
COMPUTER-AIDED DESIGN & APPLICATIONS, 2018
VOL. 15, NO. 4, 610–618
https://doi.org/10.1080/16864360.2017.1419648

A hybrid solution to parallel calculation of augmented join trees of scalar fields in
any dimension

Paul Rosen , Junyi Tu and Les A. Piegl

University of South Florida, USA

ABSTRACT
Scalar fields are used to describe a variety of data fromphotographs, to laser scans, to x-ray, CT orMRI
scansofmachineparts andare invaluable for a variety of tasks, suchas fatiguedetection inparts. Ana-
lyzing scalar fields canbequite challengingdue to their size, complexity, and the need to understand
both local and global details in context. Join trees are a data structure used to capture the geometric
properties of scalar fields, including local minima, local maxima, and saddle points. Unfortunately,
computing these trees is expensive, and their incremental constructionmakes parallel computation
nontrivial. We introduce an approach that combines three strategies, pruning, spatial-domain paral-
lelization, and value-domain parallelization, to parallelize join tree construction using OpenCL. The
resulting implementation shows a significant speedup, making computation of trees on large data
practical on even modest commodity hardware.

KEYWORDS
Data analysis; computational
topology; scalar field

1. Introduction

In CAD applications, scalar fields are used to describe a
variety of details from photographs, to laser scans, to x-
ray, CT or MRI of machine parts. These scalar fields are
invaluable for a variety of tasks, such as fatigue detec-
tion in parts. However, analyzing scalar fields can be
quite challenging due to their size, complexity, and the
need to understand both local details and global context.
Augmented join trees are the key data structure used in
the computation of merge trees, split trees, and contour
trees [2]. By capturing geometric properties, including
local minima, local maxima, and saddle points (Fig. 1),
these trees are useful in the evaluation and simplifica-
tion of scalar field data. This is useful for tasks such
as hierarchical visualization [1,3], segmentation [5,9], or
tracing structures [10] in scalar field data. However, com-
puting these trees is expensive, and their incremental
construction makes parallel computation nontrivial.

Given a scalar field, a join tree describes the joining
together of features as function is varied monotonically
across the field. Merge and split trees are variants of join
trees that scan from the lowest value to highest value or
vice versa, respectively. Fig. 3 shows an example of these
2 trees based upon the scalar field in Fig. 2. The left panel
of the figure shows the merge tree. This tree captures the
2 local minima at #1 and #3, and a saddle point a #4.
The center panel shows the split tree capturing the 2 local

CONTACT Paul Rosen prosen@usf.edu; Junyi Tu junyi@mail.usf.edu; Les A. Piegl lespiegl@mail.usf.edu

maxima at #13 and #16, and the saddle point at #7. Along
with each tree, their augmented versions can be seen.
The augmented versions of these trees only keep nodes
that are critical points. These can be found by removing
valence 2 nodes (i.e. nodes with 2 edges) and a valance 1
root. A contour tree is found as the union of amerge and a
split tree. The contour tree for this field can be seen in the
right panel, along with the augmented contour tree. The
augmented contour tree is a compact data structure that
captures all topologically interesting events in the field.

In its naïve implementation [2], the algorithm to com-
pute augmented join trees seems efficient. No matter the
dimension of the data, it has an O(n lg n) sort phase
and O(n + k) computation phase, where n is the num-
ber of elements in the scalar field and k is the aggregate
cost of the find operation of a disjoint-set data struc-
ture. However, this algorithm has three practical chal-
lenges. First, as the dimension of the field is doubled, the
number of elements, n, grows quadratically in 2D fields
and cubically in 3D fields. Secondly, although asymptot-
ically small, the actual compute time per element in the
computation phase is very high. Third, the computation
phase requires loosely ordered incremental construction,
making it a challenge to parallelize.

While the global sort can be avoided [8], the algorithm
is still difficult to parallelize. Three strategies have been
proposed to parallelize join tree calculations: pruning

© 2018 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/16864360.2017.1419648&domain=pdf
http://orcid.org/0000-0002-0873-9518
http://orcid.org/0000-0003-0629-8496
mailto:prosen@usf.edu
mailto:junyi@mail.usf.edu
mailto:lespiegl@mail.usf.edu
http://www.cadanda.com

COMPUTER-AIDED DESIGN & APPLICATIONS 611

Figure 1. Functions representing (a) local minimum, (b) local maximum, and (c) a saddle point.

Figure 2. Example 2D scalar field.

[4], spatial-domain parallelization [7], and value-domain
parallelization [6]. Pruning (Fig. 4 (a)) works by elim-
inating elements from the computation, which are

predetermined not to be a minimum, maximum, or sad-
dle point. This process can be done in parallel, but the
compute phase still needs to be completed in serial.
Spatial-domain parallelization (Fig. 4 (b)) divides the
scalar field intomultiple smaller fields, each distributed to
a different thread, processor, or computer. After each sub-
field has its tree computed, a messy tree merging process
takes over. Finally, value-domain decomposition (Fig. 4
(c)) distributes the scalar field to different threads, pro-
cessors, or computers by selecting ranges of element val-
ues. This allows parallelizing the loosely ordered compu-
tation phase but still requires processing every element.

Each of these approaches take advantage of certain
properties of augmented join tree construction, but up
until now, these strategies have not been effectively
integrated.

Figure 3. Merge (left), split (center), and contour (right) trees shown with their augmented versions for the scalar field from Fig. 2. The
4×4 grids show the 2 subtrees in orange and blue joining at the saddle point in purple.

612 P. ROSEN ET AL.

Figure 4. The 3 existing strategies used to parallelize augmented join tree construction. (a) In pruning, a parallel operation can prune
away most non-critical points from computation. (b) In spatial-domain decomposition, regions of the original scalar field are split and
distributed to different processes. (c) In value-domain decomposition, elements are distributed to processes basedupon ranges of values.

In this paper, we have combined these strategies in
an OpenCL augmented join tree implementation. The
implementation results in an O(n + k) pruning phase,
anO(n) critical point extraction phase, anO(c lg c) sort-
ing phase, and O(c) propagation phase, where c is the
number of critical points. What’s more, these phases
are designed to be parallelized such that they require
at worst O(k), O(1), O(lg c), and O(lg c) parallel iter-
ations, respectively. The result is a significant speedup,
making computation of trees on large data practical on
even modest commodity hardware.

2. Conventional join tree construction

The conventional join tree construction process [2] starts
with a scalar field (Fig. 2). The elements of the field are
first sorted (Fig. 5 (a)) in ascending order for amerge tree
or descending order for a split tree.

The elements are then processed one-by-one. The top
element of the list is selected. A tree node is created for
that element ((Fig. 5 (b) bottom) and a color assigned
(Fig. 5 (b) top). Next, the neighborhood of 8 surrounding

elements is searched. If none has been assigned a color
(Fig. 5 (b) and (d)), the operation is complete. If one (Fig.
5 (c)) or more (Fig. 5 (e)) neighbors has already been
assigned a color, those neighbor subtrees are connected to
current tree node as children, and all nodes in the subtree
are assigned the same color (Fig. 5 (e) top).

At this point, a join tree has been formed. An aug-
mented join tree is formed by removing non-critical
point nodes from the tree. This is done by checking each
child node in the tree. If the child only has one child of its
own, then that point is not critical and can be skipped.
In Fig. 5 (e) bottom, the node #4 has children #2 and
#3. Node #2 has only one child, node #1, while node #3
has zero children. Having a single child means node #2 is
not critical, and thus it can be removed. It is removed by
connecting node #4 to node #1 (Fig. 5 (f) bottom).

From an implementation standpoint, this operation
relies on 2 components. The sorting can be handled
by any O(n lg n) sorting algorithm. The coloring of
the nodes is made efficient using the disjoint-set data
structure, which has a cost of O(k) per lookup. Other
operations are constant time per element. Unfortunately,

Figure 5. Description of the conventional augmented join tree algorithm. (a) Scalar field values are first sorted. Then, the points are
added to the tree one-by-one. (b)(d) If no neighbors are in the tree, a leaf is created. If any neighbors are in subtrees, the node is connected
to the topof the subtree. (c) If connected to one subtree, the subtree is just lengthened. (e) If connected tomore thanone subtree a saddle
point is created. (f) Finally, only leaves and saddles are retained.

COMPUTER-AIDED DESIGN & APPLICATIONS 613

this strictly-ordered bottom up construction of the tree
means that each operation relies upon the results of the
prior operation making parallelization challenging.

3. Methods

Due to the complicated bottom up construction, effi-
cient parallelization requires deconstructing and reorder-
ing the operations of the augmented join tree algorithm.
The first two phases of the new implementation are
pruning and critical point extraction phases, which
uses a spatial-domain decomposition to exclude many
of the non-saddle point elements from further com-
putation. In the third phase, the saddles must be
sorted. Finally, the critical points are connected by
using a value-range decomposition, building subtrees
in parallel and propagating their join information
globally.

3.1. Phase 1: Coloring

The coloring phase has two main objectives. The first
objective is to prepare for eliminating as many non-
critical points as possible from further computation by
using a water shedding approach. The second is to per-
form a spatial-domain decomposition of the data, by
taking the 2D scalar field and splitting it into subfields
that can be processed in parallel.

The water shedding approach is described in Fig. 6
(a) using the scalar field from Fig. 2. The first step is to
point each element towards its smallest (for a merge tree

or largest for a split tree) neighbor. If an element is smaller
than all its neighbors (i.e. a local minima), it points to
itself and is assigned a color. In the next step, each element
is updated to the pointer of its pointer. This is essen-
tially the find algorithm of a disjoint-set. This process is
repeated until the pointer reaches a colored element, at
which point, the element receives that color.

Spatial-domain decomposition is accomplished by
dividing the scalar field into 2D blocks. To complete the
processing, neighboring blocks of elements only need
to share boundary information. In other words, all ele-
ments are computed up to the boundary of their block,
all boundaries are synchronized, and then element pro-
cessing is finalized.

3.2. Phase 2: Potential critical point extraction

The augmented join tree will only contain critical points,
so extracting potential critical points early in the process
will save computation time. Local minima, maxima, and
possible saddle points can be identified by looking at the
value of an element relative to its neighbors.

Fig. 1 shows functions which have a local minimum,
local maximum, and a saddle point, respectively. A sim-
ple observation helps us understand how to detect these
3 cases. For the minimum and maximum, notice that all
regions surrounding the critical point are higher or lower,
respectively. So, if the value of an element is smaller than
all its neighbors, it is a local minimum. If the value of
an element is larger than all its neighbors, it is a local
maximum. The saddle point is a little more complicated

Figure 6. The four phase of our parallel implementation include (a) spatial-domain decomposition and pruning, (b) potential critical
point extraction, (c) potential saddle point sorting, and (d) value-domain decomposition of saddle points and propagation of joins.

614 P. ROSEN ET AL.

to understand. Notice that around the saddle point, the
function value goes up in two directions and down in two
other directions. Therefore, if the neighbors of an element
are larger in two or more disjoint directions and smaller
in two or more disjoint direction, then the point may be
a saddle. This criterion does not guarantee a saddle point
because of interpolation error. However, it can be used to
exclude non-saddle points.

Fig. 6 (b) shows four examples. In the first two exam-
ples, elements #6 and #4 are each surrounded by two
disjoint positive and negative directions. This indicates
that these points may be saddles. For element #8, only
one disjoint positive and one disjoint negative direction
exist. This point can be excluded as non-critical. Finally,
for element #3 all neighbors are larger indicating a local
minimum.

3.3. Phase 3: Saddle sorting

Join trees need be built bottom-to-top. At this point in
the processing, the extracted coloring information and
extracted saddle points (not the minima or maxima)
come into play.

After the critical points are extracted, the critical
points are colored by looking at the color of all neigh-
boring elements. In Fig. 6 (c), the possible saddle #4, #6,
and #7 are extracted. They are colored with their neigh-
bors, with #4 and #6 being colored orange and blue, and
#7 being colored only orange. This coloring information
identifies which extrema a saddle point potentially con-
nects to. Therefore, #4 and #6 possibly connect the orange
and blue extrema, #1 and #3. However, #7 only connects
to orange, extrema #1. This means that #7 is not a true
saddle point.

Once the coloring is complete, the remaining saddles
are sorted by their values.

3.4. Phase 4: Subtree building and join propagation

The final phase of processing builds the tree by per-
forming a value-domain decomposition, which is used
to build subtrees and propagate joins. The value-domain
decomposition divides the sorted list of critical points
into groups, which are each processed in parallel.

Building the subtree and propagating joins is a 3-
step process. First, the color of nodes is updated with
the global recoloring information. Second, subtrees are
built using their color information as a guide. Third,
the global merge information is updated based upon the
new subtrees. This process is repeated until no additional
modifications to color occur.

Fig. 6 (d) shows this process. On the left, nodes #4
and #6 are value-domain decomposed into 2 processing

groups with 1 node each. Each node is updated with the
global join information, which is initially empty (Fig. 6
(d) top left). The two subtrees are built and the global
join information updated (Fig. 6 (d) top right). In the sec-
ond pass (Fig. 6 (d) right), each group is updated with
the new coloring information. For node #4 no changes
occur. For node #6, it is only colored purple and is there-
fore excluded from further computation. At that point,
the processing would stop.

4. Extension to 3D and higher dimensions

Extending this approach to 3D or higher data is mostly
trivial. Phases 1 and 2 do require modification. For phase
1, the process is the same, except that now, the number
of neighbors that must be searched grow to 26 for 3D
or 3d − 1 for higher dimensions. Phase 2 is problematic
since saddle point detection in 3D or higher dimension
is complex. This is because there are many more saddle
point configurations in higher dimensions. To overcome
this, phase 2 saddle detection can be skipped, and all
points can be colored and treated as saddle points. Then,
phases 3 and 4 can continue unmodified. The benefit of
this is that complex saddle point detection is avoided. The
downside is that a much larger number of saddle points
are considered in phases 3 and 4.

5. OpenCL implementation

We have implemented the described methods using
OpenCL for fast flexible cross-platform interoperabil-
ity. For phases 1 and 2, each element of the scalar field
receives its own thread. The spatial-domain decompo-
sitions are square and as large as the supported thread
block size of the hardware. For phase 3, each potential
saddle point receives its own thread. To sort points in par-
allel, we used a hybrid of histogram sorting for a rough
global ordering and bitonic sorting for precise ordering.
For phase 4, each potential saddle point receives its own
thread, with the hardware thread block size defining the
granularity of the value-domain decomposition.

6. Experiments

We tested our implementation by comparing it to an
optimized C++ implementation of the conventional
approach. We used this conventional implementation to
compare the performance and check the correctness of
the output tree from our OpenCL approach. When mea-
suring performance, multiple tests are performed to cap-
ture variation. To highlight these we use boxplots, which
show quartiles of a distribution, and scatterplots with

COMPUTER-AIDED DESIGN & APPLICATIONS 615

linear trend lines. The quality of the linear fit is measured
using R2, the coefficient of determination.

6.1. Randomfield tests

To test our approach, we extract the split tree from ran-
domly generated fields. For each of 13 levels of resolution
(32×32 up to 2048×2048), we record the time for 10 dif-
ferent fields (130 tests). A random field represents the
most challenging case for calculating augmented join
trees, as it is likely to produce a very dense set of critical
points. To test our approach under less dense situations,
we analyze those 130 random fields under 7 different lev-
els of smoothing for a total of 910 tests. Random fields
have high critical point density, while smoothed fields
do not. We report the results from an early 2015 Mac-
Book Pro with an Intel 2.7GHz i5 and an Intel Iris 6100
GPU and a Linux workstation with an Intel 3.4GHz i7
and NVIDIA Tesla K40 Accelerator.

Fig. 7 (a) shows an example 32×32 noisy scalar field.
This scalar field has 206 critical points, making the tree
difficult to display. The scalar field after 2 and 4 smooth-
ing iterations can be seen in Fig. 7 (b) and 6 (c), respec-
tively. These have 98 and 46 critical points, respectively.

Fig. 8 (top) shows log-log charts highlighting the per-
formance of various phases of our approach. Fig. 7 (a)
shows that in the average case, phases 1 and 2 grow
linearly with respect to the number of elements in the
field (R2 =0.96 and R2 =0.974, respectively). Similarly,
Fig. 8 (b) shows that for the average case, phases 3, 4,
and OpenCL overhead (data transfer, etc.) grows linearly
with respect to the number of critical points in the field
(R2 =0.98, R2 =0.992, and R2 =0.992, respectively).

Fig. 8 (middle) uses log-log charts to compare the
performance of our approach to the CPU implementa-
tion. Fig. 8 (c) shows the computational time against the
number of elements, while Fig. 8 (d) shows the compu-
tational time against the number of critical points. The
average time performance for both our algorithm and
the conventional implementation is approximately linear.

Our approach has the advantage of being highly par-
allel in nature. For both hardware configurations, our
OpenCL implementation beat the CPU implementation
by approximately 1 order of magnitude.

Fig. 8 (bottom) uses a log-linear charts to compare the
speedup of our approach to the CPU implementation on
theMacBookPro. Fig. 8 (e) shows the speedup against the
number of elements, while Fig. 8 (d) shows the speedup
against the number of critical points. Interestingly, as the
problem size grows, the GPU implementation speedup
grows as well. We believe this is caused by the fact that
the overall GPU performance is driven by the number of
critical points, while the CPU performance is driven by
the number of elements.

6.2. Contour trees in radio astronomy data

In radio astronomy, scalar fields are one of the primary
data sources used to validate hypotheses. Radio tele-
scopes capture 3D maps of the radio signals in the sky.
Two dimensions of these maps are spatial positions in
the sky. The third dimension is different radio frequen-
cies. Unfortunately for astronomers, the radio signals
collected are very low power and have a high signal
to noise ratio. The problem was described best by one
radio astronomer, “a cell phone on the moon would be
a brightest signal in the sky”.

Fig. 9 (a) shows an example of this data for a single
radio frequency. The red blob towards the middle of the
image is the feature of interest. In this dataset, this blob
represents the signal put off by dust circling a black hole.
For our experiments, we calculate the contour tree, which
is just the union of a 2 augmented join trees (a merge and
split tree). Fig. 9 (b) shows a small region with the con-
tour tree nodes highlighted. In this image leaves can be
seen (both local minima and maxima) as blueish purple
nodes and saddle points are yellow for merge saddles and
magenta for split saddles.

Fig. 10 shows the performance results for our
experiments. These experiments were only run on

Figure 7. Example 32×32 scalar fields: (a) random noise input, (b) after 2 smoothing iterations, and (c) after 4 smoothing iterations.

616 P. ROSEN ET AL.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Charts of the performance of our algorithmon randomfields. (a) Log-log chart of the processing time of Phase 1 and 2 is highly
linear against the number of elements. (b) Log-log chart of processing timeof Phase 3, 4, andoverhead is highly linear against the number
of critical points. Log-log performance comparison of (c) the number of elements against time and (d) the number of critical points
against time. For both hardware configurations, the OpenCL implementation shows on average slightly less than 1 order of magnitude
improvement over the CPU counterpart. Log-linear boxplots of the speedup based upon the number of element (e) and based upon the
number of critical points (f) show that as the problem size grows, the speedup increases as well.

our MacBook Pro CPU/GPU. For each resolution
(1024×1024, 2048×2048, and 4096×4096), we ran our
tree construction on each of 38-2D slices (radio frequen-
cies) of the data. Considered in our calculations are only
the augmented join tree costs.

The log-log chart in Fig. 10 (a) shows that the time
taken for our GPU implementation significantly outper-
forms the CPU implementation. Furthermore, both the
CPU and GPU implementations performance grows lin-
early with the number of elements (R2 >0.99). The log-
linear boxplots in Fig. 10 (b) show the speedup for our

implementation.As the number of elements grows, so too
does our speedup, reaching on average 40x faster for the
GPU implementation on the 4096×4096 example.

The speedup seen here is significantly better than that
observed in the randomfield case. Asmentioned in those
tests, the random field example is the most challenging
because of critical point density. For the random field
tests, the median density was 1 critical point per 33.2 ele-
ments. For the radio astronomy data, the median density
was 1 critical point per 107.5 elements, over 3x less dense.
Given the strong relationship between the number of

COMPUTER-AIDED DESIGN & APPLICATIONS 617

Figure 9. Visualization of Radio Astronomy data. (a) The noisy data shows the amplitude of the radio signal at multiple locations in the
sky for a single wavelength. (b) The visualization of the contour tree shows the result of the union of a merge tree with a split tree. The
density of critical points in this data is quite high.

(a) (b)

1677721641943041048576

Number of Elements Number of Elements

Figure 10. Radio astronomy data compute time (a) and speedup (b) on the MacBook Pro CPU and GPU for 38 2D slices at 3 different
resolutions, 1024×1024 (1048576 elements), 2048×2048 (4194303 elements), and 4096×4096 (16777216 elements).

critical points and overall performance of our approach,
this result makes sense.

6.3. Higher dimensional data

In the processing of data higher than 2D, the saddle
detection phase is skipped in favor of a method that
only looks at the colors of each node. The result is a
method that must process significantly more potential
saddle points.Nevertheless, phases 3 and 4 of our pipeline
still perform linearly with respect to the number poten-
tial critical points. It is just that the number of potential
saddle points increases greatly. The other observation is
that this phase is highly dependent upon the noisiness of
the dataset. It is only as the sublevelset for two local min-
ima (or superlevelset for 2 local maxima) come together
that potential saddle points are created. Thus, the sparser
the extrema, the fewer nodes are assigned multiple
colors.

7. Conclusions

In conclusion, we have presented an approach for effi-
ciently calculating an augmented join tree in parallel by
combining 3 approaches, pruning, spatial-domain paral-
lelization, and value-domain parallelization. In this way,
the 2 groups of construction phases scale linearly with the
number of elements in phases 1 and 2, and the number of
critical points in phases 3 and 4. This approach makes it
feasible to quickly calculate merge trees, split trees, and
contour trees for large scalar fields in any dimension.
These data structures are incredibly useful for analyzing
the scalar field data.Wehave evaluated our approachwith
a synthetic random field dataset and with a dataset from
the discipline of radio astronomy.

As far as limitations, the biggest scaling limitation is
the memory needed during computation. In phases 1
and 2, memory is needed to store the color associated
with each node. This is one int or long int (for larger

618 P. ROSEN ET AL.

datasets) per element. Phases 3 and 4 only require stor-
age per critical point, but the amount per point is much
larger. Each critical point needs to store its location, value,
and every neighboring color. We chose a fixed length
encoding, meaning that space had to be allocated for the
worst-case number of neighbor colors. The challenge is
that the number of neighboring elements grows expo-
nentially with the dimensionality of the problem. Fur-
thermore, additional scratch space, equal in size to the
number of critical points, is required for sorting. Keeping
this in mind, the exact maximum problem size is difficult
to state, as it requires knowledge of the available mem-
ory, number of elements, number of critical points, and
dimensionality of the problem.

Although we have calculated the augmented join tree
in parallel, in the future, parallelizing several additional
computations would be exceedingly useful. For example,
parallelizing the union of augmented join tree to form
contour trees, calculating the persistence, a stability mea-
sure, for critical points, or the hierarchical simplification
of a merge, split, or contour tree would all be very useful
moving forward.

Acknowledgements

Wewould like to thank our funding agents, the National Radio
AstronomyObservatoryALMADevelopment Project program
and the National Science Foundation (IIS-1513616).

ORCID

Paul Rosen http://orcid.org/0000-0002-0873-9518
Les A. Piegl http://orcid.org/0000-0003-0629-8496

References

[1] Bajaj C.; Pascucci V.; and Schikore DR.: The contour
spectrum, In Proceedings of the 8th Conference on

Visualization, pp. 167-ff, 1997. https://doi.org/10.1109/
visual.1997.663875

[2] Carr, H.; Snoeyink, J., and Axen, U.: Computing contour
trees in all dimensions, Computational Geometry 24.2,
2003, 75–94. https://doi.org/10.1016/S0925-7721(02)
00093-7

[3] Carr H.; Snoeyink J.; and Van De Panne M.: Flexible
isosurfaces: Simplifying and displaying scalar topology
using the contour tree, Computational Geometry, 43(1),
pp. 42–58, 2010. https://doi.org/10.1016/j.comgeo.2006.
05.009

[4] Carr, H.; Weber, G.; Sewell, C.; and Ahrens, J.: Parallel
Peak Pruning for Scalable SMP Contour Tree Computa-
tion, In 6th IEEE Symposium on Large Data Analysis and
Visualization, 2016. https://doi.org/10.1109/ldav.2016.787
4312

[5] Dillard S.: Contour trees and cross-sections of multi-
phase segmentations, University of California at Davis,
2009.

[6] Gueunet, C.; Fortin, P.; Jomier, J.; and Tierny, J.: Con-
tour Forests: Fast Multi-threaded Augmented Contour
Trees, IEEE Symposium on Large Data Analysis and
Visualization, 2016. https://doi.org/10.1109/ldav.2016.
7874333

[7] Morozov, D.; andWeber, G.: Distributed contour trees, In
Topological Methods in Data Analysis and Visualization
III, pp. 89–102. Springer International Publishing, 2014.
https://doi.org/10.1007/978-3-319-04099-8_6

[8] Raichel B.; and Seshadhri C.: Avoiding the global
sort: A faster contour tree algorithm, arXiv preprint
arXiv:1411.2689, 2014.

[9] Szymczak A.: A categorical approach to contour, split and
join trees with application to airway segmentation, In
Topological Methods in Data Analysis and Visualization,
pp. 205–216, 2011. https://doi.org/10.1007/978-3-642-
15014-2_17

[10] Van Kreveld M.; van Oostrum R.; Bajaj C.; Pascucci
V.; and Schikore D.: Contour trees and small seed
sets for isosurface traversal, In Proceedings of the thir-
teenth annual symposium on Computational geome-
try, pp. 212-220, 1997. https://doi.org/10.1145/262839.
269238

http://orcid.org/0000-0002-0873-9518
http://orcid.org/0000-0003-0629-8496
https://doi.org/10.1109/visual.1997.663875
https://doi.org/10.1109/visual.1997.663875
https://doi.org/10.1016/S0925-7721(02)00093-7
https://doi.org/10.1016/S0925-7721(02)00093-7
https://doi.org/10.1016/j.comgeo.2006.05.009
https://doi.org/10.1016/j.comgeo.2006.05.009
https://doi.org/10.1109/ldav.2016.7874312
https://doi.org/10.1109/ldav.2016.7874312
https://doi.org/10.1109/ldav.2016.7874333
https://doi.org/10.1109/ldav.2016.7874333
https://doi.org/10.1007/978-3-319-04099-8_6
https://doi.org/10.1007/978-3-642-15014-2_17
https://doi.org/10.1007/978-3-642-15014-2_17
https://doi.org/10.1145/262839.269238
https://doi.org/10.1145/262839.269238

	1. Introduction
	2. Conventional join tree construction
	3. Methods
	3.1. Phase 1: Coloring
	3.2. Phase 2: Potential critical point extraction
	3.3. Phase 3: Saddle sorting
	3.4. Phase 4: Subtree building and join propagation

	4. Extension to 3D and higher dimensions
	5. OpenCL implementation
	6. Experiments
	6.1. Random field tests
	6.2. Contour trees in radio astronomy data
	6.3. Higher dimensional data

	7. Conclusions
	Acknowledgements
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

