are recognized as means
to describe functional information and able to set up
reasoning processes that perform at a functional level.
Functional information is often described as symbolic
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Figure 1. An example of assembly tree structure of a hydraulic pump. Colored brackets indicate the location of sub-systems in the tree
structure and in 3D as well. The studs are part of the volute housing sub-system and the nuts can be part of this subsystem or the shaft
casing sub-system as well. The bearings are part of the shaft sub-system but could have been placed in the shaft casing sub-system.

information devoted to inference mechanisms or query-
ing systems [6, 29, 34, 37, 42].

Here, the purpose is the proposition and implementa-
tion of an assembly model that is intrinsic, i.e., the CAD
assembly tree defined by a designer can express some of
its functional aspects only.

This intrinsic model is defined by a set of intrinsic
geometric information, i.e., independent of the surface
parameterization, the modeling process of each compo-
nent and the CAD assembly tree. It contains also sym-
bolic information as part of an ontology where the geo-
metric properties associated with the intrinsic geometric
assembly model produces elementary facts that populate
the knowledge base connected to the CAD model.

These geometric properties are obtained algorithmi-
cally; hence the knowledge base is populated automat-
ically. From this set of elementary facts, the inference
engine part of our software architecture is equipped with
inference rules. Triggering these rules enables the gen-
eration of new, higher level facts related to the assembly
structure that relates to the functional structure of the
assembly. These facts enrich the knowledge base so that
it can be queried in accordance with the ontology set
up. The resulting architecture becomes a foundation to
evolve toward knowledge-based assemblies whose inter-
ests have been already highlighted in areas such as design
purposes [10] and the preparation of finite element mod-
els of assemblies [7]. Similarly, the concept of assembly
model appears when searching assemblies in databases
[21, 22, 45], defining assembly/disassembly processes
[15, 16, 30, 32, 44]. As a result, we can observe that there
are strong interests in setting up an assembly model cov-
eringmore than the assembly structure and in addressing
assembly knowledge to raise assembly information up to

the level of functions. This is the current objective of the
ongoing research work.

The description of the proposed contribution is orga-
nized as follows. Section 2 reviews prior work regarding
assembly models as well as knowledge based approaches.
Section 3 introduces the concept of intrinsic geometric
assembly model. Section 4 describes the software archi-
tecture set up to develop the assembly model from a
geometric point of view as well as a knowledge based
one. Section 5 introduces the main features of the pro-
posed assembly model but it is not intended to go into
their detailed algorithmic description to preserve the
conciseness of the paper. Also, it describes features of
the knowledge-based of the assembly model. Section 6
shows results and performances of the proposed assem-
bly model that can relate to various applications.

2. Related works

From a 3D geometry standpoint, CAD assembly mod-
els have been enrichedwith geometric interfaces between
components [7, 11, 15, 16, 21, 30, 34, 37, 45] to provide
a subset of the intrinsic assembly model targeted. Some
of these contributions, however, differ from each other
regarding the categories of interfaces extracted. Given
the common practice of engineers, Shahwan et al. [34]
highlighted three main interface categories, i.e., contact,
interferences, clearances, taken into account in [7, 16,
21, 30, 34]. Zhang et al. [45] approach relies on a sur-
face analysis using a point sampling process that cannot
straightforwardly be extended to cope with interferences
that characterize volumes. Hsu et al. [15] refer to con-
tacts only, leaving the user interactively annotating these
interfaces, which is adequate to add some technological
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information but does not lead to an intrinsic assembly
model. Chen et al. [11] refer to interfaces but don’t give
details about the categories handled and how an assem-
bly is processed to extract this information. Swain et al.
[37], use some threshold to locate face pairs but do not
state the effective criterion to conclude about parallelism,
threaded areas, and rely on standalone part features to
characterize joints without referring to their common
imprint. Generally, clearances and contacts are separated
based on a user-defined threshold. This is a first approach
that requires enhancement to become more generic and
robust. Similarly, it appears important to obtain pre-
cise geometric information about geometric interfaces to
obtain an effective assemblymodel that can be either used
for different applications [7] or characterize constitutive
inconsistencies.

Now, it is also important that the geometric interfaces
produce invariant information under equivalent patch
decompositions. As an example, for an interface describ-
ing a surface contact, the targeted quantity is invariant
when the interface stays embedded in the same surface
while its patch decomposition is changing. Given the
approach of Zhang et al. [45], the graph structure derived
from the contact areas will be influenced by different
patch decompositions, other approaches [15, 16, 30, 37]
don’t address this issue while [7, 21] incorporate process-
ing that refer to the concept of maximal faces introduced
in Li et al. [6, 20]. A full topology is needed similarly
to [20] to extract geometric and topological information
characterizing the various geometric interfaces.

If geometric interfaces are extracted in [7, 11, 21, 30,
34, 45], a graph representing the relationships between
interfaces and characterizing the assembly structure is
derived in [7, 11, 34] though Chen et al. [11] neither
mention categories of interfaces processed and how the
graph is effectively derived. In all configurations, contacts
between components are restricted to surface contacts
leaving linear and punctual contacts unaddressed.

Following the requirements mentioned in the intro-
duction to produce an intrinsic assembly model, the
assembly tree cannot be regarded as reliable to charac-
terize component occurrences as acknowledged by Iyer
et al. [18]. This means component occurrences must
be extracted using geometry processing. This extraction
process is equivalent to find shape similarities. According
to the classification of shape retrieval methods of Tan-
gelder et al. [38], graph-basedmethods aremost frequent
for CAD models. Indeed, their B-Rep description pro-
duces a graph representation that can be efficient to com-
pare components. Other methods rely on facetted repre-
sentations of 3D objects. Thesemethods however, are not
relevant in the present context because they incorporate
an approximation, i.e., the facettisation, generating a

deviation from the original model that is orders of mag-
nitude larger than the accuracy of a CAD modeler. Con-
sequently, components having dimensions differing by
more than the CADmodeler accuracy could be regarded
as identical, which would contradict the concept of com-
ponent occurrences as they are generated using isometric
transformations of components. Zhang et al. [45] use
a shape descriptor of components to discover common
structures. Components are B-Rep models but the shape
descriptor uses a sampling process that can hardly be
adjusted to stay compatible with the accuracy of the
CAD modeler even though the quantities defining the
shape descriptor are curvature-based ones [23, 36] that
are independent of the boundary decomposition into
patches as well as the patch parameterization. Lupinetti
et al. [21, 22] use a shape layer attached to compo-
nents as part of their assembly descriptor. Without refer-
ring to the assembly tree structure, the identification of
occurrences of components is obtained through repeated
queries to obtain effective occurrences of components.
Other approaches characterizing the similarity of compo-
nents compare graphs [13, 39] but these approaches refer
to approximate comparisons and they do not take into
account the effect of symmetry properties over the pos-
ing effect of objects or regions. As a consequence, there is
no effective answer to the problemof finding components
occurrences in a CAD assembly model.

In accordance to the above review, there is no intrinsic
assembly model that can be robustly derived from CAD
assemblies andprocess a large range of interfaces between
the components. Occurrences of components are derived
either from an assembly tree or using repeated shape
matching, showing the possible improvements required
to obtain an effective intrinsic assembly model.

From a knowledge representation standpoint,
knowledge-based assembly models are often addressed
from a top-down approach [10, 20, 24] and require user
input to annotate components or sub-assemblies, which
is not robust and is often associated with the early design
phases where product function specification and reason-
ing is at play [40]. Complementary approaches, closer to
bottom-up approaches relate 3D shapes to engineering
knowledge [5, 15, 19, 27, 34, 37, 44] or, more generally
shape semantics [6, 29]. Most of these contributions fit
into the field of knowledge based engineering [19].

Knowledge based systems coupled to CAD model-
ers give access to 3D geometry processing like Knowl-
edge Fusion in NX [5, 19] to be able to monitor part
modeling processes interacting with engineering knowl-
edge. Consequently, this is based on a set of geomet-
ric entities and operators as available in CAD modelers
and the requirements of independence of the boundary
decomposition of components mentioned above cannot
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be satisfied. More generally, the side effects of construc-
tion processes are still present and another limitation
holds in the fact that the set of geometric entities accessi-
ble is closed and cannot be extended because the code is
proprietary. Often, inserting new knowledge processing
capabilities requires a distributed architecture [4, 27, 34,
42] as illustrated by Moitra et al. [27] to generate man-
ufacturing features extraction rules, Shahwan et al. [34],
Ulliana et al. [42], to generate functional information.

Knowledge representation frameworks are commonly
specified with description logics languages like the
lightweight DL-Lite [9], or the expressive Horn-SHIQ
[12], or, more generally, rule-based languages represent-
ing fragments of first-order logic like Datalog± [8] and
existential rules [3]. Each knowledge representation lan-
guage has a distinctive set of modeling features and
expressivity. This led to the implementation of a number
of reasoners each one optimized for a specific language
[7, 14, 35].

Learning-based approaches using neural networks or
other techniques, rely essentially on input data with a
wide range of datasets. Here, there is no well-defined
representative set that can be used as basis for such
approaches. Consequently, these approaches are not in
the scope of the proposed approach.

In order to set up an intrinsic assembly model and
extract robustly generic information about component
occurrences and geometric interfaces between compo-
nents, learning-based approaches are not suited and pro-
prietary knowledge-based engineering systems are not
open enough to insert new geometry processing and new
concepts. Here, we promote robust information through
the effective use of the CAD assembly model and real
knowledgemodeling. Throughout the following sections,
the purpose is not to go into the details of each feature
of the proposed architecture and functions to keep the
paper as concise as possible. Rather, it is aimed at high-
lighting the key features of each function that effectively
contribute to the availability of an intrinsic assembly

model that can be enriched with functionally related
knowledge.

3. Concept of intrinsic assembly model

The two previous sections have referred to the concept
of intrinsic assembly model. The purpose, here, is the
description of this concept. It is assumed that:

Every component of an assembly is described as
a B-Rep model, which is the commonly available
description either in commercial CAD modelers or
in STEP files [17];
The boundary of each component has faces embed-
ded in canonical surfaces, i.e. plane, cylinder, cone,
sphere, and torus. Most mechanical components
satisfy this constraint [26] and some functions
described afterward have extensions to free-form
surfaces. This issue is essentially left for future work.

The major features of an intrinsic assembly model are
listed as:

1. The boundary description of every component must
be:

◦ Independent of its modeling process. This
means the multiple construction processes of a
given solid M must produce the same bound-
ary decomposition. On the one hand, Fig. 2a
shows an example where a pocket feature is
defined with a contour embedding a symmetry
property (see Fig. 2b). As a result, the corre-
sponding decomposition of the contour (orange
and magenta subsets in Fig. 2b) generates an
edge E that is not intrinsic to the shape of M.
On the other hand, if the same pocket con-
tour is generatedwithout this explicit symmetry
decomposition, E is not going to appear in the
boundary of M. Concepts of maximal faces [6,

Figure 2. (a) B-Rep of amechanical component having a face decomposition illustrating the influence of an effective symmetry property
in the contour of a pocket. (b) Contour of the pocket bearing the symmetry property, (c) edges part of a boundary decomposition ofM
that derives from the homeomorphism condition required to apply the generalized Euler theorem.
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20] or specific treatments [21, 39] can be used
to obtain sets of faces becoming intrinsic to the
shape ofM;

◦ Independent of the topological constraints of
geometric modelers. Indeed, geometric model-
ers are subjected to conditions so the general-
ized Euler theoremmust be applicable toM [25]
to perform shape transformations during a con-
struction process. One of them is expressed by
the fact that the decomposition of the bound-
ary of M must produce sub-domains that are
homeomorphic to a plane. This ends up as a
constraint for surfaces of revolution where a
circle in a sketch may generate two half cylin-
drical faces in M (see Fig. 2c), depending on
the modeler considered, e.g. CATIAV5, or only
one surface in M that is split along one gener-
atrix, e.g., SALOME, or one cylindrical surface
that is bounded by two closed edges only, e.g.,
Siemens NX. In the latter case, however, the
Euler theorem is not readily applicable. At least,
one such edge must appear because the concept
of homeomorphism relates to the existence of
an embedding of a parametric plane into each
surface defining a face ofM, e.g. OpenCascade,
SALOME, and the location of this edge derives
from the underlying parameterization of the
surface of revolution. Removing these edges
ends up with a topological boundary descrip-
tion that becomes independent with respect to
any parameterization of the underlying surface
as well as the homeomorphism condition. This
is achieved with [6, 20] but there is no detail in
[21, 39] regarding this equivalence.

However, this independence is not fully achieved
with the face merging process only. It is mandatory

to carry on applying the same analysis at the level
of edges and this is achieved in Li et al. [20]
where an edge merging operator performs simi-
larly. Altogether, specific treatments are also applied
to vertices to generate a boundary decomposition
that meets the independence requirements. This
is achieved using three hypergraphs [20] form-
ing a data structure intrinsic to the shape of M.
This data structure is not superseding the ubiq-
uitous B-Rep CAD one, rather it is a new one
that is connected to the B-Rep CAD one (see
Fig. 3a);

2. Geometric properties extracted from components
that can be part of subsequent modeling opera-
tions must be obtained at the level of accuracy of
the modeler. This is often expressed as a linear tol-
erance, ε (mm), used to connect faces, edges, etc.
A typical value of ε is 10−3 mm for commercial
modelers. Subsequent modeling operations refer to
geometry processing that may be applied to com-
ponents to extract geometric properties at the level
of the assembly. As an example, reflective symmetry
properties of a component [20] can derive symme-
try planes that must be located with respect to M
within the tolerance ε to ensure that these planes can
be used to cutM if necessary and that any operation
equivalent to the inverse operation produces a valid
object. This example generalizes to state that the
geometry processing operators, oi, i ∈ {1, · · · , n},
must form a closed set, O, i.e., ∀oi ∈ O, ∀M,N, · · · ,
representing components (solids) or other geomet-
ric entities consistent with respect to ε and form-
ing the operands of oi, then (M,N, · · ·) oi→(P,Q, · · ·)
where (P,Q, · · ·) is the set of geometric entities out-
put by oi that are consistent with respect to ε;

Figure 3. (a) Intrinsic boundary description data structure connected with the CAD B-Rep data structure. H1, H2, H3 are hypergraphs
expressing adjacencies between (faces, edges), (edges, vertices), (faces, vertices), respectively. (b) Component highlighting inconsisten-
cies of feature position or shape based on a symmetry analysis. Pink and gray areas indicate regions inconsistent with respect to the
symmetry plane (green). (c) Inconsistent relative position of C1 wrt. C2 due to differences of hole axes positions. Axes of C1 and C2 are
located on circles having different radii.
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3. The product structure description must be indepen-
dent of the CAD assembly tree to avoid incorpo-
rating user-dependent and/or company-dependent
content, which is not intrinsic to an assemblymodel;

4. Rather, the product structure must be based on the
geometric interfaces between components [34]. The
corresponding intrinsic description is a graph struc-
ture rather than a tree structure. Identical compo-
nents must be characterized independently of their
names to generate a robust identification [18]. This
identification process should be performed as an
operator ok ∈ O, i.e., ok must enrich the closed set of
CADmodeler operators. Similarly, the identification
of groups of components Gc and other geometric
properties of an assembly must be generated within
the tolerance ε of the modeler to enable the re-use of
Gc or any other componentM as input of any oi. Any
group identification operator oG, or other assembly
property generator, ok, must belong toO. If oG oper-
ates on sets of components, i.e., solids, it does not
mean that oG is somewhat different from common
CAD modeling operators, e.g., feature-based oper-
ators like extrusion or pocket. Indeed, Gc, from a
geometric standpoint, can be seen as a single solid
with multiple components, as it can be described
using the generalized Euler operator [25], thus cat-
egorizing oG and similar operators in the range of
solid modeling operators. Now, some of these oper-
ators may produce so-called cellular models [28]
or, more generally, non-manifold models that are
needed to generate simulation models, e.g., for finite
element (FE) simulations. As an example, two com-
ponents M1 and M2 sharing a planar contact, i.e.,
a planar area of M1 coincides with a planar area of
M2, can be transformed into a cellular model when
one of these planar areas is removed and the remain-
ing boundary of the corresponding component is
connected to the other component. Common CAE
software, e.g., Abaqus, ANSYS, SALOME, perform
somewhat similar operations. Here again, these soft-
wares incorporate solid modeling kernels forming a
setO with respect to a tolerance ε;

5. Similarly to components, geometric interfaces sup-
porting the graph structure describing the intrinsic
assembly structure must bear an intrinsic boundary
description. This means interfaces of type contact
or interference must be identified using a tolerance
ε so that the areas thus detected can be processed
with operators belonging to O. Within such a con-
text, clearances cannot be seen as another category
of contactswhose distance parameterwould be some
distance β � ε. In this case, operators fromO can-
not be applied. If the operators described in the

following sections to identify clearances refer to a
user-defined threshold, it is a first simple approach
leaving a more generic approach to future work;

6. The assembly model accuracy, i.e., the tolerance ε,
must be similar to the tolerance value used for the
geometry processing of assemblies at other depen-
dent product development steps. This means the
tolerance ε used to process the geometry of com-
ponents or sets of components as mentioned in the
previous items of the current list must be similar
to the tolerance used to generate the solid model
of each component, which characterizes the prod-
uct definition phase performed at the engineer-
ing office and takes place prior to the setting of
the assembly model currently described. A similar
observation can be set up with regard to subsequent
assembly processing when considering the prepara-
tion of assemblies for FE simulations, for example.
When considering other similar dependencies along
a product development process, the requirement for
preserving the consistency of the tolerance ε can
be propagated as needed. However, if this analysis
favors the concept of an integrated software envi-
ronment, this is not strictly necessary because B-Rep
CAD models are not mandatory at all steps of a
product development process.

The previous list has enumerated the key geometric
and topological features of a so-called intrinsic assembly
model. As a consequence, components lacking some of
the geometric properties required to set up the intrinsic
assembly model, or failing under some geometry pro-
cessing with an operator ok ∈ O, may reveal geometric
inconsistencies in the assembly model processed. Here,
inconsistencies differ from those where components fail
to satisfy the required properties for defining a solid.
The latter are often encountered when solid models are
exchanged among different software, S1 and S2, describ-
ing solids using tolerance values ε1 and ε2, respectively.
Here, we refer to inconsistencies where components can
be effectively processed as solids but fails to produce the
required assembly model. Figure 3 shows two examples
of these inconsistencies:

- A component failing to produce a desired global
symmetry property (see Fig. 3b). This is highlight-
ing a modeling inconsistency at level higher than ε

when the user has located some features with respect
to others;

- An assembly where the relative position of fea-
tures belonging to different components is inconsis-
tent and generates inconsistent geometric interfaces
between these components (see Fig. 3c). Often, these
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inconsistencies are not straightforwardly visible, i.e.,
not visible on screen but larger than ε, because they
cannot derive from the built-in update processes
available in CAD or CAE software.

To the experience of the authors, these inconsisten-
cies are rather frequent in industrial assemblies as well as
assemblies available on openwebsites and it appears to be
a contribution of the concept of intrinsic assembly model
to be able to highlight such inconsistencies that are oth-
erwise difficult to find and to locate. It seems that among
the contributions of a knowledge-based assembly model,
the intrinsic geometric assembly model specified can be
a first step to ease the consistency check of these models
and locate more rapidly some sources of inconsistency.
Based on the above geometric features characterizing an
intrinsic assembly model, the following section focuses
on the software architecture enabling geometry process-
ing as well as symbolic information processing to model
and process assembly knowledge. Here, this knowledge
is addressed generically at a geometry level. Functional
and other mechanical engineering information will be
addressed elsewhere for sake of conciseness.

4. System architecture to process geometry as
well as symbolic information

In order to evolve from CAD assembly models toward
knowledge-based assemblies, it is mandatory to relate
some 3D geometry of an assembly to a knowledge rep-
resentation. The review of related works has pointed
out that ontology-based systems provide us with enough
flexibility to describe a wide variety of concepts as well
as capabilities to be coupled with inference engines to
process this knowledge.

The software architecture set up incorporates a
CAD modeler, part of the SALOME software platform

[33], developed by OpenCascade, EDF R&D and CEA.
SALOME is devoted to the numerical simulation of phys-
ical phenomena and addresses the geometry generation
of a simulation domain, the mesh generation and the
numerical simulation and its post processing, similarly
to ANSYS, Abaqus and other similar software. SALOME
being an Open source software, it offers the capability to
generate new entitiesmore easily than usingAPIs of other
commercial CAD or CAE software, which partly justi-
fies our choice. SALOME architecture decomposes into
modules among which GEOM is the geometric modeler
(see Figure 4). This modeler has no specific capability to
model and process assemblymodels, likewise other com-
mercial CAE software. Effectively, the geometric mod-
eler data structure of CAE software is strictly based on
the concept of geometric object, i.e., a solid or a sur-
face domain, possibly containing several disconnected
components but there is no concept of assembly tree in
such modules. Currently, the knowledge-based assembly
model, named MyProductFabrica, is available through
a specific SALOME module that can communicate and
exchange geometry with GEOM.

To be able to describe, store, and process knowledge,
a knowledge base, JENA, developed by Apache, is con-
nected to MyProductFabrica to describe the ontology as
RDF triplets stored in a triple store. A reasoner to process
inferences described as RDF triplets, CoGUI, developed
by GraphiK Inria team (see Figure 4) is connected to the
knowledge base. Indeed, the reasoner can be substituted
by other equivalent modules, e.g., the inference engine
GRAAL, developed by GraphiK Inria team, or other
inference engines to process RDF triplets. CoGUI, how-
ever, is not only a reasoner but it contains also conceptual
graph editing capabilities. Equivalently, the architecture
could use Protégé [31] rather than CoGUI.

Based on this architecture, a STEP file describing an
assembly is input into MyProductFabrica and processed

Figure 4. Software architecture incorporating a new module in SALOME, MyProductFabrica, a knowledge base, JENA, and a reasoner
CoGUI and interactions between these components.
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as follows to illustrate how geometry processing and sym-
bolic information are derived, feed the knowledge base,
and produce new knowledge through inferences (see
Figure 4):

- Geometry processing of each assembly component
and of the assembly itself takes place in MyPro-
ductFabrica. The geometric information thus gen-
erated is stored in MyProductFabrica (step 1). A
symbolic information can be attached to it to instan-
tiate concepts of the ontology as RDF triplets and
form a symbolic representation of some geometric
concepts;

- Each symbolic information derived from a geometry
processing algorithm generates a corresponding fact
that is inserted in the knowledge base, JENA, as RDF
triplets to populate the ontology (step 2);

- Symbolic information is loaded into the reasoner,
CoGUI, (step 3) and processed using inference rules
expressed as RDF triplets forming queries (step 4).
The facts derived from these inferences are stored
into the knowledge base (step 5). In simple config-
urations, inferences may not be mandatory and the
knowledge base can be accessed directly by queries;

- The visualization of the results is achieved inMyPro-
ductFabrica, taking advantage of the connections set
up between the geometric entities describing the
assembly and the entities resulting from the geom-
etry processing algorithms (step 6). Using these
connections, the symbolic information produced by
the queries can be expressed with the proper 3D
geometric entities.

This architecture is derived from previous work of
Ulliana et al. [42] since the knowledge basis can incor-
porate other symbolic information, e.g., human anatomy,
and bind ontologies together.

The above description of the elementary steps con-
tributes to the enrichment of the initial assembly model
to form a typical cycle transforming an assembly into a
knowledge-based one. As an example, the extraction and
comparison of geometric descriptors of components can
generate symbolic information expressing the property
‘C1 HasSameShape C2

′ between solids C1 and C2. The
comparison of geometric descriptors being algorithmic,
the facts inserted into the knowledge base may not con-
form to all their symbolic properties, e.g., ‘C2 HasSame-
Shape C1

′. To ensure the consistency of the knowledge
base, it is subjected to the so-called saturation process
that accounts for some properties of facts, e.g., symmetry,
transitivity, to generate new facts and ensure its con-
sistency. Then, querying the knowledge base for occur-
rences of components produces a set of facts that identify

components and, hence solids, that can be selected in
MyProductFabrica and visualized in 3D.

Among the most important features of this architec-
ture, it is important to point out that the consistency of
the knowledge base always holds because new facts are
always inserted automatically fromMyProductFabrica or
derived from CoGUI inferences and the saturation pro-
cess derives automatically all the facts required to keep
the knowledge base up to date. Consequently, the knowl-
edge base can be regarded as an effective knowledge
model of an assembly that is equipped with processes to
maintain the consistency of this model under ranges of
modifications.

5. Geometry and symbolic information
processing

Prior work on automatically and functionally enriched
assemblies [7, 34] has demonstrated the efficiency of
structuring assemblies for simulation preparation pur-
poses. Inferring functions was obtained through repet-
itive applications of rules to each component, resulting
in a lengthy process. Consequently, geometry processing
operators are important to take into account repetitive
configurations in assemblies so that similar configura-
tions between components can be identified and used to
infer component functions.

5.1. Geometry processing operators

Here, the focus is placed on the high level description
of the geometry processing operators and some symbolic
information processing to produce a synthetic overview
of interactions between 3D geometric entities and sym-
bolic ones enabling the knowledge-based description of
assemblies.

Based on Section 3, the following geometry process-
ing operators described conform to most of the corre-
sponding requirements. Among these requirements, the
one addressing the consistency of the operators, i.e., the
closed set O has been implemented, i.e., the operators
set up are all consistent with the accuracy of the geomet-
ric modeler, GEOM, and they are aligned on the same
tolerance ε = 10−3 mm.

The geometry processing algorithms perform the fol-
lowingmajor treatments. Each of them is not detailed for
sake on conciseness and their details will be published
elsewhere. They come as:

1. The generation of the maximal boundary decom-
position of each a component to obtain a bound-
ary that is intrinsic as described in Section 3. This
concept derives from Boussuge et al. [6, 20] and
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has been extended to be able to handle different
boundary decompositions that all fulfill the condi-
tions of Section 3 but may conform to additional
criteria [6, 20], [6]. Figure 5 gives an illustration of
this decomposition through two of the associated
hypergraphs;

2. The symmetry analysis of each assembly compo-
nent. It outputs a set of global symmetry planes (see
Figures 3b and 6) with the algorithm of Li et al.
[20] and uses the maximal boundary decomposi-
tion obtained previously. Consequently, the sym-
metry planes and/or axes obtained are intrinsic
to the component shape. Further, the symmetry
planes obtained can be organized in accordance
with ten categories of symmetries to cover shapes
of solids. Figure 6 illustrates four such categories.
The ten categories of global reflective symmetries
enumerate:
a. No symmetry plane;
b. One symmetry plane (see Figure 6a);
c. Two symmetry planes. They are necessarily

orthogonal (see Figure 6b);
d. Three symmetry planes. They are necessarily

orthogonal to each other (see Figure 6c);
e. Discrete axi-symmetry. All the symmetry

planes intersect along a common line defining
the ‘axis’ of the solid (see Figure 6d). Simple
examples of these shapes are solid pyramids
with a regular polygonal basis. In that category,

the number of symmetry planes can become
arbitrarily large;

f. Discrete axi-symmetry plus plane. In addition
to the previous category, there exists one sym-
metry plane that is orthogonal to all the others.
To fit into this category, such solids have four
symmetry planes, at least;

g. Axi-symmetry. The solid possesses an axis of
symmetry that is equivalent to an infinite num-
ber of symmetry planes intersecting along its
axis;

h. Axi-symmetry plus plane. In addition to the
previous category, there exists one symmetry
plane that is orthogonal to the symmetry axis.
Simple examples of these shapes are cylinders;

i. Discrete central symmetry. All the symmetry
planes intersect at a common point and that
point is the apex of pyramids defined from the
symmetry plane intersections. The solid angle
of every such pyramid is constant. This is equiv-
alent to have a finite number of discrete symme-
try ‘axes’ sharing a common point;

j. Central symmetry. Here, there are an infinite
number of symmetry axes. The only solid ben-
efiting this property is the sphere.
Observing the above descriptions, it can be
seen that these categories are independent of
each other. This information is automatically
attached to every solid of an assembly. A

Figure 5. Example of boundary decomposition of a solid (a). (b) hypergraph describing the adjacency (max face, max edge). Node color
indicates the category of surface (type of canonical surface). Arc color gives information about the underlying edge geometry. In case of
solids this hypergraph reduces to a graph. (c) hypergraph describing (max face, max edge) adjacency. Node color indicates the geometry
of the max edge. Hyperarcs are decomposed into binary arcs to conform to the Graphviz library capabilities.

Figure 6. Global symmetry properties of components organized into categories. Examples with four independent categories: (d) is a
nut.
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corresponding demonstration of these proper-
ties will be published elsewhere. These cate-
gories of symmetries are valid for any solid
whether bounded by canonical surfaces or free-
form ones;

3. The generation of a geometric shape descriptor for
each solidM. Here, some key features are given but a
detailed demonstration will be published elsewhere.
This descriptor is based on the maximal boundary
decomposition of M (item 1), on its global sym-
metry properties (item 2) and its inertia properties.
The descriptor is defined with the center of gravity,
G, of M, which is a unique point, and a reference
frame, RG, defined from its principal axes of iner-
tia. However, the principal axes of symmetry may
not be unique depending on the global symmetry
properties ofM. To this end, the categories of global
symmetry properties (items 2a-2j), SG, are used to
characterize the uniqueness of each principal axis
of inertia. In connection with the global symme-
try properties SG, the hypergraphs Hi, i ∈ {1, 2, 3},
of maximal boundary decomposition are processed
to reduce them to their minimal subsets HRi, i ∈
{1, 2, 3}. Thus, G, SG, HRi, the geometric parameters
of each canonical surface, and their spatial location
in RG, PC, characterize the finite number of isome-
tries that can reduce RG to a unique and intrinsic
reference frame, RGM , ofM. Altogether, (G, SG, HRi,
PC, RGM) is intrinsic to M and forms its descrip-
tor. Figure 7a gives an example of the usage of this
descriptor to identify occurrences of components in
an assembly;

4. The extraction of identical components. Identical
shape descriptors (see Figure 7a) produces occur-
rences of components or, more precisely, of solids.
The proposed descriptor is able to remove the isome-
tries between components related to their center
of gravity as well as the isometries related to the
global symmetry properties that define RGM . This
solves the posing problem [38] and approximate

comparisons of their HRi and PC [13, 39], or the use
of discretizations [23, 38, 45], can now be avoided.
Using the proposed descriptor, it is equivalent to
consider that components have a distance zero [38].
Though these occurrences may appear in the STEP
file and assembly tree describing the assembly, their
names are neither robust nor intrinsic compared to
the proposed shape descriptor;

5. The extraction of families of components. This is
a weaker form of the previous geometric descrip-
tor where the comparison uses SG, HRi, but PC is
no longer used. Additionally, local symmetry prop-
erties [20] are added to characterize the desired
set of shapes (see Figure 7b). These properties are
equivalent to geometric properties of type paral-
lelism, orthogonality among others. Components
belonging to the same family are bound to the same
topology, as defined by HRi. Though this is a first
approach, it could be extended to cover topological
variants [43] but it is already efficient to characterize
components like screws, nuts, bearings, . . . ;

6. The symmetry properties of an assembly. Based
on item 2, this symmetry analysis is extended to
determine sets of components benefiting symme-
try properties (reflection planes, symmetry axes). It
uses the global symmetry properties of each com-
ponent independently, the concept of intrinsic ref-
erence frame of each component (see item 3), and
the concept of occurrence (see item 4) to propagate
symmetry planes across components (see Figure 8a).
Similarly to solids, categories of symmetries can be
defined for assemblies;

7. The repetition properties of components. It is a
generalization of the symmetry analysis [20] to
characterize the spatial relationships among com-
ponents. Linear and circular patterns are detected
based on the intrinsic reference frame assigned to
each component (see item 3) after occurrences of
components are made available (see item 4). They
form three sets of properties:

Figure 7. (a) Extraction of categories of identical components. Each color identifies a different category. (b) Extraction of families of
components: Each color identifies a different family. The results have to be compared with (a) to distinguish the newly identified
components.
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Figure 8. (a) Extraction of symmetry planes: A symmetry plane attached to a set of components (in red). The corresponding set of com-
ponents is of maximal cardinality. The two views depict the same plane. (b, c, d) Extraction of repetitive patterns of single components.
(b) rotational pattern related to nuts. Due to the global symmetry property of nuts (see Figure 6d), it is simultaneously of type radial as
well as translational circular. (c) shows all the translational patterns. (d) shows an example of ‘2D linear’ one.

a. Rectilinear repetition of components;
b. Rotational repetition of components that are

radially distributed (see Figure 8b);
c. Rotational repetition of components that are

translationally distributed according to a cir-
cular pattern (see Figure 8b). Indeed, this cat-
egory of repetitions reflects the construction
process of assembly models where a given com-
ponent is instantiated several times, e.g., nuts
connected to screws, while their relative posi-
tion is not entirely constrained by their neigh-
boring components;

Their cardinalities are:RL,RR,RTR, respectively. This
is an extension of Lupinetti et al. [21, 22] using
information intrinsic to an assembly (see Figure 8b,
c, d). These properties can be fairly combinato-
rial. In order to reduce the cardinality of RL, RR,
RTR, rectilinear repetitions are extracted when three
components, at least, are aligned. Similarly, rota-
tional repetitions are assigned a lower bound of four
components;

8. The extraction of repeated sets of componentswhose
relative positions are identical. This generalizes the
concept of sub-assembly and these sets are called
‘modules’ (see Figure 9). More precisely, a module
can be defined as a set of components, CM =
{Ci, · · · ,Cj,Ck}, each of them occurring twice, at
least. Also, CM characterizes the relative positions
of its constitutive components, Ci, · · · ,Cj,Ck and
CM forms a module if the assembly contains two
such instances, at least. Extracting all the modules

Figure 9. Extraction of repetitive patterns of sets of compo-
nents forming ‘modules’. Each color identifies a different set of
components. The orange and grey modules effectively differ
because clearances are not distributed symmetrically between
occurrences of these two sets.

brings intrinsic information that participates to the
definition of intrinsic sub-assemblies. However, it is
important to point out that the extraction of all the
modules is heavily combinatorial since, on one side,
card(CM) is unknown and should be maximal in the
given assembly and, on the other side, the number of
instances of CM is also a result of the extraction and
maximalwith respect to the set of components form-
ing the assembly. These twomaxima are interdepen-
dent since the removal of a component in CM can
raise the number of instances. Presently, symmetry



COMPUTER-AIDED DESIGN & APPLICATIONS 311

properties of the assembly (item 7) are used to speed
up the extraction of modules;

9. The extraction of the graph of geometric interfaces
between components similarly to Boussuge et al.
[7, 34]. Currently, the graph has been extended to
incorporate interferences, contacts and clearances
(see Figure 10). This extraction is based on geome-
try processing operators currently available in CAD
geometric modelers, thus ensuring the use of closed
set of operators consistent with the tolerance ε.
Clearances are derived from a user-defined distance,
which is not intrinsic to the assembly but its gen-
eralization is left for future work. The geometric
interfaces are structured into categories, e.g., contact
areas are subdivided into categories: planar, cylindri-
cal„ . . . , that can be related to functional informa-
tion (see Figure 13).
Interfaces are processed to extract geometric prop-
erties, e.g., characterizing contact areas between
canonical surfaces of revolution of angle π <, >

π or = 2π . Sub categories thus obtained are use-
ful information for functional purposes or assembly
process purposes.

All these geometric informations produce geomet-
ric properties and some of them can be described as
symbolic information and concepts of the assembly
ontology. The corresponding process flow is depicted
in Figure 11. Symbolic information populates the

knowledge base, which is currently restricted to generic
geometric properties. Functional or other application
dependent informations are part of ongoing work and
will be described elsewhere.

5.2. Symbolic information generation and
processing

Here, the issue is the characterization of geometric
information, as made available from section 5.1 and
through the geometry of each solid of the CAD assem-
bly, that can become a symbolic information inserted
into the knowledge base while staying connected to its
geometry counterpart so that this symbolic information
becomes part of the intrinsic model of the assembly. The
tree structure possibly available is not addressed here
since the information contained is neither robust nor
intrinsic.

Somehow, the objective is the extension of the intrin-
sic model described in Section 3 to symbolic infor-
mation. One justification for such an extension holds
in the fact that it is aimed at describing and process-
ing assemblies at a knowledge level and, more pre-
cisely, a functional knowledge level. Another justification
derives from the fact that assembly knowledge has
been barely explored and its structure is rather unclear,
therefore using an algorithmic approach is not suitable
since the programming effort may be severely reconsid-
ered if data structures require significant modifications.

Figure 10. Graph of geometric interfaces between components. Nodes are solids of the assembly and arcs indicate the interfaces
between them. The assembly processed is the hydraulic pump (see Figure 1).

Figure 11. Process flowgeneratingan intrinsic knowledge-basedassembly.Orangearrows indicategeometryprocessingdependencies,
blue ones express the extraction of symbolic information from geometry, red ones characterize dependencies of symbolic information.
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Ontology-based approaches appear less sensitive to such
evolutions. Lastly, it appears that large CAD assem-
blies are not always easy to process interactively, e.g.,
selecting interactively hundreds or thousands of com-
ponents is fairly tedious and error prone, rather than
querying the assembly model using the knowledge
base.

Here, the model of symbolic information is ontology-
based. Consequently, some geometric entities can be
mapped to concepts as part of it. The most important
feature is the automated mapping between the geom-
etry processing (Section 5.1) and the entities, i.e., the
concepts, of the ontology-based model of the sym-
bolic environment. Indeed, it is a key aspect because
the geometry processing operators or, more generally,
the closed set O (see Section 3) forms an automation
producing consistent geometric entities. This consis-
tency must be extended to the symbolic environment
and the automated mapping is part of this extension.
This means populating the knowledge base and gen-
erating new symbolic information must be achieved
automatically to obtain a consistent knowledge-based
assembly model. This justifies the use of an inference
engine to automate the generation of new symbolic
information.

For the sake of conciseness the content of the ontol-
ogy is not described. The focus is placed on the inference
mechanism.

Firstly, concepts are identified that do not require
numerical treatments though they enable geometric rea-
soning to extend the knowledge assemblymodel through
the generation of new symbolic information. In a first
place, let us consider the concept of occurrence. A sym-
bolic extension that relates to geometry is the con-
cept of component that is related to geometry with its
corresponding solid. Then, the geometry processing of
solids, i.e., components, using its geometric descriptor
enables the extraction of occurrences. A component Ci
is mapped to ‘ComponentOfIndustrialProduct(Ci)’ whose
solid model, Mi, is mapped to ‘Solid(Mi)’ and occur-
rences are expressed with the property ‘AreGeometricOc-
currences’ and related to components with ‘AreGeomet-
ricOccurrences(Ci, Cj)’.

Similarly, all the geometric informations extracted and
described at section 5.1 have their symbolic counterpart
generated in the knowledge base (see Figure 11). The
knowledge base is automatically fed with facts belong-
ing to the intrinsic assembly model. As examples, the
knowledge base contains:

- The global symmetry properties of each solid model
Mi of component Ci, e.g., ‘IsAxiSymetric(Mi)’;

- A geometric interface I between components (Ci,Cj)
is a property of each component based on its solid
model Mi with, e.g., ‘HasGeometricInterface(Mi, I)’.
The geometric assembly model contains the geo-
metric interface graph and, somehow, the property
‘HasGeometricInterface’ describes the same graph
topology in the knowledge base. This is complemen-
tary since the geometric interface graph is processed
for quantitative and structural purposes, i.e., subdi-
vision of the graph into cycles or dangling connec-
tions, . . . , whereas symbolic information is essen-
tially bound to adjacency relationships, i.e., ‘HasGe-
ometricInterface’;

- A taxonomy of geometric interfaces in each compo-
nent [34]. This is a property of geometric interfaces,
I, e.g., ‘PlanarContact(I)’. This property is mapped
to the lowest level of function that is being set up in
the knowledge based assembly model [34], e.g., ‘Pla-
narSupport(F)’ that can be generated using the fol-
lowing rule: ∀Mi, I. Solid(Mi) PlanarContact(I) Has-
GeometricInterface(Mi, I) → ∃F HasFunction(Mi,
F) PlanarSupport(F), where F is an instance of
function.

From this knowledge base, a set of inference rules has
been developed under first order logic form:

∀X̂, Ŷ(Hypothesis(X̂, Ŷ) → ∃ Ẑ.Conclusion(X̂, Ẑ))

Here,Hypothesis andConclusion are sets of atoms defined
over sets of variables X̂, Ŷ , Ẑ. The formal semantics
of the existential rules is based on the concept of homo-
morphism [3].

Other inference rules can be illustrated to pro-
duce new facts and derive higher-level structural infor-
mation. These inferences enable the extraction of
‘Groups’ and ‘Piled up’ components. These two con-
cepts are interesting because they are geometric sub-
sets of functional properties. A Group is a set of solids
SM , {Mi,Mj, · · · ,Mk} ⊂ SM representing components
{Ci,Cj, · · · ,Ck}, occurrence of each other, that share a
same type of interface with a single component T. The
corresponding rule writes:

∀Mi,Mj,T, Ip, Iq.Solid(Mi)Solid(Mj)Solid(T)Interface(Ip)

Interface(Iq)AreGeometricOccurrences(Mi,Mj)

HasGeometricInterface(Mi, Ip)

HasGeometricInterface(Mj, Iq)

HasGeometricInterface(T, Ip)

HasGeometricInterface(T, Iq) → Group(Mi,Mj)
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As such, this rule finds groups of cardinality two. To
extract generic configurations, it is applied in coopera-
tion with a transitivity rule enabling to produce groups of
arbitrary cardinality. Typically, groups appear in the case
of nuts and studs assembling a housing (see Figure 12b).
This is interesting for assembly / disassembly simulation
[32] to generate parallel sequences. In Rejneri et al. [32],
they were interactively defined but can be automatically
identified now. These groups convey functional informa-
tion since the components involved share a geometric
interface and characterize the repetition of this infor-
mation. This is important to speed up the inference of
functional designations of components [7, 34] because
groups express that identical components sharing iden-
tical geometric interfaces bear the same functional
meaning.

A set of ‘PiledUp’ components {Ci,Cj, · · · ,Ck} rep-
resented by their solids {Mi,Mj, · · · ,Mk} ⊂ SM is a set
of identical components sharing geometric interfaces of
same type (see Figure 12b). The inference process is
based on a first rule involving any two of its components
stated as:

∀Mi,Mj, Ip.Solid(Mi)Solid(Mj)Interface(Ip)

AreGeometricOccurrences(Mi,Mj)

HasGeometricInterface(Mi, Ip)

HasGeometricInterface(Mj, Ip)

→ ElementaryPiledUp(Mi,Mj)

Then, to extend the cardinality of this set to an arbitrary
number of components, two complementary rules are set

up based on the following properties: (i) if two solids
form an ‘ElementaryPiledUp’ set, then they belong to the
same ‘PiledUp’ set, (ii) the previous property is transitive.
These properties write:

∀Mi,Mj.ElementaryPiledUp(Mi,Mj)

→ PiledUp(Mi,Mj)

∀Mi,Mj,Mk.PiledUp(Mi,Mj)PiledUp(Mj,Mk)

→ PiledUp(Mi,Mk)

This property occurs is the case of Belleville washers
(see Figure 12b). Piled up components express func-
tional information related to the elastic behavior of the
Belleville washers because these washers are elemen-
tary spring elements with rather high stiffness compared
to common helical springs. Here, the discovery of the
‘PiledUp’ set is a hint toward the discovery of the spring
function and shows how the number of piled upBelleville
washers linearly modulates the stiffness of the ‘PiledUp’
set.

Indeed, Groups and PiledUp sets are examples of
assembly structures that can contribute to the func-
tional definition of sub-assemblies and become part of
the intrinsic knowledge-based assembly model. Groups
and PiledUp sets illustrate also how new symbolic infor-
mation can be derived solely from the assembly model
input. Additionally, it is important to note that every time
an inference is performed, a saturation of the knowl-
edge base takes place to ensure the consistency of the
facts derived from this inference. This ensures the consis-
tency of the intrinsic knowledge-based assembly model
with:

Figure 12. (a) geometric properties from interfaces between components. A subset of the color code indicates: cylindrical interferences
(pink), planar contacts (violet), cylindrical contact (beige). (b) Examples of higher-level structures derived from inference rules:Groups and
PiledUp components. Groups of components: The colors of components indicate different sets of Groups. Inside the same color, different
components shapes indicate different Groups. The common component involved in each Group is represented with transparency. The
pale violet one relates to the blue components. The pink one relates to the red components. PiledUp components are two Belleville
washers (in gray).
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- The consistency of the intrinsic assembly geometric
model described in Sections 3 and 5.1;

- The consistency of the taxonomies derived from the
geometric entities;

- The consistency of the knowledge base that is partly
achieved with saturation processes during infer-
ences and existential rules acting as constraints not
described here for sake of conciseness;

- The automation of all the geometry and symbolic
information processing.

Currently, the intrinsic knowledge-based assembly
model contains an ontology described with 103 concepts,
41 relations, 10 inference rules, and 21 constraints.

6. Results and discussion

The proposed approach has been applied to various
assemblies. The assemblies selected are:

A1. A hydraulic pump that has been used to illustrate
most of the geometry and knowledge processing
described in Section 5 (see Figures 1, 8, 9, 10, 13);

A2. An electric stapler (see Figure 13a);
A3. A subset of wing – aircraft body junction (see

Figure 8c, d);
A4. A tooling equipment used to support an aircraft

wing (see Figure 13b).

They are ordered by increasing number of elementary
components. A2 and A3 contain approximately the same

number of components but differ in terms structure, as
depicted in Table 2.

Table 1 gives a breakdown of timings (geometry pro-
cessing and symbolic information processing). The tests
have been performed on a PC with Intel 8 cores 64 bits
processors @3.4Ghz, 16 Gb RAM.

The analysis of the geometry processing results shows
that the algorithmic complexity can have a significant
influence over the processing time. This is particu-
larly illustrated when computing the reflective symme-
try planes of very large assemblies (Assembly A4). It
should be pointed out that the Module computation
times reported have been obtained using an algorithm
with low combinatorial complexity. An algorithm with
an exhaustive list of Modules incorporates a much
larger combinatorial complexity. As an example, the time
reported for A3 evolves from 0.21s in Table 1 to 18s when
referring to the largest combinatorial complexity. A2 and
A3, though having nearly the same amount of solids,
exhibit significant differences of processing time for some
treatments due to the differences of:

- Shapes of the components;
- Number of solids contributing to groups of occur-

rences, i.e., structural differences.

Anyhow, these treatments stay efficient compared to
the computation of the geometric interfaces because they
use the intrinsic reference frame of each solid. The cor-
responding treatments become independent of the com-
plexity of each component. Computing geometric inter-
faces requires further investigations in Open Cascade

Figure 13. Test examples of assemblies.

Table 1. Assembly geometry processing. Meanings of the columns: ‘Decomp.’ (decomposition of the assembly into solids), ‘Treat. Sol.’
(treatments of a solid up to the computation of its geometry descriptor), ‘Occur.’ (computation of the occurrences), ‘Ass. Sym.’ (reflective
symmetry planes of the assembly), ‘Repeat.’ (computation of linear & rotational repetitions), ‘Modules’ (computation of the mod-
ules), ‘Total’ (time for all the previous treatments), ‘Interfaces’ (computation time of all the geometric interfaces). *indicates that the
computation of geometric interfaces is partial.

Ass. ID Decomp. Treat. Sol. Occur. Ass. Sym. Repeat. Modules Total Interfaces

A1 3 10−3 s 10.7 s 0.23 s 1.06 s 0.9 s 4 10−3 s 12.94 s 14mn 10s
A2 3 10−3 s 40.23 s 1.14 s 12.31 s 8.21 s 0.019 s 61.94 s 7mn 16s
A3 14.25 s 1.39 s 22.75 s 2.71 s 0.21 s 41.33 s 2mn 7s
A4 15 10−3 s 11mn 17s 4mn 12s 100 mn 4mn 24s 12mn 41s 137mn 213mn*
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Table 2. Assembly structure parameters. Columns meaning: number of solids in the assembly, number of groups of identical solids and
total amount of solids in these groups (for #Occur and #Family), number of repetitions (linear and rotational) and number of solids they
involve, number of modules and number of solids into these modules, number of ‘PiledUp’ configs, and number of groups and number
of solids they involve (possibly with duplicates).

Ass. ID #solids #Occur. Family #Repeat. Modules PiledUp Groups

A1 47 9gr, #27 11gr, #33 1, #12 3gr, #20 1 8, #24
A2 124 9gr,#70 12gr,#80 8, #54 2gr, #54 2 41, #141
A3 148 14gr, #141 8gr, #141 324, #61 13gr, #44 1 9, #202
A4 1793 214gr, #1786 334gr, #1791 165, #1068 253gr, #1222 N/A N/A

Table 3. Assembly knowledge processing performances. The
columns designate: number of facts (triplets) inserted in the
knowledgebase, time to insert them, time for the knowledgebase
saturation.

Ass. ID #triplets Insertion Saturation

A1 2593 3 s 5.5s
A2 12947 19 s 20mn 4s
A3 20148 45 s 21mn 56.5s
A4 153469 8 mn N/A

library to characterize the robustness of its operators
because the timing seems sensitive to some component
configurations and, in the case of A4, didn’t produce all
the geometric interfaces. Altogether, Table 2 shows the
results characterizing the structure of each assembly and
highlights the importance of the concepts described in
Section 5.

In the scope of knowledge processing, it has to be
pointed out that assembly A4 exhibits partial results
because the saturation could not be performed due to
technical limitations of the inference engines. Conse-
quently, the timing for saturation is not available, as well
as the PiledUp sets of solids and the Groups. Also, the
knowledge processing time is significant compared to the
geometry processing one, though it is performed only
once to ensure the consistency of the knowledge and geo-
metric assembly model. The size of the queries appears
as a current issue too due to its connection with the
query execution plan as set up by JENA. Typically query
execution time can range from tenth of seconds to sev-
eral seconds depending on the complexity of the query.
Another important issue holds in the capacity of the
inference engines to handle large datasets, as pointed out
by assembly A4. These limits are currently analyzed and
processed.

The knowledge base and queries characterizing the
treatments described at Section 5 are made publicly
available from the website (IE and Firefox naviga-
tors): http://3dassblyanlysis.gforge.inria.fr/3d/ for the
hydraulic pump where the 3D viewer uses a facetted
representation of the assembly.

The results obtained validate the proposed approach
and the concept of intrinsic knowledge-based assembly

model. Because this concept is fairly generic, it can
find applications into a wide scope from finite element
model preparation as illustrated in Boussuge et al. [7],
capitalization and model retrieval as illustrated in [11,
21, 22, 45] to contribute to a descriptor of assemblies
and bring some functional meaning, and assembly /
disassembly simulation where the geometric interfaces
can bring automatically more precise information about
extraction directions [16, 30], help defining assembly
sequences [15, 16, 32, 44]. Future work involves the
extension of geometric operators to improve their effi-
ciency, especially for modules and develop new ones
to handle a larger range of interfaces between compo-
nents. From the symbolic information point of view, the
current limitations encountered regarding the queries
and the size of the knowledge base during inferences
are addressed to achieve the scalability of the proposed
approach. The extension of the reasoning mechanisms is
ongoing with the identification of bearings, O-ring seals,
fasteners, . . . , as functional designations.

7. Conclusion

The proposed approach structures CAD assembly mod-
els based on intrinsic information. The content of the
assembly structure is available as 3D entities in the CAD
modeler SALOME and it is tightly connected to the
knowledge base JENA where it can be queried through
the assembly ontology. The initial assembly is now trans-
formed into a first level of knowledge-based assembly
where low-level functional information is made available
for a wide range of applications.

The concept of intrinsic knowledge-based assembly
model has proved its efficiency through assembly struc-
tural information that would hardly be available other-
wise; the availability of a geometric descriptor of CAD
components, and the knowledge processing that can be
regarded as a first level of approach to spatial reasoning
in a symbolic environment.

The overall consistency of the model has been high-
lighted though the formalism of the mixed model is still
to be developed.

http://3dassblyanlysis.gforge.inria.fr/3d/
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