
COMPUTER-AIDED DESIGN & APPLICATIONS, 2018
VOL. 15, NO. 3, 399–408
https://doi.org/10.1080/16864360.2017.1397890

Rounding, filleting and smoothing of implicit surfaces

Pierre-Alain Fayolle a, Oleg Fryazinov b and Alexander Pasko b

aThe University of Aizu, Japan; bBournemouth University, UK

ABSTRACT
We describe an approach for performing constant radius offsetting and the related operations of
filleting, rounding and smoothing for implicit surfaces. The offsetting operation is used as the basic
component for defining the remaining operations. These operations are important operations for
anymodelling system.While it is known how to perform these operations for parametric representa-
tion and polygonmeshes, there is limited prior work for implicit surfaces and procedural volumetric
objects. The proposed approach is based on repeatedly computing the distance to a given implicit
surface and its offset surfaces. We illustrate the results obtained by this approach with several
examples, including procedurally defined microstructures and CAD objects.

KEYWORDS
Implicit surfaces; Function
Representation; Distance
function; Offsetting;
Smoothing

1. Introduction

Modern developments in geometric modelling allow for
using a variety of geometry representations or combina-
tions of them in a wide range of applications. As new
representations are introduced, one wants to adapt exist-
ing processing techniques and methods used with the
other representations.

Geometry representation with implicit surfaces is
well-known in modelling as well as in computer graph-
ics applications. The idea is to use an implicit form for
the geometry representation, i.e., to use a function (or
scalar field) or a predicate for point coordinates, which
allows us distinguish points belonging to the interior of
the object, to the exterior of the object or to its surface. In
recent years, this representation is gettingmore andmore
attention because of many useful properties and appli-
cations. For example, with geometric objects defined in
an implicit form, it is possible to model objects for engi-
neering applications, organic objects, to easily perform
animation and metamorphosis, to model procedurally-
basedmulti-level parameterizedmicrostructures, objects
ready for digital fabrication and many more.

One of the important subset of continuous scalar fields
is signed distance fields, where the value of the defin-
ing function gives the Euclidean distance to the surface
of the implicitly defined object, i.e., the distance to the
zero-level set of the field. One of the reasons signed
distance fields are attracting attention is that they have
a number of applications in different areas from solid

CONTACT Oleg Fryazinov ofryazinov@bournemouth.ac.uk; Pierre-Alain Fayolle fayolle@u-aizu.ac.jp; Alexander Pasko
apasko@bournemouth.ac.uk

modelling to real-time computer animation. At the same
time, this representation is quite restrictive comparing
with arbitrary continuous scalar fields, with some com-
mon operations, such as non-uniform scaling, being not
supported.

As modelling systems based on implicit surfaces
evolve, a need appears to use techniques previously
introduced in modelling systems based on parametric
curves and surfaces and discrete geometry (e.g., polygo-
nal meshes). One example of such techniques is filleting,
which means rounding off a concave sharp edge or a cor-
ner of a mechanical part. Any mechanical CAD system
needs to support such an operation as it is needed to
simulate manufacturing with round-end mills. It is well
known how to perform rounding and filleting for para-
metric representations, but there is limited prior work for
implicit surfaces and procedural volumetric objects.

In this work, we discuss possible implementations of
filleting, rounding and smoothing operations applied to
objects defined in an implicit form by the zero level-set
of a continuous scalar field. It is known that in the case
of signed distance fields, these operations can be defined
in a simple way. In practice, however, the distance prop-
erty (the property of a scalar field to be a distance field)
can be obtained analytically only for a very limited set
of primitives and operations and is easily lost as we dis-
cussed before. Therefore, our goal here is to implement
distance-based operations on general implicit surfaces
without distance property.

© 2017 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/16864360.2017.1397890&domain=pdf
http://orcid.org/0000-0003-4723-6208
http://orcid.org/0000-0003-2263-7646
http://orcid.org/0000-0002-4785-7066
mailto:ofryazinov@bournemouth.ac.uk
mailto:fayolle@u-aizu.ac.jp
mailto:apasko@bournemouth.ac.uk
http://www.cadanda.com

400 P.-A. FAYOLLE ET AL.

We propose to use a numerical method to compute
a signed distance field from an arbitrary continuous
scalar field (arbitrary implicit surface). Offsetting the sur-
face (the zero iso-level of the scalar field) is then per-
formed by considering different iso-level values. By using
repeated offsetting operations and re-distancing of the
corresponding scalar field (re-computing the distance
function from the scalar field), we show how to imple-
ment rounding, filleting and smoothing operations for
general implicit surfaces. We demonstrate our approach
with experimental results and several examples, includ-
ingCADmodels and proceduralmicrostructures defined
by real-valued scalar functions.

2. Related works

The mathematical basis for offsetting of solids is
described by Rossignac and Requicha in [22]. Off-
set operations can be considered a particular case of
Minkowski sums. Given an offset operation, one can
define rounding, filleting and smoothing by repeated
applications of the offset operation.Minkowski sums and
offsetting have beenmostly studied for parametric curves
and surfaces, polygon meshes and point-clouds, but is
less common for general implicit curves and surfaces
because of lack of distance property in the general case.
We briefly review some of the existing works below.

A survey of the different methods available for the off-
set of curves and surfaces is provided by Pham in [21]. It
was later revisited and extended by Maekawa in [10]. A
description of the main tools and methods used for the
offset of curves and surfaces is given by Patrikalakis and
Maekawa in Chapter 11 of [19]. Offsetting operations for
solid models (CSG and BRep) is discussed by Rossignac
and Requicha in [22].

For the case of polyhedral models, an algorithm
for computing Minkowski sums is described in [6]. It
relies on computing a convex decomposition, which
is not easy to do for complex objects. The work
of Barki et al. [1] introduces a method to compute
Minkowski sums of polyhedron with a convex polyhe-
dron. An alternative approach by Campen and Kobbelt
[4] presents an efficient computational approach for com-
puting Minkowski sums with arbitrary polyhedral ele-
ment. These approaches require a defect free polygon
mesh model. For the particular case of the Minkowski
sumwith a sphere (a constant radius offset), recent works
rely on computing a signed distance field to the input
surface (the polygonal mesh), and then meshing the off-
set implicit surface. Pavic and Kobbelt [20] propose a
volumetric method computing a distance field to the
surface. The surface of the offset solid is obtained by a
Marching Cubes like algorithm. In [9], grid cells in the

neighborhood of the offset surface are identified by using
an octree and some simple criteria. The signed distance
at each grid node is efficiently computed and the offset
surface is meshed by a variant of dual contouring. Chen
and Wang propose a method [5], where each face, edge
and vertex of a given polygon mesh are offset. The union
of these point-sets (polygons) is computed. Then using
the LDNI (Layered Depth Normal Images) representa-
tion of these sets, unwanted components are filtered out.
The final surface is finally obtained bymeshing. A similar
approach based on dexel (depth element) is described in
[11]. All these approaches rely on the input surface to be
defined as a polygonal mesh.

In [8], points sampled on a surface are offsetted in both
directions and added to the input point-cloud; Radial
Basis Functions are then fitted to this extended point-
cloud. Calderon and Boubekeur use a Moving Least
Square approach to fit a point-set surface to points pro-
jected on the Minkowski sum of an input point-cloud
with some shape [3]. In [14], Molchanov et al. fit an
approximation of the distance function to samples using
a Moving Least Square approach.

For implicit surfaces, there are few methods avail-
able to compute an offset. Pasko et al. [18] compute
the Minkowski sums with a numerical method involving
global minimization. This approach is not very efficient.
Additionally, it is unpractical when several offsets need
to be applied successively, such as for example in fillet-
ing or smoothing. An alternative approach is described
in [2], where the authors use the fast-marching method
[24] to propagate the distance defined on a narrow band
near the surface and compute a distance field. To com-
pute the distance in a narrow band, one needs either to
mesh the surface and compute the distance to the triangle
mesh, or to compute the distance (or an approximation)
by a numerical procedure.

3. Distance field computation

The first task is to compute distance and distance offset-
ting for surfaces defined implicitly. Let the surface of a
given object be defined as ∂S = {p ∈ �k : f (p) = 0} for
some given function f and k = 2 (planar implicit curve)
or k = 3 (an implicit surface in 3-dimensional space).
The distance offsetting operation can be done by comput-
ing the signed distance function to ∂S and considering
a different iso-level than the zero iso-level. Given the
implicit definition of the surface, we try to perform such
computations without meshing ∂S or sampling points
from it. Operations such as rounding, filleting or smooth-
ing are all defined in terms of this elementary offset
operation.

COMPUTER-AIDED DESIGN & APPLICATIONS 401

In our method, we use normalization to create an
initial approximation of the scalar field with distance
property (near the surface), then use the re-initialization
method to numerically compute the signed distance field.

3.1. Normalization

A function f is normalized to the order m if ∂f
∂v

= 1 and
∂kf
∂vk

= 0, for k = 2 . . .m, near the surface ∂S. Here v is
the unit normal to the surface. A normalized function
behaves like the distance function near its zero level-
set. Methods for normalizing functions were introduced
by Rvachev and are discussed in detail by Shapiro [25].
Assuming that f has a non-vanishing gradient on its
zero level-set, the first order normalization is defined as
follows:

fn(x) = f (x)√
f 2(x)+ |∇f (x)|2

(3.1)

Since R-functions for set-theoretic operations preserve
normalization (see [25] for details), normalized func-
tions can be constructed by applying set-theoretic oper-
ations with R-functions to normalized primitives. The
Rvachev’s normalization is related to theTaubin’s distance
approximation [27] defined as:

ft(x) = f (x)
|∇f (x)| (3.2)

In practice, both approaches produce acceptable approxi-
mation of the exact distance only close to the surface, and
may not work well if the gradient varies too quickly. We
use the first order normalization Eqn. (3.1) to initialize
the signed distance function computation.

3.2. Re-initialization

The distance to a surface implicitly defined as ∂S = {p ∈
�k : f (p) = 0}, k = 2 or k = 3, can then be obtained by
solving numerically the re-initialization equation pro-
posed by Sussman et al. in [26] to steady state:

∂φ

∂t
= sign(f)(1 − |∇φ|) (3.3)

Where φ(x, t = 0) = f (x) and sign(f) is the sign func-
tion:

sign(f) =

⎧⎪⎨
⎪⎩

−1, f < 0
0, f = 0
1, f > 0

(3.4)

To increase the efficiency and the numerical stability, we
use the following modifications. First, we use a slightly

modified version of the sign function:

sign(f) = f√
f 2 + ε2

(3.5)

Here ε is a reasonably small number. This modification
allows us to avoid numerical issues around the zero-level
set because of its continuity.

For the initial value condition of (3.3), we use the first-
order normalization of f , as discussed above: φ(x, t =
0) = f (x)√

f 2(x)+|∇f (x)|2 , which provides a better approxima-

tion of the distance, at least near the surface boundary.
Eqn. (3.3) is solved numerically on a regular grid. We

use the forward Euler method for time integration, and
the first order upwind method for computing the spatial
derivatives. Thus, we need to compute a few iterations of:

φn+1
ij = φnij −�t.sign(f).(H(D+

x φ
n
ij ,D

−
x φ

n
ij ,

D+
y φ

n
ij ,D

−
y φ

n
ij)− 1) (3.6)

Whereφnij is the value at the n-th iteration ofφ at the node
(i, j) and H is the numerical Hamiltonian:

H(a, b, c, d)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
max((a−)2, (b+)2)+ max((c−)2, (d+)2),
sign(f) ≥ 0√
max((a+)2, (b−)2)+ max((c+)2, (d−)2),
sign(f) < 0

(3.7)

With a+ = max(a, 0), a− = min(a, 0).
D±
x φ

n
ij and D±

y φ
n
ij are upwind finite difference approx-

imations of the spatial derivatives given by:

D+
x φ

n
ij =

φni+1,j − φnij

�x
(3.8)

D−
x φ

n
ij =

φnij − φni−1,j

�x
(3.9)

and similarly, for D±
y φ

n
ij . While the presentation above is

for the case k = 2, all these equations extend naturally to
the 3D case. For further details on numerically solving
Eqn. (3.3), please refer to [26].

Russo and Smereka remarked in [23] that this scheme
violates the property that derivatives should be computed
according to the direction of the characteristics in cells
intersecting ∂S. They propose to use a fix in such cells: for
grid edges intersecting ∂S, the adjacent node values are
set to the distance (or an approximation of the distance)
to ∂S. An approximation can be computed, for example,
using the first order Rvachev normalization, which is an

402 P.-A. FAYOLLE ET AL.

accurate approximation close to ∂S. We are using this sub
cell fix in our implementation.

When using Forward Euler for time integration, the
time step needs to be selected appropriately in order to
not violate the Courant-Friedrichs-Lewy (CFL) condi-
tion. We use�t = cmin(�x,�y) and respectively�t =
cmin(�x,�y,�z) in 3D, where�x,�y, and�z are the
grid cell length along each direction and c = 0.4 in our
experiments. For further details on the numerical solu-
tion of such type of problem, one can refer, for example,
to Chapters 1 to 7 of [15].

Recent works, such as [13], extend this approach
with higher order scheme for the spatial derivatives. In
[12], the author compares different methods for time-
integration: forward Euler, second-order Runge-Kutta
and Gauss-Seidel iteration of the forward Euler method
and concludes that the forward Euler method does
not introduce numerical instability and that the Gauss-
Seidel iteration produces equivalent results to the second
order Runge-Kutta method but is slightly faster. Another
approach for computing the distance is the FastMarching
Method of Sethian [24], which has the advantage of being
non-iterative. In our experiments, we found that solving
(3.3) using the combination of the forward Euler method
with the first order upwind finite difference produced
the best results and was the fastest for the operations
described in this paper.

4. Distance-based operations on arbitrary
implicit surfaces

Once we are able to approximate the distance field on
the base of the given continuous scalar field within some
proximity to the zero level-set, we are able to perform
distance-based operations such as offsetting as well as
operations, which use the local distance property of the
scalar field. We discuss such operations below.

4.1. Offsetting

Offsetting is a very simple operation for continuous scalar
fields possessing the distance property. For an object
defined in an implicit form with the defining function
φ, an offset can be defined as φr(x) = φ(x)+ r, where
r is an offset value. The offset value is signed and the
sign defines the direction of the offset. In this work,
we assume the following convention: φ > 0 inside the
domain bounded by ∂S and φ < 0 outside. In this case,
positive r defines objects expansion andnegative r defines
objects contraction.

Given an input function f , we compute the distance
field φ by the normalization and the re-initialization
methods as described in sections (3.1) and (3.2). Since we

only need the distance field to be accurate up to a distance
r to the surface, an upper bound for the number of iter-
ations of the re-initialization method is given by �r/�t�,
where�t is the time-step used in the numerical solution.
Indeed, since the front moves with unit speed, it propa-
gates by �t in one iteration. Thus, in order to have the
front propagated up to a distance r, �r/�t� iterations are
needed.

Applying level-set methods to compute offsets to a
given implicit surface is certainly not novel. See, for
example, the work [7], which computes offset curves
by contouring the zero iso-level of the solution to the
surface evolution equation at unit speed in the nor-
mal direction. However, our goal ultimately is to apply
multiple offsetting (and thus distance re-computation),
which is not directly possible with the precedent
method.

One has to carefully select the offset distance r, since
the zero level-sets of φr may not necessarily correspond
to valid solids (regularized sets) for some values of r. In
order to avoid any problem, we can restrict the offset
radius such that no boundary points after the offset are
on the medial axis of the original solid.

4.2. Rounding

Rounding a solid corresponds to smoothing all its con-
vex sharp features (edges and corners) while keeping the
rest of the solid’s boundary unchanged. The rounding
algorithm for an implicitly defined object f can be defined
as follows:

1) compute the distance functionφ to the given implicit
surface

2) compute the offset to φ = 0 by r in the negative
direction: φ−r(x) = φ(x)− r

3) compute the distance function ψ to the surface
φ−r(x) = 0

4) compute the offset to ψ = 0 by r in the positive
direction: ψr(x) = ψ(x)+ r

In steps 1 and 3, the distance is computed using the
re-initialization method defined in section (3.2). The
resulting rounded surface is then defined by the point set
{x : ψr(x) = 0}

4.3. Filleting

Filleting is the opposite operation to rounding. It corre-
sponds to smoothing all concave sharp features (edges
and corners) while keeping the rest of the solid surface
unchanged. Filleting is obtained by offsetting by r in the
positive direction then offsetting the previous solid by r in

COMPUTER-AIDED DESIGN & APPLICATIONS 403

the negative direction, i.e. the following operations have
to be performed:

1) compute the distance functionφ to the given implicit
surface

2) compute the offset to φ = 0 by r in the positive
direction: φr(x) = φ(x)+ r

3) compute the distance function ψ to the surface
φr(x) = 0

4) compute the offset to ψ = 0 by r in the negative
direction: ψ−r(x) = ψ(x)− r

The resulting filleting surface is then defined by the
point set {x : ψ−r(x) = 0}.

4.4. Smoothing

Smoothing a solid requires smoothing each sharp feature
(corner or edge). To implement this operation, we can
combine rounding and filleting, where the order of these
two operations is not important. Assuming that we apply
rounding first, smoothing is obtained by the following
operations:

1) compute the distance functionφ to the given implicit
surface

2) compute the offset to φ = 0 by r in the negative
direction: φ−r(x) = φ(x)− r

3) compute the distance function ψ to the surface
φ−r(x) = 0

4) compute the offset to ψ = 0 by 2r in the positive
direction: ψ2r(x) = ψ(x)+ 2r

5) compute the distance function γ to the surface
ψ2r(x) = 0

6) compute the offset to γ = 0 by r in the negative
direction: γ−r(x) = γ (x)− r

The resulting smoothing surface is then defined by
the point set {x : γ−r(x) = 0}. Note that in the list of
operations above we combined the two offsets in positive

direction to make the whole evaluation more efficient.
Thus, the smoothing operation requires the computation
of the distance function three times.

5. Applications and results

In this section, we present some examples and poten-
tial applications for the approach described in this paper.
We also give some experimental results related to the
accuracy of the method and its computational efficiency.

5.1. Shelling andmicrostructures

The first example illustrates offsetting and shelling an
implicit surface representing a jaw bone. The jaw bone
was implicitly modeled by using convolution surfaces
and does not have the distance property initially. See
Fig. 1(a) for the bone surface (the meshed zero level-set)
and Fig. 1(b) for the corresponding scalar field visualized
on a slice.

The model does not have a distance property (see, for
example, Fig. 1(b).) and therefore we use the techniques
from section 3.1 and 3.2 to compute it. See Fig. 2(a)
for the bone surface (meshed from the zero level-set of
the computed distance function), and Fig. 2(b) for the
corresponding distance field visualized on a slice.

Given the distance function to the zero level-set of the
defining function for the bone, an offset in the negative
direction is computed and applied to obtain a shrunk ver-
sion of the bone. The original bone is then carved by
subtracting its shrunk version. The defining function for
the shell is given by: φ − φ−r, where φ is the distance to
the bone surface, φ−r is the offset and “−” is the subtrac-
tion implemented by the corresponding R-function [16],
[25]. A radius of 0.1 is used for the offset. A slice of the
bone shell is shown in Fig. 3(a) with the corresponding
distance field shown in Fig. 3(b).

The distance property of the object allows us to per-
form further operations on the shelled object, for exam-
ple, filling the interior of the object with procedural

Figure 1. An implicitly modeled jaw bone. (a) The meshed zero level-set modeled with convolution surfaces, (b) Visualization of the
corresponding scalar field on a slice.

404 P.-A. FAYOLLE ET AL.

Figure 2. Distance to an implicitly modeled jaw bone. (a) The meshed zero level-set with the distance to the surface on a slice, (b)
Visualization of the distance field to the bone surface on a slice.

Figure 3. Offsetting and shelling the jaw model: (a) Jaw shell obtained by carving a shrunk bone corresponding to an offset of 0.1, (b)
The jaw shell and the corresponding field on a slice.

microstructures as discussed in [17]. For this exam-
ple, we follow the approach described in section 3.1
of [17] for modelling lattice microstructures. An infi-
nite lattice structure is obtained from the intersection
of parallel slabs. A finite lattice bound within the jaw
bone is then obtained by the intersection of the infi-
nite lattice with the input jaw bone solid. By defining
the frequency of the slabs as a function of the dis-
tance to the bone surface, we obtain a lattice scaffold,
which is denser near the surface. The resulting shell
with the internal lattice microstructures is illustrated
in Fig. 4(b).

5.2. Smoothing

The final two examples illustrate smoothing CADobjects
with sharp features by multiple offsetting as described
in section 4.4. The object in Fig. 5(a) is a simple union
of two rectangular boxes, where the union is defined by
R-functions and the boxes are implicitly defined. The
smoothed shape is shown in Fig. 5(b). Note how all edges
and corners are smoothed, while the rest of the surface is
kept unchanged (see Fig. 5(c). for a closer view on the
smoothed object). In this example, a radius of 0.025 is
used.

Figure 4. Offsetting and filling with microstructures the jaw model: (a) Jaw shell obtained by carving a shrunk bone corresponding to
an offset of 0.1, (b) The jaw shell with an internal microstructure.

COMPUTER-AIDED DESIGN & APPLICATIONS 405

Figure 5. A simple shape defined as the union of two rectangular boxes represented as implicit surfaces. (a) The input shape. (b) The
smoothed shape obtained after multiple offsets (a radius of 0.025 is used). (c) A closer view on the smoothed shape.

Figure 6. A mechanical shape implicitly defined. (a) The original shape and its contour plot on a slice, (b) Its contour plot on a slice
(interior and exterior).

The object in Fig. 6(a) is a slightly more complex
model. The input model is implicitly defined and cre-
ated by applying set-theoretic operations defined by R-
functions to implicitly defined geometric primitives, such
as cuboids or cylinders. The field for this model initially
does not have a distance property. See Fig. 6(a) and (b)
for a contour plot of the field on a given slice. Smoothing
the object is obtained by repeated offsetting as described
in section 4.4. A radius of 0.15 is used for the smoothing
operation. The result of the smoothed surface is shown in
Fig. 7(b), (d). Compare with the input shape in Fig. 7(a)
and a closer view in Fig. 7(c). Note how the original sur-
face is kept while all sharp corners and edges (convex and
concave) are rounded in Fig. 7(b) and (d).

5.3. Approximation quality

In order to assess the error of the distance computation
near the zero level-set, we sampled 10,000 points on the
surface of a unit sphere, and evaluated the maximum

and average deviation of the computed distance func-
tion at these samples. Initially, we start from the following
defining function for the implicit unit sphere: f (x) = 1 −
x2 − y2 − z2. The computed distance function is evalu-
ated inside a grid cell by linear interpolation of the values
at the grid nodes. Tab. 1 gives the maximum and average
deviation for different grid resolutions.

To evaluate the quality of approximation, we compute
the relative error: ‖d − φ‖2/‖d‖2, where d is the exact
distance to the unit sphere, φ is the computed distance
and ‖.‖2 is the L2 norm. Fig. 8(a) shows the evolution, as
a function of the number of iterations, of the relative error
over the domain [−2, 2]3 for a grid with 128 subdivisions
along each dimension. Fig. 8(b) shows the relative error
over the domain near the surface obtained by a +/- 0.1
offset from the surface of the sphere.

5.4. Computation time

In this section, we provide the computation time for the
methods described in sections 3 and 4. The different

406 P.-A. FAYOLLE ET AL.

Figure 7. A mechanical shape implicitly defined and its smoothed version. (a) The original shape, (b) The shape with sharp features
smoothed using a radius of 0.15, (c) A zoom on the original shape, and (d) A zoom on the smoothed shape.

Table 1. Maximum and average deviation of the computed dis-
tance near the surface.

323 643 1283

Maximum 0.004 0.001 0.0002
Average 0.003 0.0007 0.0002

methods have been implemented in C++ and run on a
low-end desktop PC (3 GHz CPU and 4 GB of RAM).
The code is not particularly optimized, and contains lots
of room for improvement. Tab. 2 gives the time taken in
seconds for a single iteration with different grid resolu-
tions of the distance computation step (section 3.2). The
computations are done for the different shapes used in
this paper. Only one thread is used for these computa-
tions.

Tab. 3 summarizes the time taken for creating
the examples shown in sections 5.1 and 5.2. All the

Table 2. Time (in seconds) for one iteration of the distance com-
putation for the different shapes used in this work.

323 643 1283

Sphere 0.0017 0.014 0.11
Jaw bone 0.0018 0.014 0.11
Boxes union 0.0018 0.014 0.11
Mechanical part 0.0018 0.014 0.11

computations are on a gridwith a resolution of 128 by 128
by 128. The number of iterations of Eqn. (3.6) depends
on the size of the grid cells and the radius for the offset.
For all the examples presented here, 10 iterations were
sufficient. This number of iterations was obtained from
the expression �r/�t� (for an offset by r) and using the
appropriate value for r and �t for each example. The
measured time corresponds to the time taken for initially
sampling the implicit on the regular grid, computing the

0 100 200 300

0.
0

0.
1

0.
2

0.
3

0.
4

Iterations

L2

0 100 200 300

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Iterations

L2

Figure 8. The L2 relative error for a unit sphere as a function of the number of iterations. (a) The error over the domain [−2, 2]3, (b) The
relative error near the surface.

COMPUTER-AIDED DESIGN & APPLICATIONS 407

Table 3. Time (in seconds) for computing the different examples
shown in this paper.

1 thread 4 threads

Jawmicrostructure 3.85 1.91
Boxes union 2.52 1.52
Mechanical part 2.95 1.67

normalized value (section 3.1), applying one of the opera-
tions described in section 4.1 (offset) or 4.4 (smoothing),
and applying additional operations (if any). It is easy to
distribute the computation over multiple threads. The
second column of Tab. 3 shows the time taken when
multiple threads are used.

The first example (the jaw bone with microstructures)
only needs the computation of one offset, which requires
only one distance re-initialization. Only the distance to
the shape of the jaw bone surface is needed to compute
the offset. In addition, the distance to the shape is also
used to control the rod shapes. The microstructures are
added at the end. In this example, the bottleneck is the
sampling of the original field (representing the jaw bone
surface) on the regular grid.

The last two examples (the union of boxes and
the mechanical part) illustrate the smoothing opera-
tion, which requires computing three offsets. Each off-
set requires computing the distance to the updated zero
level-set. The difference in time between these two exam-
ples is due to the sampling of the original field on the
regular grid, the expression defining the mechanical part
being more complicated than the other example.

6. Conclusions

Offsetting, filleting, rounding and smoothing are impor-
tant operations in any CAD system, especially when
dealingwithmechanical parts. In this paper, we have pro-
posed an approach for computing these operations on
geometry defined implicitly by continuous scalar fields
(or implicit surfaces). Filleting, rounding and smooth-
ing are defined in terms of repeated offsets to implicit
surfaces. The offset operation is based on computing
the distance to a given implicit surface, which is done
by solving the re-initialization equation given an initial
approximation obtained with normalization.

The approach was shown to produce convincing
results in a modelling framework dealing with implicit
surfaces, yet it has to be implemented in a more complex
modelling system in order to evaluate its full efficiency.
The main limitation of the discussed approach is that the
computations are based on a numerical procedure, which
requires sampling the function defining the model on a
regular grid. Consequently, some approximation occurs.
It is not clear, however, how to avoid such approximation

if multiple offsets need to be applied, using an efficient
computational procedure.

In our applications, we did not use many nested re-
initialization operations, while during themodelling pro-
cess a designer might want to use many nested offsets.
Experimenting with that is one obvious future research
direction.

The radius, used for the offset and the related oper-
ations, is constant. The operation (filleting, rounding,
smoothing) is therefore global. A possible direction of
future work is to investigate the possibility to have an
operation defined only locally.

Another potential further extension of this work
includes extension of the set of operations and primitives
that require distance property of the defining function,
for example, multi-scale modelling with fractal-based
functions. As the distance property is very useful for fast
direct rendering of implicit surfaces, the application of
ourmethod for these purposes is also an interesting topic
to further research.

ORCID

Pierre-Alain Fayolle http://orcid.org/0000-0003-4723-6208
Oleg Fryazinov http://orcid.org/0000-0003-2263-7646
Alexander Pasko http://orcid.org/0000-0002-4785-7066

References

[1] Barki, H.; Denis, F.; Dupont, F.: Contributing vertices-
based Minkowski sum of a nonconvex – convex pair of
polyhedral, ACM Transactions on Graphics, 30(1), 2011,
1–16. https://doi.org/10.1145/1899404.1899407

[2] Breen, D.; Mauch, S.;Whitaker, R.: 3D scan-conversion of
CSG models into distance, closest-point and colour vol-
umes, Volume Graphics, 2000, 135–158. https://doi.org/
10.1007/978-1-4471-0737-8_8

[3] Calderon, S.; Boubekeur, T.: Point morphology. ACM
Transactions on Graphics, 33(4), 2014, 1–13. https://doi.
org/10.1145/2601097.2601130

[4] Campen, M.; Kobbelt, L.: Polygonal boundary evalua-
tion of Minkowski sums and swept volumes, Computer
Graphics Forum, 29(5), 2010, 1613–1622. https://doi.org/
10.1111/j.1467-8659.2010.01770.x

[5] Chen, Y.; Wang, C. C.: Uniform offsetting of polygonal
model based on layered depth-normal images, Computer-
AidedDesign, 43(1), 2011, 31–46. https://doi.org/10.1016/
j.cad.2010.09.002

[6] Hachenberger, P.: Exact Minkowksi sums of polyhe-
dra and exact and efficient decomposition of polyhedra
into convex pieces, Algorithmica, 55(2), 2009, 329–345.
https://doi.org/10.1007/s00453-008-9219-6

[7] Kimmel, R.; Bruckstein, A. M.: Shape offsets via level sets,
Computer-Aided Design, 25(3), 1993, 154–162. https://
doi.org/10.1016/0010-4485(93)90040-U

[8] Liu, S.; Wang, C. C.: Duplex fitting of zero-level and offset
surfaces, Computer-Aided Design, 41(4), 2009, 268–281.
https://doi.org/10.1016/j.cad.2008.10.008

http://orcid.org/0000-0003-4723-6208
http://orcid.org/0000-0003-2263-7646
http://orcid.org/0000-0002-4785-7066
https://doi.org/10.1145/1899404.1899407
https://doi.org/10.1007/978-1-4471-0737-8_8
https://doi.org/10.1007/978-1-4471-0737-8_8
https://doi.org/10.1145/2601097.2601130
https://doi.org/10.1145/2601097.2601130
https://doi.org/10.1111/j.1467-8659.2010.01770.x
https://doi.org/10.1111/j.1467-8659.2010.01770.x
https://doi.org/10.1016/j.cad.2010.09.002
https://doi.org/10.1016/j.cad.2010.09.002
https://doi.org/10.1007/s00453-008-9219-6
https://doi.org/10.1016/0010-4485(93)90040-U
https://doi.org/10.1016/0010-4485(93)90040-U
https://doi.org/10.1016/j.cad.2008.10.008

408 P.-A. FAYOLLE ET AL.

[9] Liu, S.; Wang, C. C.: Fast intersection-free offset surface
generation from freeformmodels with triangular meshes,
IEEE Transactions on Automation Science and Engineer-
ing, 8(2), 2011, 347–360. https://doi.org/10.1109/TASE.
2010.2066563

[10] Maekawa, T.: An overview of offset curves and surfaces,
Computer-Aided Design, 31(3), 1999, 165–173. https://
doi.org/10.1016/S0010-4485(99)00013-5

[11] Martinez, J; Hornus, S.; Claux, F.; Lefebvre, S.: Chained
segment offsetting for ray-based solid representations,
Computers & Graphics, 46, 2015, 36–47. https://doi.org/
10.1016/j.cag.2014.09.017

[12] Min, C.: On reinitializing level set functions. Journal of
Computational Physics, 229(8), 2010, 2764–2772. https://
doi.org/10.1016/j.jcp.2009.12.032

[13] Min, C; Gibou, F.: A second order accurate level set
method on non-graded adaptive Cartesian grids, Journal
of Computational Physics, 225(1), 2007, 300–321. https://
doi.org/10.1016/j.jcp.2006.11.034

[14] Molchanov, V.; Rosenthal, P.; Linsen, L.: Non-iterative
second-order approximation of signed distance functions
for any isosurface representation, Computer Graphics
Forum, 29(3), 2010, 1211–1220. https://doi.org/10.1111/
j.1467-8659.2009.01699.x

[15] Osher, S.; Fedkiw, R.: Level set methods and dynamic
implicit surfaces, Springer, 2003, 1–273. https://doi.org/
10.1007/b98879

[16] Pasko, A.; Adzhiev, V.; Sourin, A.; Savchenko, V.: Function
representation in geometric modelling: concepts, imple-
mentation and applications, The Visual Computer, 11(8),
1995, 429–446. https://doi.org/10.1007/BF02464333

[17] Pasko A.; Fryazinov O.; Vilbrandt T.; Fayolle P.-A.;
Adzhiev V.: Procedural function-based modelling of vol-
umetric microstructures, Graphical Models, 73(5), 2011,
165–81. https://doi.org/10.1016/j.gmod.2011.03.001

[18] Pasko, A.; Okunev, O.; Savchenko, V.: Minkowski sums
of point sets defined by inequalities, Computers &

Mathematics with Applications, 45(10), 2003, 1479–1487.
https://doi.org/10.1016/S0898-1221(03)00131-7

[19] Patrikalakis, N. M.; Maekawa, T.: Shape interroga-
tion for computer aided design and manufacturing,
Springer, 2002, 1–408. https://doi.org/10.1007/978-3-642-
04074-0

[20] Pavic,D.; Kobbelt, L.: High-resolution volumetric compu-
tation of offset surfaces with feature preservation, Com-
puter Graphics Forum, 27(2), 2008, 165–174. https://doi.
org/10.1111/j.1467-8659.2008.01113.x

[21] Pham, B.: Offset curves and surfaces: a brief sur-
vey, Computer-Aided Design, 24(4), 1992, 223–229.
https://doi.org/10.1016/0010-4485(92)90059-J

[22] Rossignac, J.; Requicha, A.: Offsetting operations in solid
modelling, Computer-AidedDesign, 3(2), 1986, 129–148.
https://doi.org/10.1016/0167-8396(86)90017-8

[23] Russo, G.; Smereka, P.: A remark on computing distance
functions, Journal of Computational Physics, 163(1),
2000, 51–67. https://doi.org/10.1006/jcph.2000.6553

[24] Sethian, J.: A fast marching level-set method for mono-
tonically advancing fronts, Proceedings of the National
Academy of Sciences of the United States of America,
93(4), 1996, 1591–1595. https://doi.org/10.1073/pnas.93.
4.1591

[25] Shapiro, V.: Semi-analytic geometry with R-functions,
Acta Numerica, 16, 2007, 239–303. https://doi.org/10.
1017/S096249290631001X

[26] Sussman M.; Smereka P.; Osher S.: A Level Set Approach
for Computing Solutions to Incompressible Two-Phase
Flow, Journal of Computational Physics, 14, 1994.
146–159. https://doi.org/10.1006/jcph.1994.1155

[27] Taubin, G.: Estimation of planar curves, surfaces and non-
planar space curves defined by implicit equations with
applications to edge and range image segmentation, IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 13(11), 1991, 1115–1138. https://doi.org/10.1109/
34.103273

https://doi.org/10.1109/TASE.2010.2066563
https://doi.org/10.1109/TASE.2010.2066563
https://doi.org/10.1016/S0010-4485(99)00013-5
https://doi.org/10.1016/S0010-4485(99)00013-5
https://doi.org/10.1016/j.cag.2014.09.017
https://doi.org/10.1016/j.cag.2014.09.017
https://doi.org/10.1016/j.jcp.2009.12.032
https://doi.org/10.1016/j.jcp.2009.12.032
https://doi.org/10.1016/j.jcp.2006.11.034
https://doi.org/10.1016/j.jcp.2006.11.034
https://doi.org/10.1111/j.1467-8659.2009.01699.x
https://doi.org/10.1111/j.1467-8659.2009.01699.x
https://doi.org/10.1007/b98879
https://doi.org/10.1007/b98879
https://doi.org/10.1007/BF02464333
https://doi.org/10.1016/j.gmod.2011.03.001
https://doi.org/10.1016/S0898-1221(03)00131-7
https://doi.org/10.1007/978-3-642-04074-0
https://doi.org/10.1007/978-3-642-04074-0
https://doi.org/10.1111/j.1467-8659.2008.01113.x
https://doi.org/10.1111/j.1467-8659.2008.01113.x
https://doi.org/10.1016/0010-4485(92)90059-J
https://doi.org/10.1016/0167-8396(86)90017-8
https://doi.org/10.1006/jcph.2000.6553
https://doi.org/10.1073/pnas.93.4.1591
https://doi.org/10.1073/pnas.93.4.1591
https://doi.org/10.1017/S096249290631001X
https://doi.org/10.1017/S096249290631001X
https://doi.org/10.1006/jcph.1994.1155
https://doi.org/10.1109/34.103273
https://doi.org/10.1109/34.103273

	1. Introduction
	2. Related works
	3. Distance field computation
	3.1. Normalization
	3.2. Re-initialization

	4. Distance-based operations on arbitrary implicit surfaces
	4.1. Offsetting
	4.2. Rounding
	4.3. Filleting
	4.4. Smoothing

	5. Applications and results
	5.1. Shelling and microstructures
	5.2. Smoothing
	5.3. Approximation quality
	5.4. Computation time

	6. Conclusions
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

