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ABSTRACT

A complete framework for the fast computation of multiple local minimal distances between com-
plex CAD models represented by their smooth boundaries without any tessellation is presented. It is
used for collision detection as part of a rigid body dynamics simulation engine for interactive virtual
manipulations and telerobotics applications. Computing contact points on the smooth model repre-
sentations naturally prevents numerical artifacts introduced by discontinuous normals of tessellated
models. Typical use-cases are the simulation of rolling and sliding motions with small mechanical
clearance where shocks introduced by geometric approximations may induce significant and sud-
den changes in the objects trajectories. Our method is based on the observation that industrial CAD
models are mostly composed of simple curves and surfaces (segments, circles, cylinders, planes,
cones, etc.), allowing several efficient surface-type-dependent special-cases. We improve existing
off-line geometric analysis for grouping similar features, and propose a new, tighter, bounding vol-
ume for normal cones of faces, edges, and vertices. Both contributions bring significant performance
gains for interactive applications as they prevent many useless or redundant distance computations.
A comparison with an existing similar distance-based tessellation-based collision detection method
is presented to prove the advantages of our method regarding the balance between accuracy and
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performances.

1. Introduction

With the development of advanced robotic systems and
complex teleoperation tasks, the need to perform sim-
ulations before operating on physical systems becomes
of increasing interest for feasibility tests, training of the
human operators, motion planning, etc. Such simulations
are to be performed with great accuracy of physical phe-
nomena if, e.g., the operator is expected to face the same
ones in the real world and in the virtual scene. Typical
tasks to be simulated interactively are the virtual assem-
bly or disassembly of a product composed of multiple
rigid body parts. These simulations may involve moni-
toring a robotic arm to perform maintenance operations
on a remote location. Other needs for real time mechani-
cal simulations appear during the product design phase
with usage scenarios where the user has a key impact
to manipulate the product and evaluate its adequacy. In
such scenarios, the manipulated objects are commonly
subject to rolling and sliding motions that must be ren-
dered accurately. At the core of these simulations is a
physical simulation engine that computes the trajectory

of objects subjected to user interactions, kinematic con-
straints, and intermittent contacts, acting also as non-
linear constraints. Collision detection (CD) is a signifi-
cant and time-consuming part of such an engine when it
computes contact points (and contact normals) between
interacting rigid bodies. The accuracy and smoothness
of such contact information is of primary importance to
produce a realistic behavior of the simulated objects.

However, the quality of the computed contact infor-
mation strongly depends on the geometric representation
of the virtual scene and the parts directly involved in
the mechanical simulation. Currently, two of the major
approaches are volumetric representations [17, 29] where
the interior of each object is represented explicitly, and
boundary representations [27] where only the boundary
of each object is explicitly represented, e.g., with a surface
mesh, or with smooth surfaces.

Volumetric representations are typically preferred for
low-accuracy simulations requiring high refresh rates
while boundary representations yield more accurate
results but at a higher computational cost. Boundary
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representations themselves can be split into two fami-
lies: tessellation-based and smooth surfaces-based. While
the latter corresponds to whatever smooth output of
a CAD modeler yields in term of piecewise polyno-
mial surfaces, the former is an approximation of smooth
surfaces obtained with triangles, segments, and points.
Tessellation-based algorithms are by far the most pop-
ular choice and have been subjected to a significant
amount of research [15]. However, because of the inac-
curacies of the contact points locations and the discon-
tinuity (with regard to the objects motion parameters)
of the contact normals induced by this discrete approx-
imation of smooth shapes, tessellated objects are not
always applicable in practice to interactive simulations
requiring a high level of accuracy for rolling and slid-
ing motions performed with small mechanical clearance
between objects. Therefore, using smooth surfaces is of
major interest since they natively get rid of the previ-
ously mentioned discontinuity problems. However, exist-
ing robust and accurate methods readily operating on
smooth surface representations still suffer from perfor-
mance limitations. In order to speed up the smooth
surface processing, [6] have recently introduced new
surface features and bounding volume hierarchy that
can produce real-time mechanical simulations. Here, the
contribution is twofold: the introduction of a generic
data structure structuring the surface features previously
validated and a tight approximation of tangent cone
polars that further speed up the local minimal distances
computation.

This paper describes a fast algorithm for comput-
ing closest points between two complete industrial CAD
models (not only individual surfaces) described through
their smooth Boundary Representation (B-Rep) issued
by CAD modelers. No tessellation process is involved.
The proposed approach takes advantage of key features of
mechanical components because they are often modeled
with surfaces describing functional contacts with canon-
ical surfaces (cylinder, sphere, cone, plane, torus) while
contacts over free-form surfaces like B-Splines are very
rare and punctual. A comparison is performed with a
similar distance-based method that relies on polyhedral
approximations of the original B-Rep model. In the con-
text of telerobotics or real-time mechanical simulations,
our method features both better performances and bet-
ter accuracy for an insertion task with small mechanical
clearance.

2. Related works

Within the context of the simulation of non-smooth
mechanical systems, local minimal distances and pene-
tration depths are the most common concepts to define

contact points and their associated normals. In our
applications, the contact information generated have to
comply with the requirements of a non-smooth contact
dynamics solver based on a time-stepping scheme [1].
As shown in Fig. 1, these information are used to for-
mulate contact constraints that should be regular, i.e.,
with normal at contact points having continuous first
order derivatives with respect to the contact location,
in order to ensure the subsequent constraints resolution
algorithms behave accurately and efficiently. From the
user point of view, failing to have contact normals con-
tinuous with respect to the motion parameters may affect
the simulation of rolling and sliding motions significantly
by generating unrealistic interactions. This sometimes
changes the object’s behavior in sudden and unexpected
ways with spurious impacts and jamming.

There are three main approaches to overcome this
limitation. At first comes an increased accuracy of the
discretization. This reduces the adverse effects of impacts
on added edges and vertices at the cost of a higher num-
ber of contact points. Such an increase of the number of
contacts raises significant performance issues because the
number of constraints passed on to the dynamics solver
increases as well. Therefore, this method is not applica-
ble to simulations where a very high level of accuracy is
expected, e.g., sliding and rolling motions.

A second alternative relies on other measures like the
growth distance [8] or the continuous penetration depths
[30]. While both are continuous wrt. motion parame-
ters even if the objects have discrete representations, the
first one is limited to convex objects only. The second
one is made possible by approximating smoothly the con-
tact space, i.e., the set of positions for which two objects
just touch (without penetration), and using it to detect
contacts and compute the penetration depth at run-time.
However, those penetration depth approximations of the
contact space are applicable to translations only and don’t
handle rotational motions yet.

The third category of approaches computes distances
or penetration depths using the smooth curves and sur-
faces of the B-Rep models. While such approaches have
all the benefits in terms of accuracy (continuity of nor-
mals, accurate and smooth contact kinematics [21]) and
output a low number of contact points, most existing
methods that are efficient enough to handle complete
B-Rep models interactively come with restrictions or
approximations that may significantly affect their results.
[16] and [32] restrict the models to sets of convex com-
ponents only so that they may track the unique contact
point between two convex parts in real-time. [5] locates
approximately contact areas of concave components by
computing intersections between their dilated polyhedral
approximations. The central points of those intersections
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Figure 1. Flowchart of a simulator based on a time-stepping integration scheme for the simulation of a non-smooth mechanical system.
Typical real-time physics engines use linearized constraints and contact kinematics. Non-linear solvers exist [1] and achieve better realism

but at a higher computational cost.

are used to initialize an iterative minimization method
extracting one contact point per identified contact area.
Being limited to one contact per intersection of the poly-
hedral approximations, many of them may be missed
over non-convex areas if some non-convex faces of the
objects are close to one-another, or if the chosen dila-
tion is too large. [24] describes a method for collision
detection of a B-Spline-shaped tool with a CAD model
composed of deformable B-Spline surfaces. After a coarse
proximity filtering based on convex hulls, it searches for
intersecting surface areas using sampled areas of each
solid. Bounding spheres are computed from those sam-
ples to cover these areas and refine the search. Once the
search areas are sufficiently small, a local triangulation is
used to compute the intersecting areas. Because bound-
ing spheres are computed from samples over the surfaces,
small surface patches with high curvatures may not be
detected by this algorithm. Edges and vertices are not
processed either.

Using our previous work [6] as a basis, we compute
Local Minimal Distances (LMD) between the smooth B-
Reps obtained from industrial CAD models. We focused
on improving performances in order to perform interac-
tive rigid body dynamics simulations in the context of,
e.g., virtual teleoperation and robotics. We bring contri-
butions to both the pre-computation phase and the run-
time phase of the collision detection process. In section
5, we extend the notions of maximal faces and maximal
edges introduced by [4, 14] to include faces or edges with
non-adjacent parts and use them to reduce the number of
individual entities and parametric domains to be handled
during the run-time phase. While we first introduced
this concept under the name of supermaximal features
in [6], this paper improves the underlying data struc-
tures with the notion supermaximal domains. In section
6, we design a new, tighter bounding volume for normals.
Given the usual characterization of LMD (see section
3.2), bounding normals of subsets of the B-Rep features is
invaluable to accelerate the search for those that may con-
tain a contact point. Such bounding volume already exist
in the form of revolution cones and have been success-
fully applied to distance and penetration depth computa-
tion [11, 28]. However, even if these cones are suited for

distance computation between free-form surfaces, they
can be tightened for edges, and patches of canonical faces
which are the areas where sliding and rolling motions
can take place. The run-time phase of our method is
identical to the one we presented in [6] except for mod-
ifications to take into account our new supermaximal
domains and polyhedral normal cones. As most existing
methods do for real-time or interactive simulations, it is
based on spatial bounding volumes to search for poten-
tial parts of the B-Rep model that may touch [9, 13, 22,
31] another object. Those spatial volumes, together with
our polyhedral normal cones, are arranged into Bound-
ing Volume Trees (BVT). Note that our extension to
supermaximal domains allows us to filter out not only
individual pairs of BVT nodes based on their bounding
volumes, but also pairs of features for which computing
new contact points would be redundant. Moreover, some
new and very simple criteria on the objects types and ori-
entations provide extra filtering particularly useful when
bounding volumes fail to discriminate. Finally, we show
in section 8 an example of interactive simulation for teler-
obotics compared to an existing similar distance-based,
tessellation-based, method [19].

3. Solids models and characterization of
contact points

Industrial solid models have complex shapes mostly built
from rather simple primitives, i.e., extrusions and revo-
lutions generated using 2D contours made up from line
segments and arcs of circles. Often, surfaces forming the
geometry of faces of a solid are subjected to functional
contacts. Surfaces bounding these primitives, even if they
happen to belong to functional contacts, usually end up
being canonical faces [25], i.e., planes, cylinders, cones,
spheres or tori, possibly with internal contours. Thus, our
work is optimized for models with many canonical faces
and few faces with a more general geometry (revolution
surface, Bézier, etc.)

Contact normals and contact points generated by
our method must comply with the requirements of a
non-smooth contact dynamics solver based on a time-
stepping scheme as described in [1]. Such a scheme relies
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on the definition of differentiable constraints that will be
enforced by the solver to prevent penetration, enable fric-
tion, and generate impacts. Contact constraints are typi-
cally modeled by gap functions g (see Fig. 3) between two
solids, namely A and B seen as sets of points that include
the solids’ interiors. Their boundaries represented by the
B-Rep models are notedd .4, and d5. Natural candidates
for such gap functions are the local minima (seen as
functions of the motion parameters g4 and g5 of A
and B) of the Euclidean distance between A and 5. The
corresponding distance values are called Local Minimal
Distances (LMD) [19] and the points generating them are
contact points. Note that real-time physics engines (see
Fig. 1) are often based on a linear constraints solver which
introduces numerical errors. Moreover, even non-linear
iterative solvers may generate intermediate results that
violate some constraints before reaching convergence.
These are the reasons why our method must be able to
output negative gap values nonetheless. Therefore, each
solid is virtually dilated using an envelope of spheres of
radius ¢ € R™* (see Fig. 2c). Virtually means that the
boundaries of the objects are not actually modified but 2¢
is systematically subtracted from any distance computa-
tion result. Note that this completes our definition of gap
function that now tolerates negative values down to —2e.

Our method is based on the characterization of con-
tact points between two solids .4 and B as stated by [6,

(a)

19]. Indeed, in addition to Eqn. (3.2) expressing the LMD
between A and B, the direction of the LMD appears
also as a key feature that can be characterized using the
concepts of tangents, tangent cones, and cone polars, as
defined in the field of convex analysis [3]. We recall some
definitions from [3]. Let S designates points of either .A
or B. Given a point x5 € S (which can be either on the
interior of the boundary of §), its tangents are the vec-
tors y € R? such that there exists a sequence of vectors
{xk} cS,xF # xg, and:
k x* —xs y
X' = x5, —> —— (3.3)
Ik —xsl| Iyl

The set of all tangents at x5 form a cone (in the sense of
convex analysis) called tangent cone Ts(xs). The tangent
cone polar:

Ts(xs)* = {d € R*|¥v € Ts(xs), (d,v) <0} (3.4)

is the set of vectors opposite to all the tangents at xs.
Some tangent cones and their polars are depicted in Fig. 3
to illustrate common configurations. For sake of simplic-
ity,a 2D domain is used rather than a 3D one. The tangent
cone in Fig. 3(c) is larger than a half-space, therefore its
polar degenerates to the singleton {0}.

We now have the tools to characterize critical points of
the squared distance function between 4 and B. Indeed,

(b)

Figure 2. (a) Gap g between two solids A and B that are, from left to right, separated, touching, or penetrating. (b) Multiple gaps can
be defined between non-convex solids. (c) The virtually dilated solids (dashed lines) in a configuration leading to a negative value of the

modified gap function.
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Figure 3. A tangent cone T 4(x) and its polar Tj‘4 (x) at a point x which is: (a) G° only and convex; (b) regular on an edge; (c) G° only and
concave. (d) Two tangent cones polar where x 4 and xz are not critical points and (e) the corresponding illustration of Eqn. (3.5).



two points x4 € A and x5 € B are critical points iff. the
following condition holds [6, 19]:

xg —xA € TA(xa)" N —Tp(xp)" (3.5)

The goal of our method being the computation of con-
tact points (which are also critical points), we use Eqn.
(3.5) to distinguish parts of features that may or may not
contain some closest points in section 6. Note that this
definition allows non-isolated critical points (i.e. confor-
mal contacts configurations) which are handled by the
contact-area sampling method from [6].

As a conclusion, B-Rep solid boundaries and time-
stepping schemes with e-dilation are consistent wrt. each
other and robustly define the spatial domain of existence
of contact points between A and B, i.e., d.A and 9B.
The same properties do not hold for contact computation
based on penetration distances.

4. Overview of the proposed method

Our method is split into two stages depicted on Fig.
4. Firstly, the preprocessing stage (executed only once)
creates a tree-based acceleration structure (see section
7) on top of the original B-Rep structure (which is left
unchanged) in order to accelerate future LMD compu-
tations at simulation run-time. Then, the run-time stage
(executed at each time-step) uses both the original B-
Rep and the precomputed acceleration structure to find
features that may contain contact points and actually
computes them.

The different steps performed during the preprocess-
ing stage (supermaximal features grouping and BVT con-
struction) are similar to [6] except for three contributions
brought by this paper:

e The data structure produced by supermaximal feature
grouping has been improved with the introduction of
the concept of supermaximal domain, which results
into a unified representation of the supermaximal fea-
ture parts’ parametric domains. This is detailed in
section 5.

e The introduction, in section 6, of a new type of nor-
mal bounding volume that is much tighter than the
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revolution cones used by [6]. Consequently, the run-
time stage performs much more efficiently, as shown
by section 8.

e The notion of compatibility between different types of
boundary features, introduced in section 7, showing
that some combinations never hold an LMD because
of their orientations.

Note that all NURBS curves and surfaces are decom-
posed into their Bézier components, which can be eval-
uated more efficiently and used to derive their bound-
ing volumes more easily. This decomposition is always
possible by repeated knot-insertion [23].

Finally, the major difference between the run-time
phase of our method and of [6] resides in the use of the
intersection test presented in section 6.2 that performs on
polyhedral normal cones.

5. Supermaximal features and supermaximal
domains

First of all, let us recall the definitions of supermaximal
features introduced in [6] and state the grouping crite-
ria. Then, follows the improvement of the data structures
used to represent supermaximal faces using the concept
of supermaximal domain.

Because of topological restrictions prescribed by their
CW-complex structure, B-Rep models often contain dis-
joint areas of the same surface or curve that appear as
several independent geometrical entities (see faces FZ4
and F% in Fig. 5). These areas coincide with faces or
edges of the B-Rep data structure. On the one hand,
we say that the i-th set SFf4 of possibly disjoint areas of
canonical surfaces, {Fil, Fh, . Fiy) _sharing the same
orientation such that all entities of °F'; share the same
intrinsic geometric properties, forms a supermaximal
face. In other words, these areas are embedded into the
same untrimmed surface. On the other hand, the j-th
set °E , is a supermaximal edge and is composed of the
edges (with possible disjoint curves) {E{)A’E?A" .. ,EC4}
at the intersection of two supermaximal faces which are
part of the same connected component of the inter-
section between the underlying untrimmed surfaces. In
other words, these curves are embedded into a single

7 Hi hical i :
[ CAD model | 1npyt Preprocessing Output accele:::?or; ;;icture ]Inputg Run-time JOutput| Contact pmnts]
r | -
(BRep format) ] ; stage Ealindlog VelnTe Trec)J stage : I and normals

Figure 4. Different inputs and outputs at both stages of the proposed method. Data structures are in rounded red boxes while

algorithmic treatments are in blue rectangles.
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Figure 5. A solid and its B-Rep face-edge adjacency graph structure. F,}1 designates the hidden planar face parallel to F/lo. All the

supermaximal faces are circled on the graph.

(a)

(b)

()

Figure 6. Three configurations for merging two parametric domains D:ef and Dfef. The resulting supermaximal domain *D,.s may have
(a) two non-nested loops delimiting disjoint faces; (b) nested loops which alternately delimit boundary areas and holes; (c) only one loop:
the two coinciding vertical trimming curves are no longer needed and have been removed.

(continuous) intersection curve between two untrimmed
surfaces. Note that supermaximal faces and supermaxi-
mal edges are somewhat similar to the maximal edges and
maximal surfaces introduced by [4, 14].

An example is given in Fig. 5. One of the supermax-
imal faces of 9.4 is SF}4 = {F}4,F2 ’Fil} because these
faces are areas of the same unbounded cylinder. More-
over, SEL‘ = {Ei"lo, Ei"lo} (with E;{ denoting the edges at
the intersection of Fi4 and F "4) is a supermaximal edge (a
circle).

Finally, note that this identification of supermaximal
edges and faces allows us to apply run-time optimiza-
tions as in [6]. Next, we define the notion supermaximal
domain that simplifies the data structure of the super-
maximal faces domain.

B-Rep faces domains D; € Fi4 are subsets of R? and
bounded by trimming curves that form a set of sim-
ple loops. Those loops are such that the parametrization
functions ®; : D; — R3 are global homeomorphisms,

even for periodic surfaces. One of those loops is iden-
tified as the exterior loop, which delimits the contour
of F;l There cannot be several exterior loops since F;l
contains only one connected component. Let D; be the
parametrization domain of the i surface of the face F;‘
A supermaximal face °F , is defined in [6] as the set
{(@refs D;ef’ Ej)li € I}, where @, is a fixed reference
parametrization over the largest (untrimmed) domain
noted Dyes. The domains Dief C Dyef, are such that
Va e R%,a € Df’ef = <I>171(<I>,ef(a)) € D;. E; are sets of
modeler-dependent per-feature attributes and metadata.
We improve this definition by observing that all Dief
delimit subsets of Dy, therefore we can completely

characterize °F ; with a single triplet (®.f, *Dyy, I1E)
iel
where *Dyr = |J Di of is the supermaximal domain (see
iel
Fig. 10) and [ [ E; is the disjoint union of all attributes

Iel
and metadata.



6. Polyhedral normal cones bounding LMD
directions

This section describes the construction of tight bounds
for the tangent cone polar of a vertex, a curve segment,
or a surface patch. Following the literature [19], we call
those bounds normal bounds or normal cones even if they
do not necessarily bound the normal cone as defined in
convex analysis [3] which are supersets of tangent cones
polars. Besides [19], other similar bounds exist [11, 12,
28] but they are both less tight and not always based on
rigorous mathematical characterizations of LMDs. Addi-
tionally, normal bounds in related works are based on
revolution cones.

Let us first recall the concept of Gauss Map, G, of
a surface which is a function G : R3 — S? that maps
each point of the surface to its (unit) normal n seen as
a point on the unit sphere S2. We extend this concept
to faces, edges, and vertices, when considering that G
maps a point x of any of those features to the set of unit
vectors on its tangent cone polar. The Gauss Map Image
of a subset of a given feature is the union of the Gauss
maps of all its points. To address the construction meth-
ods of the polyhedral normal cone introduced in section
6.1, S? is embedded into a Euclidean space and given
a local direct coordinate system centered at the origin.
Its two poles are located at +y and —y. The intersec-
tion curve of any plane passing through these poles (and
the origin) with S? is called a meridian (see Fig. 7(a)).
Planes orthogonal to the y axis (but not necessarily con-
taining the origin) intersect S* along lines of latitude
(see Fig. 7(b)).

While revolution cones [11] can be satisfyingly tight
to bound normals of complex surfaces like Bézier sur-
faces, they can be extremely loose for edges and canoni-
cal faces for which tangent cone polars are often simply
an arc on S2. We significantly improve the accuracy of
those bounds with polyhedral cones instead of revolution
cones. Within the following subsections, some proofs
have been omitted for conciseness, but are illustrated with
figures when possible.

(@) (b)
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6.1. Definition

We follow the usual definition of polyhedral cones from

convex analysis [3]. Let G = {g;, ..., g,} bea finite set of
n vectors of R?. We call:
C = cone(G) = cone(g;,...,8,)

n
= x|x=Zugj,,uj20,j=1,...,n (6.1)

j=1 j
a finitely generated (polyhedral) cone and the g; are
its gemerators. In particular, we say that the set G =
{g>-..,8,} of unit vectors is a minimal set of unit
generators iff. none of its proper subsets generate the
same cone: YG C G,G # G = cone(G) # cone(G').
We note —C = {—c|c € C} the cone opposite to C.

According to the Minkowski-Weil theorem [3], poly-
hedral cones can equivalently be defined as the intersec-
tion of a set of half-spaces whose boundary pass through
the origin: C = {x|Vn; € N, (nj,x) < 0}, where the finite
set of vectors N = {ny,...,n,,} are the (outward) nor-
mals of the planes of each half-space. Note that because
polyhedral cone edges are necessarily multiples of a gen-
erator on C, each face normal is necessarily equal to the
cross product of at least two generators. In particular, if
G is a minimal set of unit generators, we say that G is
sorted if:

Vi € [0,n]n; = 8it1(mod)n X 8i (6.4)

Fig. 8 shows a 3D polyhedral cone, its normals, and
various possible sets of generators.

6.2. Intersection test

Let C, = cone(g{, g5 ...,8;,) and C, = cone(gll’,glz’,

. ,gfl) be two polyhedral cones with nonempty interi-
ors and m and n generators, respectively. The existence
of LMDs given by Eqn. (3.5) and Fig. 3 is satisfied iff.
their tangent cone polars contain antipodal directions,
which we call antipodal normals here. Thus, given the two

Figure 7. The unit sphere with its local coordinate system. An example of meridian (a), and line of latitude (b). (c) Left: points x1, x5, and
x3 respectively on aface, an edge, and a vertex. The surfaces normals at those points are shown as arrows. Right: their Gauss map images,

i.e., tangent cones polar.
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Figure 8. A polyhedral cone with its (outward) faces normal N = {nq, ny, n3}. Its generators set: (a) G = {g;, .. .

(b)

, g4} is not minimal

because of g4; (b) G = {g1, g2, 93} is minimal but not sorted because, e.g.n1 # g2 x g; (c) G = {g1, 92, 93} is minimal and sorted.

bounds C, and C;, of those tangent cone polars, it is useful
to identify feature pairs such that C, N —Cj, = ¥ because
they are guaranteed not to contain any LMD. First, we
show that:

Int(Cp) NInt(—Cp) #0 = C, @ Cyp :

LgH =R (65)

a a b
= cone(gy,...,8» 81> - -

where Int(C,) and Int(—Cy) designate respectively the
interior of C, and —Cy,. Polyhedral cones with empty
interiors are not handled here. This limitation is avoided
by dilating cones with empty interiors using the method
described in section 6.3.3.

Proof: Let v be any vector of R3. If Int(C,) N
Int(—Cp) # ¥, then there exists a unit vector u € Int(C,)
such that —u € Int(Cp). Let p be a vector defining a point
on the half-line starting at the origin with direction vector
u, i.e, p = Auwith A € R”. Let  be the angle between
the vector (v — p) and the direction —u. It comes:

vV—Au
cos(a) = <— u>

[lv — Aul]’

@) A —(v,u)
cos(ar) = ——
|lv — Aul|

Then, it is possible to obtain any value of cos(x) €
[cos(B), 1[ where cos(B) = -2 is the cosine of the

[I¥ll

angle between v and —u. Thus, A can be chosen such that
«a takes any value in ]0, B]. The Fig. 9(a) illustrates those
elements.

In addition, because Int(Cp) is open there exists
an € € [0, 7] such thatvd € R3, arccos({(—u,d)) < € =
d € Int(Cp). By choosing A such that « = min(e, 8) (as
shown in Fig. 9(b)), it comes that:

v—p eC=velgp+ruc,eCl=>veC,®Cy

because VA € R*, Au € Cp by definition of a cone. Thus,
R* C C, ® Cp. Because C, @ Cy is clearly a subset of R?
by definition, we conclude that C, @ C, = R3.

The contrapositive of this property provides an effi-
cient and conservative intersection test: any pair of BVT

Figure 9. (a) 2D example of configuration of the elements of this
proof. (b) A choice of € and the corresponding location of p = Au.

node for which the associated normal cones are such that
C, ® Cp # R3 can be rejected as their underlying fea-
ture pieces do not have any antipodal normals. Because
C, @ Cy is itself a finitely-generated polyhedral cone, it
is convex and C, @ Cy, is clearly either equal to R* or
has a support plane passing through the origin. Note
that to find a support plane of any cone, it is sufficient
to find a plane that contains one of its faces and all its
generators in a single half-space. Because of the relation-
ship between the normals n; € N and the cone generators
g]‘-‘ (Eqn. (6.4)), the normals to faces of C; @ Cp, can
be obtained from the set of cross products of all com-
binations of generator pairs, i.e., g/ x gj‘?, gl x g,ﬁ, and
gz X gf’ for all i,j € [0..m], k,I € [0..n]. The intersection
algorithm is summarized by Alg. 1. For each potential
face normal of C, ® Cp, computed at line 5, we have to
check that all the generators of C, @ Cy, lie on the same
half-space. If they do, then we found a separating plane
passing through the origin and can conclude at line 7 that
Int(C,) N Int(—Cy) = ¥ because of Eqn. (6.5). If this test
fails for all face normals of C, @ Cj, then we conclude at
line 11 that C, and C, contain antipodal directions.
Assume C, and Cp, have approximately the same num-
ber of generators n. The test at line 6 performs O(n)
scalar products and comparisons. This is repeated for
all potential normals of C, @ Cp. Therefore, the over-
all complexity of the intersection test is O(n*). This is
not adequate to improve or preserve the performances
of LMD computation. Consequently, it is mandatory to
set up a compromise between tightness of the polyhedral



normal cones and test efficiency by setting an upper limit
on their number of sides (see section 6.3).
Alg. 1: Polyhedral Normal Cone intersection test.

1: Inputs: the generators Gg, Gy, of two polyhedral cones Cq and Cy, .
2: Output:whether or notInt(Cq) N Int(—Cp) # .
3:Forall(g;,9,) € (Gg x Gg) U (Gp x Gp) U (Gg x Gp)do

4: ifg, and g, are not collinear then

5: n < g, x g,//Anormal of a potential face of Cq & Cp.

6: if all the scalar products (g, n) have the same sign forallg € G, U Gy,
then

7: Return FALSE // All generators are on the same half-space.
8: end if

9: endif

10: end for

11: return TRUE // No separating plane found.

6.3. Generating polyhedral normal cones

The computation of polyhedral normal cones for sur-
faces, edges, and vertices is carried out on a case-by-case
basis in order to obtain tight bounds. It is sufficient to
represent almost-minimally normal cones of all canoni-
cal surfaces, and provide bounds that are not too loose for
complex surfaces, edges, and vertices. Note that our inter-
section test presented in section 6.2 requires polyhedral
cones to have nonempty interiors. The following sections
only computes closed polyhedral normal bounds. Then,
they are dilated in section 6.3.3 to satisfy the non-empty
interior property.

6.3.1. Polyhedral cone of a meridian or a line of
latitude on S?
Polyhedral normal cones are necessarily convex, hence
we assume that any arc of meridian or line of latitude
to be bounded, describes an arc of §? with a spanning
anglea < 7. Otherwise, the resulting cone would contain
all R3. If & > 7, the corresponding surface must be sub-
divided into smaller pieces to produce smaller Gauss Map
images.

On the one hand, arcs of meridians are straightforward
to bound because they are at the intersection of S? with
a plane passing through its poles (see Fig. 10(a)). On the

)
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other hand, because arcs of lines of latitude are the result
of the intersection of S? with a plane orthogonal to its
revolution axis that may not contain the origin, it is not
straightforward to bound it tightly (see Fig. 10(b,c,d)).
Fig. 10(e) shows the resulting polyhedral cone in com-
parison to a revolution cone with ends up being much
looser.

6.3.2. Polyhedral normal cone of a BRep feature

The polyhedral normal cone of a plane contains only one
generator coinciding with the plane normal. Moreover,
given the procedure presented above for a meridian or a
line of latitude on S2, the computation of the polyhedral
cone becomes straightforward for all canonical surfaces
as well (see Fig. 11).

Computing the polyhedral normal cone of edges, ver-
tices, and free-form surfaces is more difficult because the
contour of their Gauss Map images neither may coin-
cide with a meridian nor a line of latitude. We default to
a more general approach in three steps. Firstly, we col-
lect enough generators to form a polyhedral cone that
bounds, not necessarily minimally, the polyhedral nor-
mal cone polar of each feature area. The method depends
on the feature:

e Bézier surfaces: we compute explicitly the scaled nor-
mal surface [12] which is a Bézier surface too. Its
control points benefit from a convex hull property [23]
so they can be used as generators;

e Edges: a polyhedral normal cone is generated using
the subsets of each surface adjacent to the given edge.
Then, the sets of generators of both cones are merged.
See the appendix of [6] for a proof that this is suffi-
cient in order to bound the edge’s tangent cone polar
required by Eqn. (3.5);

e Vertices: the generators are given by the normals of
the surfaces meeting at this point. Note that G! edges
and vertices can be processed using a polyhedral cone
without interior that can be dilated as described in
section 6.3.3.

(d) (e)

Figure 10. (a) Bounding an arc of meridian requires only the two generators{g1, g»}. Bounding arc of line of latitude is achieved using
four planes: (b) two at its extremities, (c) one passing through the origin and both extremities, and (d) one passing though the origin and
tangent to the curve (e.g. tangent to its middle point). (e) The resulting polyhedral cone (left) and revolution cone (right) of the same line

of latitude. The revolution cone is much looser.
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(a) (b)

Ko G(A)

Figure 11. AreasA of canonical surfaces and their respective Gauss map images G (A) on S2. This Gauss map image coincides with (a) a
meridian for the cylinder, (b) a line of latitude for the cone, (c) an area delimited by two meridians and two lines of latitude for the torus.

Secondly, a minimal set of generators bounding the
area of the feature’s tangent cone polar is computed.
Because the polyhedral cone is necessarily convex, this
can be achieved by a convex hull algorithm performed
on the unit sphere. Such an approach has been used
by [19] with a method based on the Gift-wrapping
convex hull algorithm. We designed a faster algorithm
based on the 2D QuickHull method [2]. Given a set
of unit generators G C S?, a direction d € 82, and an
axis a € §? orthogonal to d, we define the extremal
generator toward d wrt. a as the generator g* € G that
maximizes the angle g* = argmaxgcc arccos((g,a x d))
and (g,d) > 0. Our method is then the same as
a 2D QuickHull algorithm where the concept of
extremal points is replaced by our notion of extremal
generators.

Because of the high complexity of the polyhedral cone
intersection tests (see section 6.2), we limit the maxi-
mum number of sides of a polyhedral normal cone. We
set this number to four as a compromise. Limiting the
number of sides of the polyhedral normal cones amounts
to bounding the cone computed by the spherical convex
hull described by Error! Reference source not found.
with another, larger, cone having only four sides, i.e.,
its minimal generator set has four elements. Comput-
ing the smallest four-sided cone is difficult and left to
future works. Instead, the simplified cone is obtained as
the intersection of four half-spaces, each containing the
original polyhedral cone. For example each of those half-
spaces can be chosen such that its border contains one
face of the original polyhedral cone.

)

(a) (b)

6.3.3. Polyhedral cone dilation

To ensure the intersection test shown in section 6.2 is
applicable, and to support the feature of angular regular-
ization introduced by [19], polyhedral cones computed
in section 6.3 are dilated. Given a dilation angle « € R*™
and a polyhedral cone C, this amounts to computing a
new polyhedral cone, called dilated polyhedral cone, that
bounds the set:

C= {ElEIc € C such that arccos( <, Cz > < a}
[l<l[l[<]]

(6.6)
Fig. 12(a,b,c) shows the three configurations that may
arise.

When Int(C) # ¢ (see Fig. 12(b,c)) and given the
cone’s minimal sorted set of n unit generators G =
(8,85 --->8,)> the face normals of the dilated polyhe-
dral cone of C with a dilation angle & are computed by
rotating the original cone faces normals (g;, ; x g;) along
the axis (g;, ; — g;). When C has an empty interior as in
Fig. 12(d,e), the cone is first enlarged on the plane con-
taining the two generators, then the obtained auxiliary
vectors are rotated to generate the four generators of the
dilated cone.

7. Bounding volume tree construction

The data structure at the core of our method is a binary
bounding volume tree very similar to the Spatialized
Normal Cone Hierarchy introduced in [11] and applied
to non-convex polyhedrons in [19]. Instead of working
with bounding spheres and normal cones of revolution

I|
\
‘\\_ t\p &

() (d) (e)

Figure 12. Polyhedral cones C and the set C that must be bounded by another polyhedral cone to account for the dilation of angle .
(@) C has an empty interior. (b) C has a non-empty interior. (c) C has a non-empty interior but C is so large it cannot be bounded by a
polyhedral cone other than IR3. (d) Auxiliary vectors for the dilation of an arc. () In green, the arc’s dilated polyhedral cone.
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Split supermaximal features
into quasi-flat pieces

Compute bounding velumes
and compatibility masks

Build the
bounding volume tree

Figure 13. steps performed to build the bounding volume tree.

as [11], we use Oriented Bounding Boxes (OBB) as spa-
tial bounding volumes and polyhedral cones as bound-
ing volumes for normals. In practice, they offer a better
balance between tightness and efficiency of intersection
tests. The construction steps to generate the bounding
volume tree are given in Fig. 13.

7.1. Supermaximal features splitting

Likewise [6] each supermaximal face and edge is broken
down into small areas in order to improve the tightness
of the chosen bounding volumes. In particular:

1. Surfaces often have holes because of some of their
trimming curves (forming internal loops) or because
of the topology of the complete B-Rep model.
Because an OBB is convex it cannot fit tightly to a
shape with holes. It should be subdivided into sub-
sets without large holes that can be more tightly
bounded. See Fig. 14 for an example.

2. We need each area to be sufficiently flat. As discussed
in [6], some distance computations require the res-
olution of a high-degree polynomial equation. An
iterative scheme extracts at most one solution for one
given iteration starting point. Thus, the algorithm
should ensure that concave features of the B-Rep
model are split into subsets where each of them may
contain at most one solution for the root-finding
process. Splitting the model into almost-flat pieces is
a common way to reduce the risks to encounter this
issue. A first method is to split surface areas (resp.
edges) until their revolution normal cone (resp.
polyhedral normal cone) has a small half-angle [10,
26]. Because this generates good results in prac-
tice, we chose to use this approach. Other splitting

criteria exist [7, 18, 26] but fail to capture areas of
surfaces with high curvatures.

In practice, after choosing a sufficiently small angular
upper bound, we first subdivide the features with respect
to this second criterion (flatness requirement), and then
remove any piece that lies completely on a hole. How-
ever, using this method, highly curved freeform surfaces
may produce a very large number of subdivisions. Thus,
we stop the subdivision as soon as the OBBs become too
small. Both the angular upper bound and the minimal
OBB size limit have to be chosen by the user, depending
on the complexity of the simulated scene.

Note that splitting a curve or a surface is obtained
in two different ways, depending on their types: canon-
ical curves and surfaces are split using new bounds
of their parametric domain whereas Bézier curves and
surfaces are effectively subdivided along isoparametric
curves to obtain new surfaces with new control points
to simplify greatly the construction of their bounding
volumes.

7.2. Bounding volumes and compatibility masks
computation

Next is the computation of the bounding volume of each
feature area. While the computation of OBBs for a canon-
ical surface or curve is straightforward, computing the
OBB of a Bézier surface, (resp. curve) relies on its posi-
tivity property, i.e., the fact that the whole surface (resp.
curve) is contained by the convex hull of its control points
[23]. Thus, an OBB bounding the control points will
bound the Bézier surface itself as in [22]. The construc-
tion of polyhedral normal cones for vertices, edges and
surfaces were described in detail in section 6.3.

(b)

Figure 14. (a) A surface timmed such that it has one circular hole. A single large OBB (left) is not tight since it contains the hole. Splitting
the surface into smaller areas (right) produces tighter bounds. (b) A cylindrical tube with a cylindrical hole. Bounding the outermost
convex cylinder with one OBB (left) is much less tight than using several OBB (right).
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Table 1. Compatibilities between different types of surfaces and
curves. A symbol x indicates an incompatibility. A symbol + indi-
cates a compatibility and any pair missing from this table are com-
patible. Concave sp/cy/co designates concave spheres, concave
cylinders, and concave cones.

Cone/ Concave/ Concave
Plane  Cylinder sp/cy/co torus Line
Planes X X X X X
Cone/Cylinder X + x + +
Concave sp/cy/co X X X X X
Concave torus X + x X +
Line X + X + +

In addition to bounding volumes, each feature area of
a shape is given compatibility attributes. Those attributes
indicate whether or not a given pair of surfaces or curves
can contain any LMD at all. For example, a line can-
not have an isolated closest point with a concave cylin-
der without intersecting it, which is forbidden for our
method to be usable. Tab. 1 summarizes the pairs of
features that are incompatible for similar reasons.

This concept of compatibility can be implemented
very efficiently with the help of bit masks. Testing for
compatibility has the runtime cost of a bitwise and.

7.3. Tree construction

Finally, all the bounding volumes and masks computed
so far are aggregated into a binary tree using a top-
down strategy. Each node has either zero or two children,
i.e., this is a proper binary tree. Each leaf contains: an
area of a surface or curve or a vertex, a reference to the
corresponding supermaximal feature, an OBB, a poly-
hedral cone, and compatibility attributes. Internal nodes
neither contain a reference to any geometric area nor
supermaximal feature but contain:

e An OBB constructed by bounding all the OBB of the
leaves of the sub-trees rooted by its children;

e A polyhedral normal cone constructed by bounding
the polyhedral cones C, and C;, of its two children.
As shown in Fig. 15, if C; N —Cp = @ (which can
be tested with Alg. 1) then they are merged using

# 1

{

2 N i

“

(a)

the union of their generators as input to the proce-
dure described in section 0. Otherwise, C, N —Cp #£ ¥
meaning that they contain antipodal directions and
can only be bounded with the polyhedral cone con-
taining R completely.

e Compatibility attributes computed by combining the
two type masks and two compatibility masks of its two
children with a bitwise or.

8. Comparison and performance

Our collision detection method is implemented within
the interactive multibody physics simulation framework
XDE [20] developed by the CEA. Simulations are per-
formed with no friction, no penetration, and are based on
a time-stepping scheme. Contact constraints follow the
Signorini contact law and are solved using a Gauss-Seidel
based iterative solver similar to the algorithms described
in [1].

In this section, we compare our method with our
previous work [6] and to a state-of-the art distance-
based collision detection method that operates tessel-
lated models only [19] (using the original authors’
code). This benchmark is performed on two scenarios
involving industrial models mostly composed of canon-
ical surfaces. All manipulations are performed using a
SpaceMouse.

8.1. First scenario: telerobotics insertion task

Our first scenario simulates the slave arm side of a force-
feedback teleoperation system. A robotic arm has to be
manipulated by an operator in order to insert the conical
mobile solid (Fig. 16(e) bottom) into a static hole that has
a similar shape (Fig. 16(e) top). The mechanical clearance
between the mobile solid and the hole after insertion is
very small, i.e., equal to 1% of the hole’s largest radius.
There is no friction.

We distinguish four phases of the simulation because
they all show significantly different performance charac-
teristics. The free flight phase corresponds to Fig. 16(a)
where the operator adjusts the position of the conical

(b)

Figure 15. Computation of the polyhedral cone of an internal node (right, orange) by merging the cones , (left, red) and Cj, (left, green)
of its two children. (a) C; N —Cp = @ so the resulting cone is non-degenerated. (b) C4 and C, contain antipodal directions so the resulting

cone contains R3 completely.
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Figure 16. (a-d) Interactive insertion of a conical solid (with a cylindrical end) into a hole with a similar shape. (e) Cut view of the static
object hole and a close view of the mobile conical solid. The manipulated object has to be translated then rotated such that the tooth

attached to the hole follows the arrows depicted on the solid.

solid so that the insertion process can begin as in Fig.
16(b). This involved almost no collisions. Then, the inser-
tion and locking phase slides (see Fig. 16(c)) and rotates
the solid into the conical hole in such a way that it
becomes fully inserted: objects start being in contact.
Note that some precise manipulations are necessary in
order to account for the tooth shown Fig. 16(e). Once
fully inserted as in Fig. 16(d), small rotations are applied
to the solid. The number of contacts is significantly
increased since many faces of both solids are almost in
conformal contact. Finally, the extraction phase removes
the solid from the hole.

Comparison of collision detection times during the
whole simulation is given in Fig. 17(a). This accounts
only for collision detection. The contact constraints reso-
lution time is not included. We observe that our method
provides an almost constant speedup of 15% to 20% com-
pared to our previous work. Thus, the performance gap
when compared to the tessellation-based approach [19]
is further increased in favor of our method based on
smooth models because the tessellation-based approach
requires a high number of triangles to overcome numer-
ical artifacts due to the discretization. We used two
discretization levels: one which we call coarse because
it is the coarsest discretization that allows the inser-
tion to be performed despite the discretization errors.
Indeed, the discretization’s maximal chord error is chosen
equal to the gap between both objects. The second thin

tessellation is 30% thinner than the coarse one: it has been
empirically determined as a discretization that allows
the manipulation to be done satisfyingly smoothly, i.e.,
without numerical artifacts that are noticeable enough to
make the insertion more difficult.

Moreover, note that the number of generated contacts
has a significant impact on the performance of the over-
all simulation. Indeed, each contact point represents at
least one contact constraint that has to be handled by the
dynamics solver so the higher the number of contacts,
the larger the time to solve the constraints. Fig. 17(b)
shows that the number of contacts our method generates
is more than 40% lower than with the tessellation-based
approach [19].

8.2. Second scenario: ROV insertion task

Our second scenario depicted in Fig. 18 stages the under-
water insertion of a hotstab on a receptacle by a Remotely
Operated Vehicle (ROV). This requires a great level of
simulation accuracy as the smallest mechanical clearance
is equal to 0.lmm where the hotstab diameter is four
hundred times larger. Handling such scenarios with tes-
sellated models requires a prohibitively thin tessellation.
Similarly to the previous scenario, we distinguish differ-
ent steps. First the hotstab is initialized outside of the
receptacle and is inserted. Then, once fully inserted, we
apply small rotations to the hotstab wrt. its symmetry
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Figure 17. (a) Time to compute contact points using the polyhedra-based method [19] with thin (purple) or coarse (blue) tessellations.
Our previous work (red) [6]. And after addition of our new improvements (green). (b) Comparison of number of contact points.
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(b)

Figure 18. (a) Global view of the simulation. The (yellow) ROV is equipped with two (gray) arms that allow it to grab the (orange) manifold
and tools necessary to manipulate the hotstab. The bottom image shows the view available during the teleoperation. (b) Our simulated
scene focusing on the (orange) hotstab and the (blue) receptacle shown before and after insertion. (Images and CAD models courtesy of

TechnipFMC)
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Figure 19. (a) Time to compute contact points using our method (green) compared to the polyhedra-based one [19] with the coarsest
possible tessellation (blue). (b) Comparison of the number of contact points.

axis. Finally, it is extracted from the receptacle to recover
its initial position.

Comparison between our method and the polyhedra-
based method [19] is given by Fig. 19. For the sec-
ond method, we used a tessellation with a chordal error
(for each object) equal to half the smallest mechanical
clearance allowed for the insertion to be feasible despite
the geometric approximations. Because the insertion is
tighter than for our previous scenario, and the con-
tact areas larger, the performance difference between our
method and the polyhedra-based one is more significant
than in our first scenario. Here, using our method reduces
the computation times by a factor of four and the num-
ber of actual contacts by a factor of ten to fifty. The overall
simulation time (including constraints resolution) is thus
significantly improved by a factor of almost 7.

9. Conclusion and future works

We presented in this article a method for distance-
based collision detection between two solids modeled by

their boundary representations (B-Rep). It is based on a
bounding volume tree and on optimizations made possi-
ble by the observation that most industrial CAD mod-
els are composed mostly of canonical surfaces (Plane,
Sphere, Cylinder, Cone, and Torus). We described two
significant improvements over our previous works [6].
The first contribution unifies the data structures of super-
maximal faces by merging the domains of its parts into
what we call a supermaximal domain. Our second con-
tribution improves significantly the tightness of normal
bounding volumes by using polyhedral cones instead of
revolution cones. This allows us to achieve real-time per-
formances for simulations involving complex industrial
CAD models. Indeed, computation times are improved
by over 20% compared to our previous works, and by over
30% compared to polyhedra-based approaches (using a
discretization that is just as thin as necessary to make the
simulation work).

Our next step is to lower even more computation times
of our approach in order to make our method appli-
cable to haptic simulations. We intend to achieve that



by parallelizing most steps of our method. Moreover,
as we use our method as part of a dynamics simula-
tion framework, we intend to increase further the sim-
ulation accuracy by improving the constraints solver to
handle non-linearities of contact constraints and contact
kinematics.
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