
COMPUTER-AIDED DESIGN & APPLICATIONS, 2018
VOL. 15, NO. 4, 488–500
https://doi.org/10.1080/16864360.2017.1419637

A tool for obtaining transparency and traceability in heterogeneous design
automation environments

Tim Hjertberg , Roland Stolt and Fredrik Elgh

Jönköping University, Sweden

ABSTRACT
Today, CAD-system are used for muchmore than just geometric modeling. They are complemented
by various software and information sources forming a complete environment for handling all life-
cycle aspects of the product. In such systems, the CAD-system works as a central hub. The software
and information sources may be of various types making the system highly heterogenous. This
presents problems with transparency and traceability in the systemmaking long termmanagement
difficult. In this paper, a novel tool is presented to keep track of the dependencies between the var-
ious parts of such systems providing an overview and making it possible to predict the effect of
proposed changes and facilitating long term management. The tool is tested in a highly heteroge-
neous environment at amanufacturer of aerospace components, with the result that the traceability
is expected to increase at the expense of that time must be spent on defining dependencies and
meta-information as the system is evolving.

KEYWORDS
Design automation;
dependency management;
customization; traceability;
transparency

1. Introduction

Re-use of knowledge has been discussed extensively
in engineering design [1,3,6]. Several directions have
emerged with the purpose of capturing, structuring
and applying the engineering knowledge with a vary-
ing degree of automation. Design Automation (DA) and
Knowledge Based Engineering (KBE) are examples of
such directions. The motivation for employing systems
for knowledge reuse can for example be to efficiently
create design variants or to respond quickly and accu-
rately to requests for quotations. Knowledge reuse is also
employed in ETO business where the purpose is quality
assurance to make sure that nothing is overlooked in the
design process. The motivation can also be saving time
or making extensive early stage design explorations.

Systems of this type are often based on connecting the
CAD systems with information sources and tools such
as mathematics software, FEA code and rule-based tools
[16]. Today, CAD systems provide support and built in
functionality for building such environments. They may
integrate for example tools such as FEA and function-
ality for defining KBE systems. They also allow users to
connect tools and sources of information via the API:s of
the integrated software. Thus, the CAD system becomes
a central hub surrounded by supporting tools and infor-
mation sources. These types of interconnected systems

CONTACT Tim Hjertberg tim.hjertberg@gmail.com; Roland Stolt roland.stolt@ju.se; Fredrik Elgh fredrik.elgh@ju.se

where the CAD-system acts as a central hub tend to com-
prise many systems and information sources making it
highly heterogeneous. Careful planning is required when
setting up and distributing this type of environments, not
least in the global perspective [25].

There are some tools available for planning the archi-
tecture such as MOKA [29]. However, the environment
may involve many, often heterogeneous parts that evolve
over time. There are also integration problems of a very
specialized nature, such as the one between engineer-
ing and styling in the automotive industry [28]. Special
approaches are needed to overcome these difficulties. It
may therefore become difficult for those not involved in
the systemdevelopment to get an overview of it. Tomain-
tain it over time, transparency and traceability becomes
important [9]. How the knowledge is represented and
maintained is important for increasing the company’s
responsiveness to changing conditions [8,11,24]. There
are currently no of the shelf systems directed towards
the maintenance of such systems. PDM/PLM systems are
successfully used for versioning and information struc-
turing, but there is little functionality in afterwards trac-
ing how the system operated in run-time, such as which
versions of the system parts were used during a particular
run. In addition, there is a need of support for the updat-
ing and maintaining the system such as understanding

© 2018 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/16864360.2017.1419637&domain=pdf
http://orcid.org/0000-0002-1608-4523
http://orcid.org/0000-0001-6278-2499
http://orcid.org/0000-0002-3677-8311
mailto:tim.hjertberg@gmail.com
mailto:roland.stolt@ju.se
mailto:fredrik.elgh@ju.se
http://www.cadanda.com

COMPUTER-AIDED DESIGN & APPLICATIONS 489

how the parts of the system are connected, not only on
a part to part level, but between actual sections of code
and sections in the information sources at a high level of
granularity. Further, there is also an interest in predicting
what effects a particular change will have on the system.
The above described gap of knowledge can be formulated
as a research question:

How can long term traceability and transparency in het-
erogeneous DA-systems be achieved?

To address this question, a study has been made
at an aerospace company where a prototype tool
called “Dependency Manager” (DM) was developed and
evaluated. Its primary purpose is tracing the dependen-
cies between documents in the company’s early stage
multi-disciplinary design analysis system to enhance
the transparency of the system and thereby facilitating
the maintenance of the system. In is the dependencies
between the documents of the DA-system itself such as
written design recommendations, scripts and excel sheets
that have been targeted, not the documents that are pro-
duced to specify the products.

DM is based on automated or manual tagging of sec-
tions in textual documents or programming code. This is
done either automatically or interactively. The extended
markup language (XML) is used to generate a file to
store the dependencies between the different sections of
code. The resulting file can be visualized using a software
called Gephi, (www.gephi.org). In this way, dependen-
cies in a multidisciplinary system for extensive design
space explorations can be traced and visualized retroac-
tively provided that the documents and scripts have been
tagged and that the relations between the tagged docu-
ments have been documented in the XML file. A demon-
strator of such tool has been built and evaluated at the
aerospace company with the result that it is efficient in
providing an overview which is useful both in getting to
understand the connections in the system, but would also
aid in the maintenance process in predicting the effect of
proposed changes.

The remainder of this paper is organized as follows:
First, a review of the research with a focus on depen-
dency management in DA and KBE-systems is made in
the literature chapter. This is followed by presenting the
outcomes of a case study in which the dependency man-
agement system is tried on an actual system for extensive
multi-objective design analyses at an aerospace com-
pany. Beneficial aspects of the dependency management
are discussed, an example of a visualization technique
is presented, and use scenarios are exemplified. Finally,
the results of the evaluation are presented followed by
discussions and conclusions.

2. Related work

This paper is focused on the heterogeneous design sys-
tem itself, i.e. the tools and information sources that
is needed to create the design specification. In litera-
ture, references that address traceability between items of
the design specification (CAD-models, drawing ect.) are
found as well as combinations of the two. The described
systems for tracing of dependencies have varying scope
and purpose and describe the product from different
viewpoints and in different levels of abstraction. Depen-
dencies often exists between the documents which can
refer each other in many ways depending on the for-
mat. Dependencies can act on specific parts of docu-
ments, creating a complex dependency structure. In a
PhD thesis [7] an interesting example from the computer
science domain is found. It shows that IR (Information
Retrieval) can be enhanced by various techniques coun-
teracting the shortcomings of IR alone. It also shows
that the visualization of the dependencies does help soft-
ware engineers to understand, maintain, and manage
the system.

Further, documents are often subjected to change dur-
ing the engineering processes and it is important that
they are consistent with each other [2]. The manage-
ment of documents in such heterogeneous environments
have frequently been pointed out as important in order to
maintain consistency in document clusters and thereby
keeping systems and documents valid [14]. Monticolo
et al. [19] addresses this problem, focused on the engi-
neering design process and expert models connected to
CAD and CAE models. They describe the problem in a
concurrent engineering perspective where information
such as parameters, expert rules, and mathematical rela-
tions are shared by several users in different disciplines.
They further state that tools existing today are not capable
of managing encapsulated knowledge and cannot ensure
that information is consistent through different hetero-
geneous expert models. A model, called the KCModel
(Knowledge Configuration Model), is proposed with the
aim to allow for acquisition, traceability, re-use, and
consistency of explicit knowledge used in configuration.
The solution for consistency is based on checking every
knowledge instance used in a knowledge configuration
with all other configurations. Scheffczyk et al. [26] pro-
poses the use of strict explicit formal consistency rules
in order to obtain consistency in heterogeneous reposi-
tories. They present a tool which can be used to automat-
ically achieve consistency or to pinpoint inconsistencies
in document structures. By setting priorities to the rules,
an impact assessment can be extracted from the inconsis-
tency analysis. Naqvi et al. [22] are focusing on integra-
tion problems of System-of-Systems (SoS) and describes

490 T. HJERTBERG ET AL.

a problemwhich is commonly seen in development envi-
ronments for engineering support tools. Systems and
applications, initially not intended to work together in a
larger context, are combined to create one system capable
of performing the actions of the previously separate sys-
tems. The separate systems all had their individual goals
which now has been merged to a common goal in the
larger system. The authors present a language which is
supposed to help with the integration of SoSs by using it
to represent and analyze natural language-based texts. A
tool called EMatrix NPL is used for the semantic analy-
sis of text and is said to be 93% accurate for the English
language. The language’s intended use is for identify-
ing relevant parts of large documentation collections,
and to point out cross-document dependencies. Hutter
et al. [15] presents a system called MAYA. The system
is described as a tool which maintains formal develop-
ments. To interact with MAYA, the user translates spec-
ifications to a formal specification language. The specifi-
cations contain theories in which, when the specification
is translated to the formal language, proof obligations are
defined to indicate relations to other theories. External
theory provers, such as the one presented in [5] can be
connected to the software in order to operate the proof
obligations.

Most of the research that deals with the consistency
of document clusters are presenting methods of how to
achieve consistency by enforcing a set of rules on the
content of the documents. Egyed [8] presents a method
for automatically detecting and tracking inconsistencies
in software design models. Engineers must define con-
sistency rules which are used by the system to automat-
ically detect violations of the rules. The violations are
presented to the user who should evaluate if the incon-
sistencies are relevant to deal with or not. Xiong et al.
[32] introduces a language called Beanbag for the pur-
pose of creating automated fixing procedures in software
development environments. The language is based on
languages for writing consistency relations but is also
adapted for the adding of semantics which is used to
provide a description of the fixing procedure. Mäder
et al. [20] addresses the problem of traceability decay.
They present a method for maintaining traceability rela-
tions and focuses on re-establishing the traceability after
changes have been made to the relations between ele-
ments in UML structures during software development.
They present a prototype system [21] which recognizes
different types of changes in the relations between the ele-
ments. Spanoudakis et al. [27] have developed a model
and a prototype system, used to generate traceability
relations. To do this, traceability rules must be defined
manually. These rules are represented in the XML for-
mat. From the rules, the prototype system produce four

types of traceability relations. A very similarmodel can be
seen in [23].

As can be concluded from this review, a lot of research
have been done to the field. Methods and tools exists,
which helps software developers or other practition-
ers to keep their document and system environments
consistent and updated. Tools exists which automati-
cally keep track of relations between documents or make
changes to code to re-obtain consistency. However, to
build the environments required for the tools to work, a
lot of manual workmust be done prior to obtaining auto-
matic consistency checks.Most of the tools are developed
with focus on large scale software development, specific
problems or system entities, and are supposed to be used
by pure software developers. In the engineering design
field, a lot of smaller software tool development projects
are performed, without the intention to be part of a larger
system in the future, relatable to the System-of-Systems
concept. The individual software tools are often devel-
oped by the design engineers themselves who perhaps
are not very rigorous in doing documentation work, and
not by software developers. Relations between functional
sections where semantic interpretation of informal state-
mentsmust be performed is not supported by tools found
in this review. Unlike software development projects, the
development of such systems is ongoing during thewhole
life-cycle of the systems. This puts new types of demands
on traceability and transparency.

No solution with the ability to explore the content
inside of the various types of documents has been found
in this literature study. However, there is clearly a need
of keeping track of relations between sections in one
document type to sections in another document type,
and doing this with a low amount of set-up effort.
Transparency is something that has been pointed out
by tool developing engineers to be an important factor
both for gaining trust in the system and for enabling
maintenance and thereby increasing longevity [13, 31].
No support tool for software maintenance have been
found which considers transparency as an important
factor.

3. Requirements for dependencymanagement

Commonalities can be found in research which presents
technical solutions for DA systems. The systems are often
based on several different commercial software, several
programming platforms, and in-house developed soft-
ware which works together in different ways to achieve
a common objective. This structure must communi-
cate with knowledge bases, and PLM systems, as well
as follow company practice and regulations as depicted
in Figure 1.

COMPUTER-AIDED DESIGN & APPLICATIONS 491

Figure 1. A common structure of DA systems, restricted by the
surrounding environment.

Figure 2. Exemplified low granularity view of DA system. Arrows
illustrate dependencies.

3.1. Capturing dependencies

Depending on the type of DA-system, there will be
different types of constituents in the system. However,
there will almost certainly be some kinds of interac-
tions between them as seen in figure 2, showing depen-
dencies between documents and sections of documents.
Depending on the type of dependencies, they can be cap-
tured in different ways. In this paper dependencies are
divided in two groups i.e. structural, and passive. The
structural are those that are directly related to the func-
tions of the program whereas the passive is a result of the
structure of the coding itself.

These terms are in analogy with [17] about functional
relationships. Dependencies can be captured manually

or automatically depending on how they are formalized
in the system or documentation. If the dependencies
occur in a standardized format, these could be found by
an algorithm and be automatically captured. Dependen-
cies which are not described in a predictable way or if
it for some reason is not worth to build the structure
needed for automatic capture, they can be capturedman-
ually. Programming languages usually describes several
types of dependencies which easily can be captured auto-
matically. These could be relations between subroutines,
functions, classes, and libraries. Dependencies which are
typically hard to capture automatically are the passive
dependencies. These are often described in natural, non-
formal language and might have to be captured man-
ually. Cross-platform dependencies can also be hard to
capture automatically since communication between two
platforms can occur in several different ways. One must
ensure that all ways of communication is covered in the
algorithm to ensure that all dependencies are captured
and that they are captured in the correct way.

3.2. Granularity levels

Dependencies can be captured in different levels of gran-
ularity depending on needs in specific cases. A fine gran-
ularity level enables visualization of the system structure
in different views. Depending on the purpose of using
the system, or what person makes use of it, it might be
desirable to have this possibility. Setting up the system
dependency structure in fine granularity enables differ-
ent stakeholders to filter the view to suit their discipline
or wanted level of abstraction. An example of granular-
ity levels can be seen in figure 3 where the children of

Figure 3. Example of granularity levels.

492 T. HJERTBERG ET AL.

a parent represents a finer grained representation of the
parent.

To exemplify the concept from another discipline,
consider a production unit. The production unit consists
of a number of manufacturing cells. The manufacturing
cells contain a number of different machines which can
make use of a set of tools. The tools themselves have
a number of properties and data connected to them.
Considering the production unit as the observed system,
describing it with the manufacturing cells as the small-
est entity would be a course grained description whereas
a description with tool properties as the smallest entity
would be fine grained. The level of granularity should be
adapted to the receiving person.

3.3. Meta data

By adding meta data to captured dependencies, or while
capturing dependencies, the efficiency of the utilization
of the stored dependency structure can potentially be
increased. Information about the person who captured
a specific dependency enables the possibility to contact
this person for consultation when a change is planned
for a considered dependency.Descriptions of the purpose
of the dependency and how the affected system enti-
ties interact technically, enables engineers to be quickly
informed and saves them from going through code or
documentation. If there are any specific demands which
are required to keep the dependency valid, this could be
added here. Examples include scripts that needs to be
associated with a specific version of a commercial soft-
ware to work, or that a variable need to be kept within a
certain range.

3.4. Visualization

The captured dependencies can be used to visualize the
system structure in different ways to obtain overviews of
the system. Informative views can be obtained by con-
figuring the dependencies using the meta data and the
granularity levels. Utilization of filtering and clustering
techniques provides possibilities to create discipline spe-
cific views by removing irrelevant parts or by putting
focus on relevant parts. By using the granularity levels,
views which require prior knowledge about the system
can be obtained. This enables the creation of visualiza-
tions adapted for the individual stakeholder.

3.5. Transparency/accessibility

The dependency structure can be used to obtain
transparency of the system environment. By providing
direct access to system components such as scripts or

descriptive documents through the utilized visualization
approach, the engineers would not have to search for the
files, and could also be guided to the correct place inside
the considered system entity without manual navigation
or interaction with PLM or version control systems.
Interfacing functionality could also provide previews and
editing capability of system entities without having to
open them in their native development environment.

3.6. Impact assessment and change propagation

During maintenance of system entities, it can be hard
to assess the effect of a change, to other system entities.
Through the dependency structure, the engineers can get
estimations of the impact of a change depending on what
types of relations it has to other system entities, or how
many dependencies the entity considered for change have
to other parts of the system. The finer the granularity in
which the system is described, the higher the accuracy of
the impact assessment will be.

When a change is made, its effect will propa-
gate through the system via the dependency structure.
Depending on the nature of the change, it might affect
components of the system, outside of the changed com-
ponent. Further changemight have to be done to affected
components to regain consistency. This behavior can
thereby keep propagating through the system. By inves-
tigating meta data captured in the dependency structure,
engineers can determine if change also must be made on
interfacing components.

4. Case study

In this chapter, the implementation of a demonstrator in
a real industrial setting is described. It was done to show
how the above requirements can be met. It is presented
together with a suggestion of an approach, based on
the modeling andmanagement of dependencies between
functional sections inside and across different types of
system components, which is aimed to aid implementa-
tion and management of DA tools.

4.1. The environment for the implementation

The aerospace company is a global player in develop-
ment, production, service and maintenance of compo-
nents for aircraft, rocket and gas turbine engines with
high technology content. The company provides prod-
ucts that are completely custom engineered in an inter-
national market with high competition. The products are
integrated in complex systems working in extreme envi-
ronments for long time periods of time with both cus-
tomer and legal demands for complete documentation

COMPUTER-AIDED DESIGN & APPLICATIONS 493

and traceability. The company takes full responsibility
for the functionality of their products during its oper-
ation including service, maintenance and updates. Ful-
filling these harsh requirements is a challenge but at the
same time an opportunity to stay competitive. Automa-
tion of design and production preparation by knowledge
based engineering (KBE) has been used at the com-
pany for more than a decade to enable quick adaptation
to change in customer specifications and evaluation of
different design solutions. To aid the concept develop-
ment phase, a multidisciplinary analysis system contain-
ing KBE applications is currently being developed by the
company. The purpose of the system is to provide knowl-
edge of how changes of the design parameters affects
the performance on conceptual designs. This knowledge
is obtained by performing analyses in several different
disciplines simultaneously. Figure 4 shows the general
model behind the multidisciplinary analysis system.

The CAD models seen in figure 4 are all variants
of the same conceptual design. They have been gener-
ated by varying a number of parameters such as lengths
and angles in a pre-planned way. Their variation is
determined by design of experiments (DOE). Multi-
disciplinary analyses are thereafter made on each variant
to determine for example its structural stiffness, risk of
buckling, producibility and aerodynamic performance.
The results of these analyses are compiled and visual-
ized so that the development team can explore the con-
cept, building knowledge and identifying possible design
refinements.

The system is of a heterogeneous nature and consists
of several different commercial software, controlled and
held together by in-house developed software and scripts
written in several different programming languages.
The engineering work at the company follows method
descriptions called Design Practices (DP) together with
other documents and knowledge sources. These form a
starting point for building the system. The DP:s do not
provide details such as how the individual parameters of
a FEA should be set. Instead, this information is encoded

in the scripts and code developed to complete the tasks.
There is also explanatory information found in the com-
ments of code. Connecting the DP:s, the scripts and the
code is seen as challenging but important in order to
obtain a high traceability in the system. Over time, the
DP:s as well as the program code will be subjected to
changes which will create problems in keeping the con-
nections valid. Aspects such as knowledge traceability is
therefore expected to have a great impact on the success
of the implementation. In this study, items related to the
manufacturability evaluation has been used for testing
the how the DM system can trace the dependencies.

4.2. Identifying the target condition

The research project that this paper was written as a part
of, employed Design Research Methodology (DRM) [4].
A key principle of DRM is formulating Success Crite-
ria (SC) and enablers (EN). In short, SC:s are envisioned
states to be obtained after the research project has ended.
Examples of SC:s are: “shorter development time” and
“increased number of innovations”. The EN:s are condi-
tions that are assumed to have to be fulfilled to achieve
the SC:s. An example of an EN is that the company
acquires a tool to visualize dependencies between scripts
and codes. Then that tool is an enabler for achieving one
or several SC.

In the project, workshops and interviews with com-
panies participating in the project resulted in a set of
success criteria (SC). For each SC, a set of EN:s was for-
mulated. As seen in table 1, each SC is supported by
several of the EN:s. The final SC:s and corresponding
EN:s are presented in Table 1.

4.3. Application description

The target is to achieve increased system transparency
and facilitated knowledge traceability in the Producibil-
ity Assessment System (PAS). It performs producibil-
ity analyses by automatically reviewing the conceptual

Figure 4. The general model behind the company’s multidisciplinary analysis system [30].

494 T. HJERTBERG ET AL.

Table 1. SC:s and EN:s for successful implementation, derived from company workshops.

Success criteria (SC) Enablers (EN)

Increased user acceptance • Results visualization
• Domain adapted knowledge

Increased confidence in system • Results visualization
Reduced time spent to access and understand stored knowledge • Domain adapted knowledge

• Traceability between system, code, and knowledge
• Connection between code and normative description

Reduced time making documentation • Traceability between system, code, and knowledge
• Traceability of requirements
• Connection between code and normative descriptions

Faster changes to system (Updates or expansion) • Synchronization of models
• Traceability between system, code, and knowledge
• Traceability of requirements
• Connection between code and normative descriptions

components geometrical features in relation to available
manufacturing processes [12]. The PAS is built on sev-
eral commercial software such as Siemens NX,Microsoft
Excel. These are complemented by code and script writ-
ten in four different programming languages: Python,
VB, VBA, and Siemens NX Knowledge Fusion (KF).
These have a varying degree of connections to norma-
tive descriptions written in non-formal natural language
in DP:s, most often written in Microsoft Word. The sys-
tem is used to perform producibility assessments of a
structural component, included in the frame of a jet
engine. A simplified version of the component is shown
in figure 5. It consists of a number of sheet-metal, cast
or forged parts that are welded together using robotic
welding.

In the case study presented here, has been limited to
part of the PAS that predict the weldability in terms of
accessibility of the robot held weld gun and the suitability
of the geometries. This part of the system consists of
a macro enabled excel file containing VBA program-
ming of the logic to evaluate themanufacturability. It also
encompass KF-scripts for the manipulation and reading
of the CAD-models a Python program to orchestrate the
analysis process.

When the company wants to analyze a design sug-
gestion, all necessary files are copied from a vault to a
client computer. It forms a local catalogue structure on
the client.

The catalogues of the actual structure contain around
50 files. In addition to the CAD files it is mostly Excel,

Figure 5. Welding assembly sequence of structural jet engine component.

Figure 6. PAS catalogue structure copied to a client.

COMPUTER-AIDED DESIGN & APPLICATIONS 495

Word, vba, dfa and python documents. In figure 6, a cat-
alog structure with a limited number of files is shown to
visualize the structure.

The execution is governed by a Python script (Pro-
cess/manufacturability assement.py) It starts a sequence
of events starting with the extraction of relevant geo-
metrical elements from CAD models (CAD/Turbine
Frame.prt). The extraction is done by KF scripts in the
dfa -files (CAD file manipulation/..). The data is trans-
ferred to manufacturability assement.xlsm which is a
macro enabled excel file containing the logic that test the
manufacturability conditions.

Most of these documents have dependencies between
that needs to be traced to quickly get an overview. This is
useful when trying to understand how the system works
or when doing maintenance work.

4.3.1. Capturing dependencies & granularity levels
In some cases, it is necessary to trace dependencies
between sections of code. To handle this “tags” are added
in the code. A tag is a comment starting with a key word
followed by a number such as “#Tag_001” These tags
are added when the code is written and are then traced
by DM.

In the test-case with the PAS, most dependencies were
captured in a semi-automated way. The semi-automated
capture method was based on the tags inside the pro-
grammed components. The tags contain all information
needed to be kept track of each section of code. In the
case, it was decided to include the following information
in the tags: name of the component, creator of the com-
ponent, a description of the components purpose, when
it was created, when it was last modified, what type of
component it is (e.g. a script, a word document, a com-
mercial software). To enable automated reconstruction
of the dependency structure from only the information
contained in the tags they also included information on
which other components of the system it makes use of.
A python script was written and used to find and read
the tags in all the system components. The script also
reconstructed the information in an XML file which later
was used to create input files for the visualization tool.
To demonstrate the possibility of obtaining fully auto-
mated capture of system dependencies, another python
script was written. This script included an algorithm
which was based on the declarative programming lan-
guage Knowledge Fusion (KF). KF is used to automate
actions in the CAD software Siemens NX. The python
script was written to identify all KF based system com-
ponents and then to recognize when KF scripts called
other parts of the script or other KF scripts. In the same
way as the script for the semi-automated capturemethod,
the dependencies were reconstructed in XML format

and then merged with the dependencies captured semi-
automatically. This to enable their inclusion in the same
input file for the visualization tool.When the dependency
structure was set up on the PAS, the finest granularities
consisted of chapters in natural language documents, and
subroutines/functions/classes in scripts. This resulted in
81 structural dependencies and 2 passive dependencies.
5 dependencies were caught automatically and 78 were
caught semi-automatically. 63 of the 78 are directly con-
nected to how the used programming languages calls or
executes other entities of the system. Capture of these
dependencies have the potential of being fully automated
in the same way as the capture of dependencies between
the Knowledge Fusion scripts. This means that 82% of
the dependencies in this system has potential in being
captured fully automatically with simple algorithms. This
is without including possible automatic capture of cross-
platformdependencies or attempts to standardize natural
language descriptions.

4.3.2. Meta-data
The meta data was in the case study collected in two
ways. It was done simultaneously as the capturing of
the dependencies, with routines built in to the scripts
for automatic and semi-automatic dependency capture.
What can be captured with the fully automated method
is limited to the information existing “naturally”: That is
information which would have been there regardless of
trying to capture information about the component or
not such the name, date of creation and the creator of the
component. This is taken from the operating system file
information.

In the case of automated capture, the collected meta
data was limited to names of KF functions inside KF
scripts, the name of the KF script, and the path to the
location of the KF script. As for the semi-automated
method, any desired information which did not exist nat-
urally in the components, were introduced in the tags
used for the dependency collection. This include the type
of component and its purpose. As mentioned previously,
the information included in the case was: name of the
component, creator of the component, a description of
the components purpose, when it was created, when it
was last modified, and what type of component it is.
Informationwhich occurrednaturally in the systemcom-
ponents were not included in the tags and were thus
collected automatically with the same routines as used by
the fully automated collection method.

4.3.3. Visualization
In the test case, two different ways of visualization were
tested. First, in a regular tree structure like the one in

496 T. HJERTBERG ET AL.

figure 3 is used. The tree-graph is a natural way of pre-
senting the dependency structure.

However, when the system grows and more depen-
dencies are introduced, it can be hard to keep a clear
overview at fine granularity levels. Filtering techniques
can be used to improve the ease of use. For the second
visualization approach an open source software for net-
work exploration, Gephi [18] was used in order to build
graphs. The graphs show system entities as nodes and
dependencies as lines between nodes. Several different
layout algorithms can be applied to the graphs to produce
clear views of the structure. Filtering and clustering tech-
niques can also be applied in Gephi to further improve
the usability of the visualized dependencies. A python
script was used to generate input files representing the
dependency structure of the PAS system as described
in section 4.3 for visualization in Gephi. The generated
input files were imported into Gephi and resulted in the
plots shown in figure 7. Each of the dots in the figure rep-
resents one tag in the scrips and the documents. The lines
show the connections between them. The arrow shows
in which direction the information goes. The color scale
from green to red indicates how many interactions a sys-
tem entity has with other entities. The texts at each node
refer to the name of the called routine in each script as
seen in the enlargement of the two nodes in figure 7.Meta
data can be displayed in the graphs and they can be fil-
tered and searched in order to provide suitable views as
for example when changes to the system is being planned
or when an overview is needed to introduce a new user
to the system.

The graph is a useful tool to get a prediction of the
consequences of changing. It can be seen in which other

scripts a tagged section is used. Likewise, should there be
an isolated dot, a conclusion can be drawn that it is not
in use and can be deleted.

4.3.4. Transparency
Transparency was in this case study introduced by pro-
viding access to the system entities registered in the
dependency structure. Two different technical solutions
for achieving this were tested. The user of the system
was given the possibility to open the system entity, in
its native environment, directly from the visualization
tool. Text based entities, such as code or natural language
documents, can be displayed in the visualization tool in
order to enable quick previews. If a dependency acts on
a specific part inside such documents, this specific part is
located and displayed to the user in the visualization tool.

4.3.5. Evaluation
To clarify how the proposed solution was perceived to
support the SC:s (table 1), three professionals at the
aerospace company where interviewed in November
2016 for around two hours. The professionals all have
several years of experience ofmanaging product develop-
ment in the aerospace industry and have a good overview
of the product development process at the company. The
interviewees were all men around 50 years old. One them
is the manager of the R&T department that work with
the development of pre-order concepts. The second is
responsible for the development of the engineeringmeth-
ods used at the R&T department. The third is the lead
engineer of the new engine technology. First, the system
was demonstrated to all three of them simultaneously.
It was done by showing an example of dependencies

Figure 7. Gephi visualizations of the PAS system.

COMPUTER-AIDED DESIGN & APPLICATIONS 497

Table 2. Questions for evaluating DM.

1. Traceability and transparency 2. User perspective
A How will the traceability between design practice and programming code
be affected?

A Will it be possible to grasp the dependencies in a short time using the
system?

BWill the presented system contribute to a better overview of the information? BWhat different types of users can be identified and what are their needs? Can
the system as it has been designed meet these needs?

C Will it be possible to keep the relationships updated over long time (several
years)?

C How will the time it takes for documentation be affected?

3. The effect on the product development process D What will happen when a design practice is changed? Will it be possible to
update the scripts identified to be affected through the system?A. Will the system contribute to any of the following:

• decreased variation?
• shortened development time?
• more efficient use of resources?
• increased trust in the results?

4. Customer business offer
A Will the system in any way contribute to increased customer value? If so,
how?

tracing between script-files using both tree-graphs and
Gephi-graphs. Second, the procedure of managing the
relations using the XML-file was demonstrated. Finally,
the tagging of code in code blocks inside scripts was
demonstrated.

After the demonstration, questions related to the SC:s
were individually asked to the interviewees. These ques-
tions are shown in table 2 and involve traceability and
transparency, user perspective, the effect of the product
development process, and the company’s business offer to
the customer. The answers to the questions given by the
professionals are summarized under the headings below.

There was nomajor disagreement among the intervie-
wees or contradictions in the answers. This was partly
due to that the interviewees in some cases highlighted
different aspects of the questions. The three following
sections summarize the answers for each of the questions
and point out were the interviewees agreed, disagreed or
when they highlighted different aspects of the question.

4.3.6. Traceability and transparency
A. All agreed that the traceability of dependences will
increase at the cost of the timeneeded to define andmain-
tain the dependencies. One pointed out the there is a
risk that it is easy to forget to do the tagging. Another
highlighted the complexity with the different stakehold-
ers of the system. It is only the ones involved in the system
development that will define the tags.

B. There will be a better overview of the informa-
tion. One pointed out that it will be possible to keep the
set of documents clean i.e. trace obsolete documents for
deletion.

C. The answers are not in unison. One said he did
not know how much time that would be spent on main-
tenance. Another pointed out that there must be a firm
sanctioning from the management to justify spending
time on the maintenance. A third pointed out the risk
that the tagging is forgotten and that the system devel-
opers put too much trust in the tagging and neglect the
commenting of the code.

Further, one of them identified that it will be possible
to identify code that is not in use for possible deletion.
Two of the interviewees identified a challenge in commu-
nicating the need for maintenance. The relations need to
be updated as they get obsolete otherwise DM will not
gain any acceptance in the organization.

4.3.7. User perspective
A. DM will help the understanding of the structure and
dependencies of the system, but under the condition that
there still is good commenting and explanations. two
of the interviewees agreed. One said it is possible that
the effect will be increased overview, but wants to make
additional testing on actual documents. One of the inter-
viewees said that, in addition to telling the user that there
is a dependency, the system should also help in visual-
izing the effect of changing something in system. As it
is now, the code still needs to be commented and it is
the person making the change who must understand the
code first to successfully change it. Perhaps tracing the
dependencies can facilitate running the system implic-
itly, i.e. entering the desired result and the getting what
parameter settings on the in data that this corresponds to.
Setting up the system for backward chaining is thought to
be facilitated by DM.

B. Several different types of staff will use the system.
Firstly, there are the system developers who also work
with maintenance and continuous improvements of the
system. Secondly, there are users like project leaders,
design engineers and analysis engineers involved. Using
the system, the dependencies can be overviewed.

C. The interviewees do not agree on how the system
will affect the time spent on documenting. One says it is
possible that it will decrease. Another say the time cer-
tainly will increase but that the work must be done since
traceability is a requirement in the aerospace industry.
One point out that it will be hard to add tags into docu-
ments already in the PDM-system as thatwill require new
revisions. It would be best to start in research projects
where there is no version handling yet.

498 T. HJERTBERG ET AL.

D. For the updating of existing documents, versioning
of the scripts is identified as a potential problem by two of
the interviewees. One of them exemplified this by stating
that it is sometimes necessary to re-run simulations using
the same versions as in the first run. An example is than
a deviation has been discovered in the production parts.
The third had no opinion on this question.

4.3.8. The effect on product development
A. By variation is meant that the quality of the analy-
ses will vary other time. This variation is expected to
decrease since there will be a better control of scrips,
programs documents and so on that are used, the inter-
viewees agreed. The development time will decrease, two
of the interviewees agreed. One stated that it is an indi-
rect effect. This is because there will be fewer errors in the
system.

As for the more efficient use of resources, one did not
know. One of them said that efficiency can be obtained
by reduced redundancy. The third said that it is related to
the confidence in the results. If the quality is high and the
users have confidence in the system, the efficiency will be
high since the risk of mistakes decreases. The develop-
ment time will be shortened but more resources are put
on setup and maintenance of the system.

Resources are used more efficient since the develop-
ment process is more focused. There will be increased
trust in results since there will be a better integration
between documentation and programming code and
scripts.

4.3.9. Customer business offer
A. The external customers will likely not notice any dif-
ference, two of the interviewees said. One said that it can
affect the external customer relations in a positive man-
ner if errors are discovered in the ready products. In such
cases, it is vital to quickly be able to show the source of
the error. Knowing exactly how the system was set-up
and what dependencies existed at a particular point in
time can contribute to quickly finding the source of error,
which is positive from an external customer relations
point of view. Two of the interviewees saw an increased
value for internal customers in that there will be fewer
errors. If it can be shown that this has led to decreased
costs in development, it has a high internal value, one of
them stated.

4.3.10. Summary of interviews
The interviews gave some insights in how the SC:s pre-
sented are expected to be supported. The SC:s from table
1 are seen below:

• Increased user acceptance
• Increased confidence in system

• Reduced time spent to access and understand stored
knowledge

• Reduced time making documentation
• Faster changes to system (Updates or expansion)

The user acceptance is not included in the interview
questions since it is too early to evaluate. The interview
indicates that the confidence in the results is expected
to increase since it is possible to keep better track of
what is run. The time spent to access the stored informa-
tion will decrease. However, the system offers no support
in understanding the accessed information. Further, the
systemdoes not influence the time spentmaking the doc-
umentation. Additional documentation will be necessary
in that the tags and their meta-data will have to be doc-
umented. Updates or expansions will be supported to a
degree in that the involved documents are readily traced.

The SC that currently is poorly supported is the help
in understanding the stored information. Understanding
it is a key to knowing how it should be changed. The
system needs to support this, possibly by amending the
meta-data information on each dependency explaining
the reason for the existence of each dependency.

5. Discussion and conclusion

The objective of this work was to introduce a tool for
achieving traceability and transparency in heterogeneous
DA systems through dependency tracing and manage-
ment. It sought to answer the question: “How can long
term traceability and transparency in heterogeneous DA-
systems be achieved?” It will be possible to map the
dependencies between the documents, scripts and codes
used in the DA-systems. A good overview is provided
revealing if part of the system or environment is not used
or if obsolete parts are still in use although they should
not be. Should for example a script been superseded by
an improved version, there is a risk that it is still in use in
another part of the system. These problems can quickly
be identified and corrected using the tool.

Dependency management was introduced on a sub-
document level, allowing cross-document type depen-
dency capturing. Manual labor was reduced by introduc-
ing automatic capture of certain dependency types. In
the test case, 82% of the total amount of dependencies
had potential for automatic capture. Two important parts
of the approach is the consideration of granularity lev-
els and the capturing of meta data. These can be used to
create clear and explanatory overviews of the system in
which the flow of information and knowledge can easily
be traced through the system structure without having to
laboriously go through documents and code.

COMPUTER-AIDED DESIGN & APPLICATIONS 499

The tool uses a XML file to keep a record of the depen-
dencies in the DA-system. This will enable the keeping
of a legacy of the development of the dependencies of
the DA-system. It will require that the versioning of the
dependent documents is included in the XML file meta-
data. By regularly generating XML files and managing
them in the company PDM systems, the system as it was
when the XML-file was created can be reconstructed.
It can be run under the same circumstances enabling
the detection of errors. This is especially important in
aerospace industry with its strict requirements to trace
the sources of an error should there be an aviation acci-
dent.

From the evaluation of the tool, it was clear that the
tracing of dependencies is important when preforming
maintenance. However, no support is given in under-
standing how it is possibilities to change. The personwho
ismaking the changemust read the comments in the code
to understand how it works before being able to change it.

A conclusion based on reviewed literature, industrial
input, and the case study presented in this article, is that
there is a need for approaches which provides traceabil-
ity and transparency to the considered type of environ-
ments, and that dependency management, visualization
and dependency characteristic seem to have potential in
achieving this.

6. Future work

Including the reason for the existence of a dependency
will make it possible tomore quickly grasp how the inter-
linked documents can be changed has been identified as
important and should be included in the future work.
Further, a more thorough evaluation of the presented
system in the industrial environment of the case com-
pany is needed. The visualization of the dependencies
and keeping track of the meta-data are also planned to
be elaborated further.

Acknowledgements

The authors would like to express gratitude towards the partic-
ipating companies in the study as well as The Swedish Knowl-
edge Foundation (www.kks.se) for funding the project.

ORCID

Tim Hjertberg http://orcid.org/0000-0002-1608-4523
Roland Stolt http://orcid.org/0000-0001-6278-2499
Fredrik Elgh http://orcid.org/0000-0002-3677-8311

References

[1] André, S.; Elgh, F.; Johansson, J.; Stolt, R.: The design plat-
form – a coherent platform description of heterogeneous

design assets for suppliers of highly customised systems,
Journal of Engineering Design, 2017 (Print).

[2] Becker, S.M.; Haase, T.; Westfechtel, B.: Model-based
a-posteriori integration of engineering tools for incre-
mental development processes, Software and Systems
Modeling, 4(2), 2005, 123–140. http://doi.org/10.1007/
s10270-004-0071-0

[3] Bimba, A.T.; Idris, N.; Al-Hunaiyyan, A.; Mahmud, R. B.;
Abdelaziz, A.; Khan, S.; Chang, V.: Towards knowledge
modeling andmanipulation technologies: A survey, Inter-
national Journal of InformationManagement, 36(6), 2016,
857–871. http://doi.org/10.1016/j.ijinfomgt.2016.05.022

[4] Blessing, L.T.M.; Chakrabarti, A.: DRM, a design research
methodology, Springer, London, 2009

[5] Bundy, A.: Automated theorem provers: a practical tool
for the working mathematician, Annals of Mathematics
andArtificial Intelligence, 61(1), 2011, 3. http://doi.org/10.
1007/s10472-011-9248-8

[6] Chapman, C.B.; Pinfold, M.: The application of a knowl-
edge based engineering approach to the rapid design and
analysis of an automotive structure, Advances in Engi-
neering Software, 32(12), 2001, 903–912. http://doi.org/
10.1016/S0965-9978(01)00041-2

[7] Chen, X.: Automated Documentation to Code Traceabil-
ity Link Recovery and Visualization, in The University of
Auckland. 2012, The University of Auckland: Auckland,
New Zealand. p. 252.

[8] Egyed, A.: Automatically detecting and tracking incon-
sistencies in software design models, IEEE Transactions
on Software Engineering, 37(2), 2011, 188–203. http://doi.
org/10.1109/TSE.2010.38

[9] Elgh, F.: Modeling and management of product knowl-
edge in an engineer-to-order business model. in ICED
11–18th International Conference on Engineering Design -
Impacting Society Through Engineering Design. 2011.

[10] Elgh, F.: Automated engineer-to-order systems – a task-
oriented approach to enable traceability of design ratio-
nale, Int. J. Agile Systems and Management, 7(3–4), 2014,
324–347. http://doi.org/10.1504/IJASM.2014.065358

[11] Elgh, F.: Supporting management and maintenance of
manufacturing knowledge in design automation systems,
Advanced Engineering Informatics, 22(4), 2008, 445–456.
http://doi.org/10.1016/j.aei.2008.05.004

[12] Heikkinen, T.; Stolt, R.; Elgh, F.; Andersson, P.; Auto-
matedProducibilityAssessment Enabling Set-BasedCon-
current Engineering, in Transdisciplinary Engineering :
Crossing Boundaries TE2016. 2016. Curitiba, Brazil:
IOS Press.

[13] Hjertberg, T.; Stolt, R.; Poorkiany, M.; Johansson, J.; Elgh,
F.: Implementation and management of design systems
for highly customized products-state of practice and
future research. in Advances in Transdisciplinary Engi-
neering. 2015.

[14] Hutter, D.: SemanticManagement ofHeterogeneousDoc-
uments, in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). 2009, 1–14.

[15] Hutter, D.; Autexier, S.: Formal Software Development in
MAYA, in Mechanizing Mathematical Reasoning: Essays
in Honor of Jörg H. Siekmann on the Occasion of
His 60th Birthday, D. Hutter and W. Stephan, Editors.
2005, Springer Berlin Heidelberg: Berlin, Heidelberg. p.
407–432.

http://orcid.org/0000-0002-1608-4523
http://orcid.org/0000-0001-6278-2499
http://orcid.org/0000-0002-3677-8311
http://doi.org/10.1007/s10270-004-0071-0
http://doi.org/10.1007/s10270-004-0071-0
http://doi.org/10.1016/j.ijinfomgt.2016.05.022
http://doi.org/10.1007/s10472-011-9248-8
http://doi.org/10.1007/s10472-011-9248-8
http://doi.org/10.1016/S0965-9978(01)00041-2
http://doi.org/10.1016/S0965-9978(01)00041-2
http://doi.org/10.1109/TSE.2010.38
http://doi.org/10.1109/TSE.2010.38
http://doi.org/10.1504/IJASM.2014.065358
http://doi.org/10.1016/j.aei.2008.05.004

500 T. HJERTBERG ET AL.

[16] Johansson, J.: How to build flexible design automation
systems for manufacturability analysis of the draw bend-
ing of aluminum profiles, Journal of Manufacturing Sci-
ence and Engineering, Transactions of the ASME, 133(6),
2011, http://doi.org/10.1115/1.4005355

[17] Malmqvist, J.; A classification of matrix-based methods
for product modeling, in DESIGN 2002, the 7th Interna-
tional Design Conference. 2002: Cavtat, Croatia.

[18] Mathieu, B.; Sebastien, H.; Gephi, J. M.: An Open
Source Software for Exploring and Manipulating Net-
works, International AAAI Conference on Web and
Social Media; Third International AAAI Conference on
Weblogs and Social Media, 2009.

[19] Monticolo,D.; Badin, J.; Gomes, S.; Bonjour, E.; Chamoret,
D.: A meta-model for knowledge configuration manage-
ment to support collaborative engineering, Computers
in Industry, 66, 2015, 11–20. http://doi.org/10.1016/j.
compind.2014.08.001

[20] Mäder, P.; Gotel, O.; Philippow, I.: Enabling automated
traceability maintenance through the upkeep of traceabil-
ity relations, in Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). 2009, 174–189.

[21] Mäder, P.; Gotel, O.; Philippow, I.: Semi-automated
traceability maintenance: An architectural overview of
tracemaintainer, in 2009 31st International Conference on
Software Engineering - Companion Volume, ICSE 2009.
2009.

[22] Naqvi, S.A.; Chitchyan, R.; Zschaler, S.; Rashid, A.;
Südholt, M.: Cross-Document Dependency Analysis for
System-of-System Integration, in Foundations of Com-
puter Software, Future Trends and Techniques for Devel-
opment: 15th Monterey Workshop 2008, Budapest, Hun-
gary, September 24–26, 2008, Revised Selected Papers, C.
Choppy and O. Sokolsky, Editors. 2010, Springer Berlin
Heidelberg: Berlin, Heidelberg. p. 201–226.

[23] Olsson, T.; Grundy, J.: Supporting traceability and incon-
sistency management between software artifacts, in Pro-
ceedings of the 6th IASTED International Conference on
Software Engineering and Applications, SEA 2002. 2012.

[24] Poorkiany,M.; Johansson, J.; Elgh, F.: Capturing, structur-
ing and accessing design rationale in integrated product

design and manufacturing processes, Advanced Engineer-
ing Informatics, 30(3), 2016, 522–536. http://doi.org10.
1016/j.aei.2016.06.004

[25] Salchner, M.; Hirz, M.; Stadler, S.; Ameye, J.: A new
approach of a global knowledge-based engineering
infrastructure, Computer-Aided Design and Applications,
14(3), 2017, 366–376. http://doi.org/10.1080/16864360.
2016.1240457

[26] Scheffczyk, J.; Borghoff, U. M.; Rödig, P.; Schmitz, L.:
Consistent document engineering: Formalizing type-safe
consistency rules for heterogeneous repositories, in Pro-
ceedings of the 2003 ACM Symposium on Document Engi-
neering. 2003.

[27] Spanoudakis, G.; Zisman, A.; Pérez-Miñana, E.; Krause,
P.: Rule-based generation of requirements traceability
relations, Journal of Systems and Software, 72(2), 2004,
105–127. http://doi.org/10.1016/S0164-1212(03)00242-5

[28] Stadler, S.; Hirz, M.: A knowledge-based framework for
integration of computer aided styling and computer aided
engineering, Computer-Aided Design and Applications,
13(4), 2016, 558–569. http://doi.org/10.1080/16864360.
2015.1131552

[29] Stokes, M.: Managing Engineering Knowledge: MOKA
Methodology for Knowledge Based Engineering Applica-
tions, John Wiley & Sons, 2001

[30] Stolt, R.; André, S.; Elgh, F.; Andersson, P.: Introducing
weldingmanufacturability in amultidisciplinary platform
for the evaluation of conceptual aircraft engine com-
ponents, International Journal of Product Lifecycle Man-
agement, 10(2), 2017, 107–123. http://doi.org/10.1504/
IJPLM.2017.085950

[31] Verhagen, W.J.C.; Bermell-Garcia, P.; Van Dijk, R. E.
C.; Curran, R.: A critical review of Knowledge-Based
Engineering: An identification of research challenges,
Advanced Engineering Informatics, 26(1), 2012, 5–15.
http://doi.org/10.1016/j.aei.2011.06.004

[32] Xiong, Y.; Hu, Z.; Zhao, H.; Song, H.; Takeichi, M.; Mei,
H.: Supporting automatic model inconsistency fixing. in
ESEC-FSE’09 - Proceedings of the Joint 12th European Soft-
ware Engineering Conference and 17th ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
2009.

http://doi.org/10.1115/1.4005355
http://doi.org/10.1016/j.compind.2014.08.001
http://doi.org/10.1016/j.compind.2014.08.001
http://doi.org10.1016/j.aei.2016.06.004
http://doi.org10.1016/j.aei.2016.06.004
http://doi.org/10.1080/16864360.2016.1240457
http://doi.org/10.1080/16864360.2016.1240457
http://doi.org/10.1016/S0164-1212(03)00242-5
http://doi.org/10.1080/16864360.2015.1131552
http://doi.org/10.1080/16864360.2015.1131552
http://doi.org/10.1504/IJPLM.2017.085950
http://doi.org/10.1504/IJPLM.2017.085950
http://doi.org/10.1016/j.aei.2011.06.004

	1. Introduction
	2. Related work
	3. Requirements for dependency management
	3.1. Capturing dependencies
	3.2. Granularity levels
	3.3. Meta data
	3.4. Visualization
	3.5. Transparency/accessibility
	3.6. Impact assessment and change propagation

	4. Case study
	4.1. The environment for the implementation
	4.2. Identifying the target condition
	4.3. Application description
	4.3.1. Capturing dependencies & granularity levels
	4.3.2. Meta-data
	4.3.3. Visualization
	4.3.4. Transparency
	4.3.5. Evaluation
	4.3.6. Traceability and transparency
	4.3.7. User perspective
	4.3.8. The effect on product development
	4.3.9. Customer business offer
	4.3.10. Summary of interviews

	5. Discussion and conclusion
	6. Future work
	Acknowledgements
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

