
COMPUTER-AIDED DESIGN & APPLICATIONS, 2018
VOL. 15, NO. 3, 378–389
https://doi.org/10.1080/16864360.2017.1397888

Editable texture map generation and optimization technique for 3D visualization
presentation

Tsung-Chien Wu a, Jiing-Yih Lai a, Watchama Phothong a, Douglas W. Wang b, Chao-Yaug Liao a and
Ju-Yi Lee a

aNational Central University, Taoyuan, Taiwan; bOrtery Technologies, Inc., Taiwan

ABSTRACT
The mesh parameterization method has been widely used in computational geometry. It maps a
three-dimensional (3D) model onto the parametric (UV) domain, on which various applications can
be developed, such as texturemapping. The texturemapping technique is commonly used to create
the 3D color model of an object by combining a 3D model with the object’s texture map. However,
the resolution and quality of the texture on the color model is important and requires careful con-
sideration. The purpose of this study is to develop an integratedmethod for generating the 3D color
model of an object based on the conformal mesh parameterization and a technique for direct tex-
ture mapping from the object images. Furthermore, an optimization process in texture mapping is
developed to maintain the photo consistency at the transition of different images on the 3D color
model. The proposed 3D color model is integrated with a 3D visualization method for a new easier
and smoother presentation mode for 3D product presentation in e-commerce applications. Several
realistic examples are presented to demonstrate the feasibility of the proposed method.

KEYWORDS
Conformal Mapping; Direct
Texture Mapping; Mesh
Parameterization; Pixel
Extraction; Triangular Model

1. Introduction

Two-dimensional (2D) images of an object are com-
monly used for product presentation in e-commerce,
mainly because these images can reveal the object detail
in high quality and are easy to process. However, only
limited viewing angles of an object can be observed from
2D images. Three-dimensional (3D) visualization is an
alternative technique for product presentation, in which
multiple 2D images showing different viewing angles are
integrated. The user can orient a 2D image at a given
viewing angle via a viewing interface. However, in such
a presentation, the user can only view images that were
captured beforehand. Further, owing to limited angles
recorded, the orientation process is not fluent enough.
In addition, the actual 3D shape and dimensions of the
object cannot be obtained using this approach. A 3D
model combined with color texture technology, called
3D color model hereafter, is an alternative approach
for product presentation in e-commerce. Various tech-
niques can be employed to create a texture map for a 3D
model. However, it could be necessary to edit the texture
once it is generated. Therefore, it is required to generate
an editable texture so that the editor can easily recog-
nize the editing part and perform the required editing.

CONTACT Tsung-Chien Wu rabbit94577@gmail.com; Jiing-Yih Lai jylai@ncu.edu.tw; Watchama Phothong p_watchama@hotmail.com; Douglas
W. Wang dwmwang@gmail.com; Chao-Yaug Liao cyliao@ncu.edu.tw; Ju-Yi Lee juyilee@ncu.edu.tw

Furthermore, the photo inconsistency at the transition of
different image resources could be a problem as it may
cause the distortion of the 3D color model. Therefore,
for e-commerce applications, the quality of the texture
should be investigated.

The mesh parameterization technique in computa-
tional geometry provides several practical applications.
Sheffer et al. [16] and Hormann et al. [9] introduced
and summarized several typical methods ofmesh param-
eterization and its applications, e.g. texture mapping,
normal mapping, detail transfer, morphing, mesh com-
pletion, editing, database, remeshing, and surface fitting.
The available techniques for mesh parameterization can
be divided into types relating to distortion minimiza-
tion, fixed or free boundary, or numerical complexity.
For distortion minimization, an objective function can
be formulated in terms of angles, areas or distances, and
it is minimized to yield the optimized mapping of the
model from the 3D domain to the parametric domain
(called UV domain hereafter). The fixed boundary can
be obtained by a simple formulation, allowing for an
easy solution, but, the distortion in parameterization is
quite large. In contrast, the free boundary has less dis-
tortion in parameterization, but obtaining the solution is

© 2018 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/16864360.2017.1397888&domain=pdf
http://orcid.org/0000-0002-2299-7361
http://orcid.org/0000-0002-0495-0826
http://orcid.org/0000-0002-3239-4564
http://orcid.org/0000-0002-8039-5027
http://orcid.org/0000-0001-8203-9520
http://orcid.org/0000-0002-2244-4863
mailto:rabbit94577@gmail.com
mailto:jylai@ncu.edu.tw
mailto:p_watchama@hotmail.com
mailto:dwmwang@gmail.com
mailto:cyliao@ncu.edu.tw
mailto:juyilee@ncu.edu.tw
http://www.cadanda.com

COMPUTER-AIDED DESIGN & APPLICATIONS 379

time-consuming in computation because the boundary is
considered as part of the solution. Numerical complexity
is divided into linear andnonlinearmethods. The nonlin-
ear method is complex and requires more computational
time, but it yields less distortion in the result.

The angle-preserving approach, also called confor-
mal mesh parameterization, aims to minimize the angle
distortion when unwrapping a 3D model onto the UV
domain. Eck et al. [4] proposed a method to convert
an arbitrary mesh to a multiresolution form via a har-
monic map. The boundary of the harmonic map is fixed
and the numerical complexity is linear. Floater [5] pro-
posed an algorithm based on discrete harmonic map-
ping to preserve the shape in mapping. The positive and
symmetric weights were considered to ensure that the
parameterization is bijective. The boundary of the shape-
preservingmethod is fixed and the numerical complexity
is linear. Floater [6] further developed amethod for com-
puting the harmonic map by setting mean-value weights.
This approach can yield a planar parameterization with
less angle distortion. The boundary of this method is
fixed and the numerical complexity is linear. Lévy et al.
[10] solved for the meshes on the UV domain based on
a least-squares approximation of the Cauchy-Riemann
equations. This method can minimize both angle and
area distortion, and also establishes the topology of the
planar meshes. Desbrun et al. [3] proposed a method,
called instinct parameterization, to minimize angle dis-
tortion. These two methods have free boundaries and
linear numerical complexity. The free boundary can yield
less distortion in the UV domain.

Sheffer et al. [14] proposed a mesh parameterization
algorithm, called angle-base flattening, to optimize the
angles on the UV domain. The topology of triangular
meshes is set as constraints in this method. Thus, it can
maintain the correctness of themesh topology on theUV
domain. Sheffer et al. [15] proposed another method to
make the optimization process more efficient. In addi-
tion, the hierarchical algorithm was employed to deal
with the case of a large amount of triangular meshes. The
computational efficiency can be increased while deal-
ing with this kind of mesh. Zayer et al. [18] proposed
a method to apply linear equations for solving the opti-
mization problem. Linear equations were derived from
the angle-base flattening approach, in which topological
constraints were specified. Zigelman et al. [19] developed
an algorithm to generate a geodesic distance map. It can
minimize the distance distortion on the UV domain. The
texture information can be preserved on both 3D andUV
domains. Degener et al. [2] employed an energy func-
tion to minimize the angle and area distortion on the
UV domain. Mesh topology errors, such as face flip, were

prevented as well. The aforementioned approaches are all
free boundary and non-linear parameterization.

The technique of texture map generation not only
deals withmesh parameterization, but also solves the tex-
ture transferring problem. Niem et al. [12] proposed a
procedure of texturing themeshes that includes grouping
themeshes using the camera information to find themost
appropriate image source, filtering the boundary between
two different groups tominimize the color inconsistency,
and synthesizing the invisiblemeshes using the neighbor-
ing color. Genç et al. [8] proposed a method to extract
the pixels and render the texture dynamically. The extrac-
tion is performed by scanning the pixels horizontally
and rendering every color onto the meshes. Baumberg
[1] proposed an algorithm to process the color differ-
ence from two different images using a blendingmethod.
The images were filtered into high and low bands. The
low band images were averaged to minimize the color
difference, whereas the high band images were kept to
maintain the outline of the object boundary.

In this study, a method in accordance with confor-
mal mesh parameterization is developed for unwrapping
3D triangular meshes onto the UV domain, and an inte-
grated process is proposed for direct texture mapping.
The proposed method can generate an editable texture
map for further manual editing. Additionally, the photo
inconsistency problem in traditional 3D color model
is improved by providing an algorithm to detect and
remove the inconsistency in photo at the transitions of
different images. The proposed direct texture mapping
can be divided into three phases: grouping of 3D trian-
gles, color pixel extraction from object images, and color
pixel placement on the texture map. Grouping of 3D tri-
angles is to determine the most appropriate object image
for each triangle on the UV domain. The camera view-
ing angle for each object image and the normal vector for
each triangle are known. The grouping rules can be deter-
mined by several factors, which will be described later.
Color pixel extraction from object images and color pixel
placement on the texture map are implemented simul-
taneously. By projecting 3D triangles onto the image
domain and evaluating the relationship of them on the
image and UV domains, a texture map is eventually gen-
erated to describe a 3D color model. The most critical
problem in texture mapping is that the junctions of dif-
ferent images on the texture are usually not properly
connected. An algorithm is proposed to deal with the
photo inconsistency problem at such junctions. Several
examples are presented to demonstrate the feasibility of
the proposed method. Several important characteristics
of the proposed method in e-commerce application are
also addressed.

380 T.-C. WU ET AL.

Figure 1. Visualization of the steps of the proposed method, (a)
Input object images, camera information, and object meshes, (b)
divide 3D meshes into segments for mesh parameterization, (c)
unwrap 3D meshes onto the UV domain to yield a UV map, (d)
grouping of 3D meshes, and (e) final texture map and 3D color
model.

To generate a 3D color model, the object images must
be captured sequentially in a controlled environment. In
addition, the camera information should be obtained by
capturing the calibrationmat and performing the calibra-
tion process [11]. The object’s 3D model is constructed
by the shape-from-silhouette (SFS) algorithm [13], and
the shape and surface of the 3D model are optimized by
silhouette and smoothing factors [13], [17]. The afore-
mentioned process can yield a 3D model for texture
mapping, where the 3D model is composed of triangu-
lar meshes. Fig. 1 is the steps of the proposed method
for generating an editable texture map and 3D color
model. The first step is to input the optimized 3D trian-
gular meshes, the object images and camera information.
Next, the 3D meshes are separated into several segments
in accordance with the requirement. Subsequently, each
mesh segment is unwrapped onto the UV domain and
all planar meshes on the UV domain are packed together
to form a UV map. Furthermore, the triangles on 3D
meshes are grouped, with each group of meshes unwrap-
ping onto an image with the most appropriate viewing
angle. Finally, the color extraction and pixel placement
are implemented simultaneously. The pixels covered by
each triangle on the UVmap are filled in using the pixels
extracted from the corresponding image. The 3D color
model is then output and saved as an OBJ file. The tech-
niques used to achieve these tasks are described below.

2. Editable conformal mesh parameterization

The editable mesh parameterization is based on a sep-
arated 3D model; the regions of interest are separated
as individual segments and are editable when they are

Figure 2. 3Dmeshes subdivision, (a) original 3D meshes, and (b)
segments of 3D meshes separated manually.

unwrapped onto the UV domain. Therefore, the 3D
meshes should be separated into segments either man-
ually or automatically before mesh parameterization is
implemented. Fig. 2 shows an example of separating 3D
meshes manually. The meshes are separated based on
two criteria. First, a segment to edit should be separated.
Second, each segment should be simple in geometry for
avoiding distortion in unwrapping. Mesh parameteriza-
tion is implemented one by one on all segments and
each is unwrapped onto the UV domain. The basic idea
of the proposed conformal mesh parameterization is to
unwrap 3D meshes onto the UV map while preserving
the angles of each triangle on the UV domain. A critical
issue of the preservation is that all angles of 2Dmeshes on
the UV domain cannot be kept the same as those of 3D
meshes. Therefore, an optimization problem is formu-
lated to minimize the deviation of angles and determine
the optimize vertices on 2D meshes [14–15], [18]. Fig. 3
shows the flowchart for the optimization and parame-
terization of 2D meshes on the UV domain, which can
be divided into the following four steps: (1) input initial
angles, (2) determine boundary conditions, (3) calcu-
late optimized angles, and (4) calculate new vertices in
accordance with optimized angles.

First, the angles of all 3D meshes are regarded as the
initial angles of the 2Dmeshes on the UV domain. How-
ever, the summation of all angles surrounding a vertex on
the 3D domain may exceed 360°, whereas it must be 360°
on the UV domain. Therefore, the following equation is
employed to adjust each angle on the UV domain so that
all angles surrounding a vertex can become 360°:

θAdjust = θOriginal ∗
(

360
θSum-Vertex

)
(1)

where θAdjust denotes the adjusted angle, θOriginal denotes
the original angle, and θSum-Vertex denotes the summation

COMPUTER-AIDED DESIGN & APPLICATIONS 381

Figure 3. Flowchart of the optimization and parameterization of
2D meshes on the UV domain.

of all angles surrounding a vertex. There are also some
conditions, such as flip in triangles, degenerate triangles,
and non-manifold edges, on 2D meshes, which make 2D
meshes deviate from 3D meshes. Therefore, additional
constraints on angles must be specified to maintain the
accuracy of the topology and prevent the occurrence of
irrational meshes. In this way, the topology of the meshes
on the UV domain after angle adjustment must be kept
the same as that on the 3D domain. Three constraints
on angles are specified in the proposed algorithm, as
described below. The first constraint is to satisfy the tri-
angle consistency. The summation of all angles on a 2D
triangle should be 180° (Fig. 4(a)). This constraint is

Figure 4. Constraints for conformal mesh parameterization, (a)
summation of angles on one triangle should be 180°, (b) sum-
mation of angles surrounding a vertex should be 360°, and (c)
the lengths of an edge evaluated from two neighboring meshes,
respectively, should be equal.

given as:

3∑
i=1

εi = 180 −
3∑

i=1
θ i (2)

where θ i denotes the angle of a 2D triangle, and εi
denotes the error of the angle on the ith 2D triangle.
Equation (2) describes the total angular errors of all
triangles on 2D meshes.

The second constraint is to satisfy the vertex consis-
tency, in which the summation of all angles surrounding
an inner vertex should be 360o (Fig. 4(b)). This constraint
is given as:

d∑
i=1

εi = 360 −
d∑

i=1
θ i (3)

where θ i denotes the angle on the ith inner vertex, εi
denotes the error of the angle on the ith vertex, and
d denotes the number of inner vertices. Equation (3)
describes the total angular error of all inner vertices. It is
noted that boundary vertices are not counted in Eq. (3).

The third constraint is to satisfy the wheel consistency,
in which the lengths of all edges neighboring a vertex
should be equal. This constraint is given as:

d∑
i=1

cot(β i)εβ i − cot(γ i)εγ i

=
d∑

i=1
log(sin(β i)) − log(sin(γ i)) (4)

In Eq. (4), the lengths of an edge evaluated from
two neighboring meshes are computed first (Fig. 4(c)).
The lengths of all edges adjacent to a vertex are then
computed.

The aforementioned three constraints can be
employed to guarantee the topological consistency of the
2Dmeshes with the 3Dmeshes. The triangle consistency,
vertex consistency, andwheel consistency can prevent the
degenerate triangle, triangle flip, and non-manifold edge
correspondingly when unwrapping 3D meshes onto the
UV domain to generate 2D meshes. The third step of the
optimization is to calculate theminimized error. Asmen-
tioned before, the conformal mesh parameterization is
obtained byminimizing the error between themeshes on
the 2D and 3D domains. From the constraint conditions,
a set of initial errors on the UV domain has already been
determined. By minimizing this set of errors, the opti-
mized angles can be reached. The proposed algorithm
employs a linear system to solve for the optimized angles.
The initial angles (Eq. (1)) and the constraint conditions
(Eqs. (2) to (4)) can be combined to formulate a linear

382 T.-C. WU ET AL.

system as follows:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10101001
...

10101001
...

cot(β) 0 cot (γ) 0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
...
...

εn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

360 − (θ1 + · · · θd)
...

180 − (θ1 + · · · θ3)
...

(log(sin(β)) − log(sin(γ))) + · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

Eq. (5) is essentially Ax=b, in which the errors εi, i=1 ... n
are minimized to yield the optimized angles θ i. After the
calculation, the optimized angles can be obtained using
the following expression:

θNew = θ Initial + ε (6)

where θnew is the new angle obtained, and θ initial is the
angle of previous trial. As some of the angles obtained
may be larger than 180° or less than 0°, the optimization
process should be implemented iteratively. The iteration
stops when all angles θnew are within the range 0°−180°.
The last step of the mesh parameterization is to calcu-
late the new positions of all vertices in accordance with
the optimized angles obtained. The calculation is based
on the triangle similarity. As depicted in Fig. 5, let three
angles of a triangle be α1, α2, and α3. Assume that two
vertices P1 and P2 are known. The unknown vertex (P3)
can be evaluated as follows:

Pi
3 − Pi

1 = sinαi
2

sinαi
3
Rαi1(P

i
2 − Pi

1) (7)

where R denotes the rotation matrix. In this way, the
calculation of new vertices on the UV domain can be
applied using the least-squares approximation, as shown

Figure 5. Vertices and angles distribution on a single triangle.

in Eqn. (8).

min
∑
i

(
Pi
3 − Pi

1 − sinαi
2

sinαi
3
Rαi1(P

i
2 − Pi

1)

)2

(8)

Eq. (8) employs two known vertices P1 and P2 to opti-
mize the remaining unknown vertex P3. For all 2D
meshes, if the first two vertices on a mesh can be deter-
mined first, the remaining vertices can be calculated
using the least-squares approximation [10], which is for-
mulated as a linear system Ax=b. After solving this
linear equation, all vertices can be obtained. The topology
of all vertices on 2Dmeshes can be maintained correctly.

3. Direct texturemapping algorithm

The 3D color model is generated from a 3D model cov-
ered with texture that stores the color information on
a texture map. The 3D model with the texture map
can make the model more realistic. However, the res-
olution and quality of the texture plays an important
role regarding the feasibility of this technique in practi-
cal applications. As mentioned before, the object images
are taken sequentially in a control environment. High-
quality object images can be obtained by an image-taking

Figure 6. Flowchart of the proposed direct texture mapping
algorithm.

COMPUTER-AIDED DESIGN & APPLICATIONS 383

Figure 7. The normal vector and the camera viewing vector for
grouping.

process. Thus, the main idea of direct texture mapping is
to texture the 3D model using the object images directly.
Fig. 6 shows the flowchart of the proposed direct tex-
ture mapping algorithm, which has following four major
steps: (1) grouping of 3D triangles, (2) extraction of the
pixels on the object images, (3) placement of the pixels on
the texture map, and (4) optimization of the texture map.

First, a series of camera information and 3D meshes
are input. The purpose of grouping 3D triangles is to
allocate the triangles to the most appropriate image. In
this way, the texture quality for each triangle can reach a
high-quality texture. The grouping criterion is based on
the angle between an image and a triangle. One compo-
nent of the camera information is the looking direction,
which represents the camera viewing vector. The cam-
era viewing vector is perpendicular to the image plane. In
addition, all 3D triangles have their own surface normal
vectors, as shown in Fig. 7.

With these two vectors, the angle between a triangle
and an image can be calculated. The main image of a tri-
angle is defined as the image that has the minimum angle
among all angles evaluated between the viewing vectors
of the image and the surface normal vector of the triangle.
The visibility is also considered while grouping the trian-
gles. The angle between an image and a triangle should be

Figure 8. Result of grouping for a “Mic” sample: (a) 4 viewing
images, and (b) 8 viewing images.

less than 90° to ensure that the image faces the front side
of the triangle. Further, this triangle cannot be obstructed
by other triangles on the same image. The visibility check
can also prevent the occurrence of this kind of situation
on other images. Fig. 8 shows one result of grouping,
where all meshes of the same color are in the same group,
and are textured using the same main image.

The second step is extraction of the pixels on the object
images. The texture of the 3D color model comes directly
from the object images. Thus, in this step, the 3D triangle
should be projected back to the image plane of the main
image. The projection is based on the prospective projec-
tion in accordancewith the camera position to project the
3D triangle to the image plane.As Fig. 9 depicts, the trian-
gle on the image represents the projection of one triangle
on the 3D triangles. All pixels on and inside the triangle
represent the texture corresponding to the 3D triangle.
To generate a texture map for all 2D triangles created,
the pixels of a 2D triangle on the texture map is obtained
using the pixels obtained in this step. The difference is
that the area of the pixels corresponding to a 2D mesh
does not have the same area as the pixels found in this
step. Therefore, a transformation of the pixels between
two different pixel domains should be implemented.

384 T.-C. WU ET AL.

Figure 9. Themethod for projecting a 3D triangle onto an image
plane.

The extraction of any pixel inside a triangle is
explained below. The sequence of the image pixel is like
the grid plane. It is composed of horizontal and vertical
lines. Thus, a scanline method can be implemented to
evaluate all pixels inside a triangle, as in Fig. 10, which
shows a horizontal scanline. This scanline will intersect
two triangle edges, which denotes both end points of the
scanline. As long as both end points of the scanline are
known, all pixels within this scanline can be evaluated in
sequence. The following equation shows the computation
of the pixels within both end points of a scanline:

δx = X2 −
(

(Y2 − Y)(X2 − X1)

(Y2 − Y1)

)
(9)

where (X1, Y1) and (X2, Y2) represent two vertices of
the triangle edge, Y is the current scanline vertical value,
and δx denotes the pixel within both end points of the
scanline.

The third step is placement of the pixels on the tex-
ture map. The pixels corresponding to each 2D triangle
come from the previous step. However, the area of the
pixels from the previous step are differnent to those that
should be filled on theUVmap. Therefore, themain issue
is how to extract the correct pixels from the previous step
and place them appropriately on the UV map. As each
2D triangle on the UV domain is different from the pro-
jected mesh on an image domain, the pixels cannot be
directly placed one by one. A transformation algorithm is
developed to map the pixels between two pixel domains.

Figure 10. The scanline method for extracting and filling the
color for all pixels inside a triangle.

First, the three vertices on the image domain are respec-
tivelymapped onto three vertices on theUVdomain. The
transformation can be expressed as follows:

aX + bY + c = X′ (10)

dX + eY + f = Y ′ (11)

where X and Y denote the coordinates of a vertex on the
image domain, and X′

and Y ′
denote the coordinates of

a vertex on the UV domain. The unknown parameters
a to f can be obtained because the coordinates of three
vertices on the image domain and the UV domain are
all given. Once all parameters a to f corresponding to a
triangle are obtained, the colors of all pixels within the
corresponding triangle can be interpolated by using Eqs.
(10) and (11).With this method, all pixels of different tri-
angles on the UV domain can be filled in with the correct
color. This finally yields a texture map for all 2D meshes
generated.

However, the direct texture mapping uses the most
appropriate view of the image to map each pixel onto
3D meshes. The texture on 3D meshes comes from dif-
ferent viewing angles. Hence, the transition of different
images on the texture may be inconsistent in photo. This
may affect the texture quality of the 3D color model and,
hence, its realisticity for e-commerce applications. This
discontinuity issue on the texture has two main causes.
First, the camera position is calculated by camera cali-
bration. The position of the camera might not locate on
the exact position of the global coordinate, resulting in
a texture mapping error that can affect the continuity of
the 3D color model. Second, the surface vertices of the
3D model might not lie on the surface of the real object.
The texture extraction comes from projecting the surface

COMPUTER-AIDED DESIGN & APPLICATIONS 385

Figure 11. The additional images for texture optimization.

vertex back to the image domain to extract the texture.
However, the position of each vertex on the 3D model is
still not 100% correct although the model optimization
has already been performed [13],[17]. The vertices lying
on the boundary of two different groups would extract
differnt colors from two different images. This kind of sit-
uation would cause the boundary discontinuity, which is
also known as photo inconsistency.

The fourth step of this approach is to deal with the sec-
ond problem, the photo inconsistency problem. In this
step, the texture of the color model is optimized to main-
tain the photo consistency on the model. The basic idea
of this step is to extend the layer of the image to make
the boundary lie on a place where the color difference
is small. However, the original number of images used
was four. The difference in the viewing angle for two
adjacent images is 90°. This might also cause the photo
inconsistency problem after extending the layer. Thus,
themethod to handle this kind of problem is to addmore
images to group the triangles. In this way, the difference
in the viewing angle for two adjacent images is reduced
and the photo consistency can be increased. Eight images
are used to optimize the texture, as shown in Fig. 11.

In Fig. 11, images 1, 3, 5, and 7 are images added for
optimizing the texture. The boundary triangles between
1 and 2, 2 and 3, 5 and 6, and 6 and 7, respectively,
are identified. After the identification, the color differ-
ence on these series of triangles are calculated. When the
color difference on the boundary of a triangle is larger
than a threshold, the image with respect to this triangle is
replaced by one image added. The new image boundary

between two different image will be determined. In this
way, the photo consistency on the 3D color model can be
maintained, making the textured model more accurate.

4. Examples and discussion

Several examples were employed to evaluate the pro-
posed method. The inputs were the object images, cam-
era information, and 3D triangular model of the object.
The output was an editable texture map and a 3D color
model. The editable texture map was used to verify the
extension of the application. In addition, the results of
the 3D color model before and after optimization results
were compared. Furthermore, the integration of the color
model and the 3D visualization viewer were presented
and demonstrated. The simulations were performed on
a personal computer with a 3.20 GHz CPU and 8 GB of
RAM.

Fig. 12 depicts the original model and the correspond-
ing 2Dmeshes on theUVdomain for six examples, where
the left and right images in each figure panel denote the
original 3D meshes and the mapped 2D meshes, respec-
tively. The method to generate the original 3D meshes is
shown in Phothong et al. [13]. The model optimization
[13], [17] and the mesh simplification [7] have been per-
formed separately as well. The 3Dmeshes were separated
into several regions and each region is unwrapped onto
the UV domain individually by the proposed confor-
mal parameterizationmethod. Remarkably, the proposed
method can unwrap the 3D meshes individually and
minimize the angle distortion on the UV domain. Tab.
1 lists the number of vertices and faces (meshes) of the
triangular model, the triangle angle stretch root-mean-
square (RMS) error on theUVdomain, and theCPU time
required for unwrapping 3D meshes to the UV domain
for the six examples in Fig. 12. As per Tab. 1, the number
of faces in all models was controlled at 4,500, which will
not induce any sluggishness during data download and
website operation. The errors on angles for all examples
were between 1.032o–3.549o, and the required CPU time
for all cases was between 8.08–76.84 second.

Fig. 13 depicts the results of the 3D model combined

Table 1. Parameters of input 3D model, number of segments,
RMS error and CPU time for the six examples.

3D model

Case Vertices Meshes
Number of
segments

RMS error for
all angles (°)

CPU time
(sec)

Mug 2252 4500 6 1.032 76.84
Sport shoe 4 1.239 32.94
Cat doll 4 1.628 24.19
Sport shoe 4 1.811 24.12
Horse 19 3.549 8.08
Sport shoe 4 1.412 33.66

386 T.-C. WU ET AL.

with the texture map as a 3D color model, where the left
and right images in each figure panel denote the texture
map and the 3D color model, respectively. The color tex-
ture on the texturemap is extracted from the object image
directly which of size 5184*3456. The size of the texture
map image is 4096*4096. Thus, the quality of the original
image can be kept on the texture map. In this way, the 3D
color model can have a higher resolution for demonstra-
tion. As Tab. 1 shows, the numbers of vertices andmeshes
behind the high resolution 3D color model are only 2252
and 4500, respectively, indicating that thismodel can eas-
ily be displayed on awebsite viewer.Moreover, the texture
map is editable. The part to edit or replace can be iso-
lated and considered as an independent segment. The

user can easilymodify the image or replace the pattern on
the isolated segment. As Fig. 14 shows, different patterns
can be added to the texture map (Fig. 14(a)) or an exist-
ing pattern can be replaced by another one (Fig. 14(b)).
Figs. 14(c) and (d) depict the results of 3D color models
after editing.

The texture of the 3D color model may face the prob-
lem of photo inconsistency because it comes from the
image by projection and extraction. Figs. 15(a) and (b)
show the discontinued parts of two 3D color models,
mug and cat doll. The discontinued parts are located
at the junction of two different groups of triangles. In
the original method, four images from different view-
ing directions were used to group the triangles. But, the

Figure 12. The original model and the 2Dmeshes on the UV domain for six examples, (a) mic, (b) blue shoe, (c) statue, (d) pink shoe, (e)
horse statue, and (f) gray shoe.

Figure 13. The 3D color model and the texturemap for six examples, (a) mic, (b) blue shoe, (c) statue, (d) pink shoe, (e) horse statue, and
(f) gray shoe.

COMPUTER-AIDED DESIGN & APPLICATIONS 387

photo inconsistency problem was very serious. In the
modified method, four additional images were used to
minimize the photo inconsistency problem. As shown in
Figs. 15(c) and (d), the colormodels generated by the pro-
posed process and the texture maps are optimized. The
discontinuity problem has been eliminated. The quality

Figure 14. The texture editing and replacing for the “Mic” and
“Statue” example, (a) texture edited texture map for the Mic, (b)
texture replaced texture map for the Statue, (c) texture edited 3D
color model, and (d) texture edited 3D color model.

of the color model has also been improved when the 3D
color model is displayed on the viewing tool.

The 3D color model can be integrated with the 3D
visualization presentation as a new presentation mode.
The 3D visualization presentation is integrated with a
series of images. The user can drag the screen to change
the image from different viewing angles. Each image
represents the best quality of the picture that can be
displayed. However, when dragging the screen, the rotat-
ing might not be fluent enough because limited images
were captured. Therefore, the integration of the 3D color
model and the 3D visualization presentation is proposed,
combining the advantages of both methods. The advan-
tages of the 3D color model are that rotating an object on
the screen can be performed smoothly and the object’s
image can be displayed continuously on the screen. The
advantage of the 3D visualization is that the original qual-
ity of the high-resolution images can be kept. Fig. 16
shows the original presentation viewer. Fig. 16(a) depicts
the screenshot in rotating, in which the low quality object
image is displayed to yield a fluent rotating process.
Fig. 16(b) depicts the screenshot in still, in which the
original object image is displayed to yield a high-quality
image presentation. However, the main problem of this
technique is that the rotating is discrete as only lim-
ited viewing angles with 2D images can be accessed.
To increase the viewing experience in rotating, Fig. 17
shows the new integrated presentation viewer. Fig. 17(a)
depicts the screenshot in rotating, in which the 3D color
model is displayed. The 3D color model can be rotated
continuously. Fig. 17(b) depicts the screenshot in still,

Figure 15. The original and optimized 3D color model for the “blue shoe” and “statue” examples, (a) the original 3D color model for the
blue shoe, (b) the original 3D color model for the statue, (c) the optimized 3D color model for the blue shoe, and (d) the optimized 3D
color model for the statue.

388 T.-C. WU ET AL.

Figure 16. The original presentation viewer example for the
“blue shoe” example, (a) low-quality object image display when
rotating, and (b) object image display when rotation has stopped.

Figure 17. The integrated new presentation viewer example for
the “blue shoe” example, (a) object 3d color model display when
rotating, and (b) object image display when rotation has stopped.

in which the original object image is displayed. With
the aforementioned switching mode to display 3D color
model in rotating, while 2D image in still, the new pre-
sentation method can be more realistic for e-commerce
applications.

5. Conclusions

In this study, we proposed a method for performing con-
formal mesh parameterization to unwrap the mesh to
a two-dimensional (UV) domain and for direct texture
mapping from the extraction of the object image. The
proposed algorithmemploys angle-based optimization to
calculate the triangle angles on the UV domain. The ver-
tices placement was based on the least-squares approxi-
mation combined with the optimized angles. The direct
texture mapping was obtained by projecting the triangles
onto the image domain in accordance with the camera
information and extracting the pixel to map to the UV
map from the object image. However, the texture from
different images might cause the photo inconsistency
problem. Therefore, an optimization process was pro-
posed to deal with this kind of problem. The additional
images were used to minimize the discontinuity issue
and the boundary color was checked for determining the
extending criterion. Two examples have been presented
to demonstrate the feasibility of the proposed texture
optimization method. The texture map result of the pro-
posed method has been presented to demonstrate the

editing extension as well. Additionally, an integrated pre-
sentation viewer was proposed to extend the application
of the 3D visualization presentation and to solve the dis-
advantage of the original 3D visualization presentation
application in e-commerce.

ORCID

Tsung-Chien Wu http://orcid.org/0000-0002-2299-7361
Jiing-Yih Lai http://orcid.org/0000-0002-0495-0826
Watchama Phothong http://orcid.org/0000-0002-3239-4564
Douglas W. Wang http://orcid.org/0000-0002-8039-5027
Chao-Yaug Liao http://orcid.org/0000-0001-8203-9520
Ju-Yi Lee http://orcid.org/0000-0002-2244-4863

References

[1] Baumberg, A.: Blending Images for Texturing 3DModels,
BMVC, 3, 2002, 5. http://doi.org/10.5244/C.16.38

[2] Degener, P.; Jan M.; Reinhard, K.: An Adaptable Surface
Parameterization Method, IMR, 3, 2003, 201–213.

[3] Desbrun, M.; Meyer, M.; Alliez, P.: Intrinsic parameteri-
zations of surface meshesh, Computer Graphics Forum,
21(3), 2002, 209–218. http://doi.org/10.1111/1467-8659.
00580

[4] Eck, M.; DeRose, T.; Duchamp, T.; Hoppe, H.; Louns-
bery, M.; Stuetzle, W.: Multiresolution analysis of arbi-
trary meshes, Proceedings of the 22nd annual conference
on Computer graphics and interactive techniques, 1995,
173–182. http://doi.org/10.1145/218380.218440

[5] Floater, M. S.: Parametrization and smooth approxima-
tion of surface triangulations, Computer aided geomet-
ric design, 14(3), 1997, 231–250. http://doi.org/10.1016/
S0167-8396(96)00031-3

[6] Floater, M. S.: Mean value coordinates, Computer aided
geometric design, 20(1), 2003, 19–27. http://doi.org/10.
1016/S0167-8396(03)00002-5

[7] Garland, M; Heckbert, P. S.: Surface simplification
using quadric error metrics, Proceedings of the 24th
annual conference on Computer graphics and inter-
active techniques - SIGGRAPH 97, 1997, 209–216.
http://doi.org/10.1145/
258734.258849

[8] Genç, S.; Atalay, V.: Texture extraction from pho-
tographs and rendering with dynamic texture mapping,
Image Analysis and Processing, 1999, 1055–1058. http://
doi.org/10.1109/ICIAP.1999.797737

[9] Hormann, K.; Lévy, B.; Sheffer, A.: Mesh parameter-
ization: Theory and practice, ACM SIGGRAPH 2007
courses on - SIGGRAPH 07, 2007, 1. http://doi.org/10.
1145/1281500.1281510

[10] Lévy, B.; Petitjean, S.; Ray, N.; Maillot, J.: Least squares
conformal maps for automatic texture atlas generation,
ACM Transactions on Graphics (TOG), 21(3), 2002,
362–371. http://doi.org/10.1145/566654.566590

[11] Liao, C. Y.; Xiong, Y. S.; Wang D.W.; Lai J. Y.; Lee
J. Y.: A camera calibration process for 3D digital
model reconstruction of huge objects, 2016 Machin-
ing, Materials and Mechanical Technologies, Matsue
Terrsa, Matsue, Japan: 7–11 October 2016. Japan: IC3MT,
2016.

http://orcid.org/0000-0002-2299-7361
http://orcid.org/0000-0002-0495-0826
http://orcid.org/0000-0002-3239-4564
http://orcid.org/0000-0002-8039-5027
http://orcid.org/0000-0001-8203-9520
http://orcid.org/0000-0002-2244-4863
http://doi.org/10.5244/C.16.38
http://doi.org/10.1111/1467-8659.00580
http://doi.org/10.1111/1467-8659.00580
http://doi.org/10.1145/218380.218440
http://doi.org/10.1016/S0167-8396(96)00031-3
http://doi.org/10.1016/S0167-8396(96)00031-3
http://doi.org/10.1016/S0167-8396(03)00002-5
http://doi.org/10.1016/S0167-8396(03)00002-5
http://doi.org/10.1145/258734.258849
http://doi.org/10.1145/258734.258849
http://doi.org/10.1109/ICIAP.1999.797737
http://doi.org/10.1109/ICIAP.1999.797737
http://doi.org/10.1145/1281500.1281510
http://doi.org/10.1145/1281500.1281510
http://doi.org/10.1145/566654.566590

COMPUTER-AIDED DESIGN & APPLICATIONS 389

[12] Niem, W.; Buschmann, R.: Automatic Modelling of 3D
Natural Objects from Multiple Views, Image Process-
ing for Broadcast and Video Production, 1995, 181–193.
http://doi.org/10.1007/978-1-4471-3035-2_15

[13] Phothong, W; Wu T.C.; Lai, J. Y.; Wang D.W.; Liao C.
Y.; Lee J. Y.: 3D Model Reconstruction and Re-meshing,
2016Machining,Materials andMechanical Technologies,
Matsue Terrsa, Matsue, Japan: 7–11 October 2016. Japan:
IC3MT, 2016.

[14] Sheffer, A.; Sturler, E, de.: Parameterization of Faceted
Surfaces for Meshing using Angle-Based Flattening,
Engineering With Computers, 17(3), 2001, 326–337.
http://doi.org/10.1007/PL00013391

[15] Sheffer, A.; Lévy, B.; Mogilnitsky, M.; Bogomyakov, A.:
ABF++: fast and robust angle based flattening, ACM
Transactions on Graphics, 24(2), 2005, 311–330. http://
doi.org/10.1145/1061347.1061354

[16] Sheffer, A.; Praun, E.; Rose, K.: Mesh parameteriza-
tion methods and their applications, Foundations and
Trends R© in Computer Graphics and Vision, 2(2), 2006,
105–171. http://doi.org/10.1561/0600000011

[17] Yemez, Y.; Sahilioglu, Y.: Shape from silhouettte using
topology-adaptive mesh deformation, Pattern Recogni-
tion Letters, 30(13), 2009, 1198–1207. http://doi.org/10.
1016/j.patrec.2009.05.012

[18] Zayer, R.; Lévy, B.; Seidel, H. P.: Linear angle based param-
eterization, Fifth Eurographics Symposium on Geometry
Processing-SGP, 2007, 135–141. http://doi.org/10.2312/
SGP/SGP07/135-141

[19] Zigelman, G.; Kimmel, R.; Kiryati, N.: Texture map-
ping using surface flattening via multidimensional scal-
ing, Visualization and Computer Graphics, 8(2), 2002,
198–207. http://doi.org/10.1109/2945.998671

http://doi.org/10.1007/978-1-4471-3035-2_15
http://doi.org/10.1007/PL00013391
http://doi.org/10.1145/1061347.1061354
http://doi.org/10.1145/1061347.1061354
http://doi.org/10.1561/0600000011
http://doi.org/10.1016/j.patrec.2009.05.012
http://doi.org/10.1016/j.patrec.2009.05.012
http://doi.org/10.2312/SGP/SGP07/135-141
http://doi.org/10.2312/SGP/SGP07/135-141
http://doi.org/10.1109/2945.998671

	1. Introduction
	2. Editable conformal mesh parameterization
	3. Direct texture mapping algorithm
	4. Examples and discussion
	5. Conclusions
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

