
COMPUTER-AIDED DESIGN & APPLICATIONS, 2018
VOL. 15, NO. 5, 653–660
https://doi.org/10.1080/16864360.2018.1441231

The STG-framework: a pattern-based algorithmic framework for developing
generative models of parametric architectural design at the conceptual design
stage

Chieh-Jen Lin

Tainan University of Technology, Taiwan

ABSTRACT
Although algorithmic modeling tools have become a popular means of generating complex geo-
metric forms, the potential of generative algorithms should not be limited to geometric intentions.
However, the need to possess programming and data manipulation skills is often a major obstacle
when architects wish to implement algorithms for representing their non-geometric intentions. This
paper therefore proposes an algorithmic framework entitled STGf, which is based on the “Semantic-
Topological-Geometric (STG)” information conversion pattern, and can help architects to convert
their abstract design intentions into computational procedures. By providing rewritable sample
GhPython scripts and adjustable components’ clusters of Grasshopper, the STGf framework aims to
help architects for representing then to explore their abstract intentions beyond geometric features
at an early design stage.

KEYWORDS
Design intention; parametric
design; generative modeling;
design pattern; algorithmic
framework

1. Introduction

Confusion concerning methods, thinking, and tech-
niques among parametric, generative, and algorithmic
approaches has emerged with the appearance of such
new digital design tools as Grasshopper and Dynamo.
Leach claims that one reason for this confusion is
that persons in the architectural domain are unfamil-
iar with the computer science [9], and refers to the
differences between parametric and algorithmic design,
where parametric techniques are based on the manip-
ulation of geometric forms, while algorithmic design is
based on the use of programming codes. But regard-
less of whether through the manipulation of forms
or the use of code, architects should be able to use
those digital tools to solve architectural design prob-
lems. Kotnik suggested that computational architectural
design should involve “exploring computable functions,”
which should take design information as input param-
eters and buildings’ properties as output variables [8].
Parametric design implies that an algorithm is fixed,
and that output variables are consequently predictable
from parameters. Generative modeling implies that out-
put variables are not only controlled by input param-
eters, but also by flexible and adjustable functions. As
a consequence, the computable functions used in vari-
ous architectural disciplines, i.e. the algorithms for solv-
ing various architectural design problems, should be the

CONTACT Chieh-Jen Lin t60011@mail.tut.edu.tw

key to resolution of many digital architectural design
issues.

In the domain of computer science, an algorithm is a
process for solving a problem in a finite number of steps.
Algorithmic modeling tools such as Grasshopper were
developed to automate and accelerate 3D modeling tasks
by applying generative algorithms. However, cognitive
research has revealed that designers typically apply algo-
rithms only as means of exploring geometric intentions,
and prefer to apply known solutions and design patterns
for other, non-geometric issues [16]. When designers’
intentions go beyond geometry, regardless of the type of
design objective [4], designers need to find or develop
appropriate algorithms before they can implement gen-
erative or evaluative scripts. Algorithmic modeling is
gradually being applied to the generation of complex
forms, multiple objective optimizations, and the control
and evaluation of building performance. One of the rea-
sons for this is that the relevant algorithms, including
mathematical formulas for complex geometries, meta-
heuristic algorithms for artificial intelligence [15], struc-
tural analysis, and energy consumption formulas, have
been validated in relevant domains. The task of algo-
rithmic design has thus become the implementation of
algorithms in modeling tools, rather than the interpreta-
tion of architectural design problems and derivation of
solving algorithms. Since there is insufficient guidance

© 2018 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/16864360.2018.1441231&domain=pdf
http://orcid.org/0000-0001-9981-5864
mailto:t60011@mail.tut.edu.tw
http://www.cadanda.com

654 C.-J. LIN

and assistance for converting architectural knowledge
into algorithmic scripts, it is not surprising that design-
ers prefer to apply known solutions, rather than develop
or implement algorithmic scripts on their own.

While fewer architects are directly employing Alexan-
der’s pattern language [1], more software engineers are
applying “design patterns” in identifying and reusing the
best practices in known situations. Based on design pat-
terns, such as the model-view-controller (MVC) pattern,
application frameworks have therefore been developed to
facilitate and accelerate the development of applications.
For example, Ruby on Rails, Symfony, and Django have
been developed for web-based applications in different
programming languages. While programming/scripting
skills have become more critical when applying algorith-
mic tools in parametric architectural design, develop-
ing an algorithmic framework for the exploration and
development of algorithms can help architects to focus
on solving design problems, rather than on program-
ming/scripting tasks. Based on previous studies propos-
ing information conversion patterns employing Building
InformationModel (BIM) schema, which involve seman-
tic, topological, and geometric information [11], this
paper proposes an algorithmic framework to help archi-
tects explore and develop algorithms going beyond geo-
metric intentions.

2. An algorithmic framework for parametric
architectural design

Unlike other studies focusing on algorithmic program-
ming patterns [14], or architects’ geometric intentions
[12], this paper proposes an algorithmic framework that
aims to help architects to connect abstract design inten-
tions by integrating semantic ontologies and topological
algorithms. Based on the STG pattern proposed in pre-
vious studies [11], this framework is divided into three
parts: (1) a semantic module that can help architects to
indicate design objects and their semantic relations as
the “Model” module in a MVC pattern, (2) a topological
module that presents the topological algorithms of given
semantic relations as the “Controller” module in a MVC
pattern, and (3) a geometric module that presents the
visual validation of topological algorithms as the “View”
module in a MVC pattern. This “Semantic-Topological-
Geometric framework” (STGf) realizes an algorithmic
framework by applying Grasshopper and the GhPython
plugin as an algorithm-aided design tool [13].

2.1. Semantic components as representingmodels
of design intentions

Semantic ontology is a knowledge representation
technique in the artificial intelligence (AI) domain. One

of the most popular tools for authoring semantic ontol-
ogy is Protégé, which is based on the Ontology Web
Language (OWL) originally used to develop semantic
networks. By applying OWL reasoner plugins, such as
FaCT++ and HermiT, Protégé can validate an OWL-
based ontology in order to ensure that it is correct
and consistent. Furthermore, the semantic web rule lan-
guage (SWRL) plugin can be used to express logic rules
in order to infer implicit knowledge within the ontol-
ogy. To convert the semantic ontology of architects’
design intentions into generative algorithms, an ontologi-
cal technique based on Protégé was incorporated into the
semantic module of STGf.

The first module of STGf is the “Semantic” compo-
nent, which consists of semantic information concern-
ing design intentions. In an MVC-based application, the
Model module is used to capture behavior and logical
rules in the problem domain. In order to associate gen-
erative algorithms with architectural design intentions,
this module must first represent design intentions in
a computable format. At an early design stage, design
intentions usually consist of abstract, textual descrip-
tions concerning various design objects and their rela-
tionships, but only the essential semantic information
regarding building components can be predefined in
BIM applications and Industry Foundation Classes (IFC)
schema. However, although Rhino has no predefined
semantic schema for building components in architec-
tural design, an architect may define or interpret his/her
unique design objects and relationships, which cannot
be predicted by BIM or IFC during an early design
stage, when design situations have not yet emerged.
Rhino therefore needs a contextual semantic ontology
[6], which is a computational format for representing,
storing, and validating a semantic ontology of domain
knowledge in order to convert architects’ design inten-
tions into generative parametric design algorithms.

2.2. Topological modules as generative controllers
of design intentions

Although ontological techniques can validate the concep-
tual consistency of design intentions, they cannot guar-
antee that relevant instances of semantic concepts will
also comply with the necessary properties. For example, a
partial ontology may indicate that an “OpenSpace” class
has an “ExistingTree” property allowing the inference of
the “GoodQuality” property of the “StaticLeisureActiv-
ity” class for seniors. However, it is also necessary to
calculate the correlations between the existing trees and
the instance of the park in order to determine whether
those existing trees are located within the scope of the
park. As a consequence, in addition to their definitions

COMPUTER-AIDED DESIGN & APPLICATIONS 655

of conceptual classes within the ontology, topological
relationships must also address more feature properties
in specific instances.

The second module of STGf is a “Topological” com-
ponent, which consists of a controlling algorithm for
validating design intentions. In an MVC-based applica-
tion, the “Controller”module is used to accept operations
from users to modify the data within models, and there-
fore controls interactive behaviors among different mod-
els in a system. Eastman suggested that topologies are
the mathematical relationships and fundamental defini-
tions of parametric models in BIM [5]. At an early design
stage, topological relations expressing design intentions
are usually abstract, and may consist of enclosure, exten-
sion, and concentration of indoor/outdoor spaces and
building masses [7]. Topological relations among design
objects defined within the “Semantic” module can thus
be regarded as “controllers” of design intentions.

2.3. Use of the geometric modules to validate
design intentions

Since Grasshopper aims to generate 3D models through
given algorithms, it seems unnecessary to add other
geometric functions. To provide visual validation of
whether a design intention has been accomplished, how-
ever, Grasshopper should provide more visual clues for
users, such as textual and numerical tags and colored
previews. The final module of STGf is the “Geometric”
component, which can validate views of design inten-
tions. In an MVC-based application, a “View” module
is used to display information concerning a retrieved
“Model” and the results of “Controller.” In architectural
design, architects always need visual feedback to vali-
date the content of semantic ontologies or the topolog-
ical behaviors of generative algorithms. Immediate visual
feedback concerning generative algorithms, which helps
users to validate algorithms, is one of the most attrac-
tive features of Grasshopper. For design intentions other
than geometric features, especially in the case of invis-
ible or non-obvious intentions such as outdoor spaces
and mathematical ratios, geometric features can not only
be input as parameters in generative algorithms, but also
be generated for the visual validation of design inten-
tions. The “Geometric”module of STGf therefore aims to
demonstrate how to input geometric objects from Rhino
into the STGf “Semantic” and “Topological” modules,
and how to provide visual clues for the validation of users’
design intentions.

2.4. Summary

By providing rewritable example scripts and adjustable
algorithmic modules, which are editable clusters of

algorithmic components in Grasshopper, the STGf algo-
rithmic framework aims to help architects to con-
nect abstract design intentions by integrating semantic
ontologies and topological algorithms. Based on the STG
pattern proposed in previous studies, the STGf frame-
work is divided into three parts: (1) a semantic mod-
ule that can help architects to indicate design objects
and their semantic relations as the “Model” module in
a MVC pattern, (2) a topological module that presents
the topological algorithms of given semantic relations
as the “Controller” module in a MVC pattern, and (3)
a geometric module that presents the visual validation
of topological algorithms as the “View” module in an
MVC pattern. This algorithmic framework is realized
by applying the GhPython plugin of Grasshopper as an
algorithm-aided design tool [13].

3. Initial test of the STG framework

Our prototype STGf framework was based on the results
of previous studies, which included some GhPython
components used to hook the Resource Description
Framework (RDF) files of semantic ontologies from Pro-
tégé [10], example topological algorithmic clusters, such
as “Adjacent,” “Enclosed,” and “OpenTo” topologies, and
scripts for filtering and automatically collecting geomet-
ric features from the models in Rhino. We provided this
STGf prototype to students for modeling their design
intentions concerning the “Community Library and Pub-
lic Spaces” design proposal, which was used as the rapid-
design topic on Taiwan’s 2016 architect qualification
exam.

3.1. Example of design contexts

“Community-friendliness” issues have been design sub-
jects on Taiwan’s architect qualification exam for three
consecutive years (Fig. 1). Unlike the contexts of the pre-
vious two years (Fig. 1.a, b), however, the site on the
2016 exam consisted of an irregular shape, which was
four times larger than the required building area, had
no existed buildings, and had a complex traffic context
(Fig. 1.c). The building proposal on the 2016 exam con-
sisted of a library, some rental stores, and anunderground
parking lot for the community. The exam’s “community-
friendliness” issues concerned how to arrange the rela-
tionships between the building and the community in
order to create high-quality spaces facilitating commu-
nity activities. However, the outdoor spaces shaped by
the building and its surroundings are ignored in BIM
and IFC semantic ontologies, which mainly focus on the
physical components of a building itself. In addition,
the question of what relationships between a building

656 C.-J. LIN

Figure 1. Three different site contexts relating “community-friendliness” issues in Taiwan’s architect qualification examinations: (a) An
architect firm as the cornerstone of a good neighborhood in 2014, (b) a community-friendly elementary school in 2015, and (c) a
community library and public spaces in 2016.

Figure 2. Similar design intentions proposed by two experienced students who had taken Taiwan’s 2016 architect qualification exam.

and its surroundings will effectively facilitate community
activities still leaves much room for discussion among
architects.

3.2. Analysis of design intentions

Since two students had taken this rapid-design exam,
but were not familiar with the use of Grasshopper, these
two individuals were asked to provide their sketches in
order to recall their design intentions on the exam. Other
students, who were more familiar with Grasshopper,
were asked to compose algorithms concerning common
design intentions by applying STGf.

As the answer sheets of Taiwan’s architect qualifica-
tion exam cannot be obtained, both of the experienced
students who had taken the exam are asked to redraw

their proposals in the exam, but also write down their
ideas about the proposals (Fig. 2). Other students are first
asked to analyze those textual and graphic annotations,
and then to build a semantic ontology of design inten-
tions about “community-friendliness” in STGf. Based on
the view of parametric architectural design, this paper
focuses on those intentions in response to the given
sites’ contexts. It is found some similar intentions con-
cerning “community-friendliness” issues in response to
site contexts on the exam. These common intentions
included (Fig. 2): (1) the ramp down to the under-
ground parking area should be located at the north-
west corner; (2) a passage should be left through the
site to connect the northern and southern alleys; (3)
two open spaces should be left around two groups of
existing trees for different levels of activity intensity

COMPUTER-AIDED DESIGN & APPLICATIONS 657

in the case of one static leisure park located in the
west, and another dynamic recreation park in the east;
(4) the building mass should be located in the north-
west corner over the possible range of underground
parking, and (5) in this building mass, rental stores
should be located on the ground floor, and the library
should be located on higher floors. Since this paper
focuses on design intentions other than geometric build-
ing forms, the framework’s testers were asked to compose
algorithms using the site’s contextual factors as input
parameters.

3.3. Implementation of generative algorithms

One of the benefits of STGf is that it can achieve a hier-
archical structure of design intentions by establishing a
semantic ontology. For example, the underground park-
ing should connect to the road by a ramp,which therefore
restricts by the location of underground parking. The
library building should be above the underground park-
ing, which therefore restricts the location of the building.
The static leisure park should be close the library build-
ing, which therefore restricts the location of the static
leisure park. After semantic analysis of the five design
intentions mentioned above, the first, which concerned
the location of the ramp entrance, therefore exerted a crit-
ical influence on the other three. Consequently, the first
intention for the selection of the ramp entrance is firstly
chosen to implement its algorithm.

In order to complete an algorithm, which should
take the site’s contexts as input parameters, students

are asked to proposed topological relations between the
location of the ramp entrance and the features of design
contexts, such as traffic conflicts. Accordingly, students
are further asked to analyze the computable relation-
ship between the ramp location and the features of site’s
contexts. It is found that the first intention was based
on two sub design intentions: (1) traffic on the nar-
rower street was relatively light, and (2) a ramp entrance
close to the starting point of the construction line could
reduce conflicts with pedestrians. Although there are
other sub-intentions proposed by students, such as to
keep away from kindergarten to protect children. How-
ever, these two semantic intentions can be more eas-
ily understood and modeled as topological algorithms:
(1) selecting the “Narrowest” but more than 6 meter-
wide-road around the site, and (2) calculating the “Start
Point” of the construction line on the selected street
in a “Clockwise” direction. Since vehicles are driven on
the right side of the road in Taiwan, the “Start Point”
of the construction line should be in a “Clockwise”
direction (Fig. 3). By applying these algorithms, users
can input the contour of the site and the borderlines
of the streets around the site in order to generate a
suggested location for the ramp entrance. And while
since there is no default semantic ontology for archi-
tectural design in Rhino, STGf algorithms can indicate
the semantics of input geometric features by manual
or semi-automatic filter in the case of such other fea-
tures as specified layer name, object’s name, or geometric
type. These assigned semantics can remind users of the
original design intentions.

Figure 3. An example algorithm is used to select a parking facility entrance into the site able to reduce traffic conflicts.

658 C.-J. LIN

4. Discussion

Computational architectural design should apply algo-
rithms to solve specified architectural design problems,
which should not be limited to merely the generation of
complex geometric forms. Even thoughmost solutions to
architectural design problems must be represented using
the geometric features of building components, at least
the input parameters of algorithms should not be lim-
ited to just numbers and geometric features, which are
too abstract to be associated with architectural knowl-
edge. However, developing an algorithm usually requires
more prior knowledge of programming skills than archi-
tectural design knowledge. As an application framework
can facilitate and accelerate the development of applica-
tions, STGf also contained collected sample Grasshopper
scripts to help users develop their own algorithms for
representing their design intentions and solving design
problem. STGf is discussed as follows based on this view
of computational architectural design.

4.1. Semantic models for architectural design
concepts

In the domain of architectural, engineering, and con-
struction (AEC), IFC schema occupy the highest level
of semantic ontology [6] for facilitating information
exchange and knowledge sharing among different disci-
plines in AEC. However, the ontological knowledge used
in BIM is based on IFC and focuses on the physical com-
ponents of a building, and the semantics of both BIM and
IFC usually lack the flexibility to handle contextual situ-
ations at different design stages. At an early stage, design
intentions are usually textual descriptions, and are too
abstract to be input as parameters, let alone to find an
algorithm for generating or validating them. By employ-
ing semantic ontology techniques, STGf provides com-
putational components to hook Protégé via RDF files in
order to represent, store, and validate abstract intentions
and their related design knowledge. Since a user-defined
semantic ontology in STGf is contextual and situational,
semantic models of design intentions therefore can be
converted into possible parameters that can be input into
algorithms.

As for the aforementioned issue of “community-
friendliness,” candidates taking the architect qualifica-
tion exam were asked to propose a contextual ontology
concerning their intentions for achieving “community-
friendly” spaces. For example, a candidate taking the
2016 exam could propose the idea of preserving exist-
ing trees in order to rapidly form a static leisure park for
seniors, while another candidate might suggest installing
more game and sports equipment in order to improve

the health of both seniors and children. If those design
intentions could be represented in OWL, then the logic
reasoners in Protégé could help architects to validate,
keep consistency, and to infer implicit intentions in
the ontology. More importantly, abstract design inten-
tions can be converted into a computational format
allowing them to be input as parameters in generative
algorithms.

4.2. Topological controllers of architectural design
intentions

Algorithmic thinking means to understand the interpre-
tive correlations between algorithms and design inten-
tions [2]. The critical relationships among design objects
can be obtained from the corresponding semantic triple
set, which consists of a subject, predicate, and object
within a contextual ontology of design intentions. The
“predicate” of an ontological triple set is actually the inter-
pretive correlation between the subject and the object.
STGf retrieves predicates from semantic ontologies of
design intentions as the names of topological functions.
Even though STGf cannot directly implement a com-
putational function, however, these names cannot only
help users to associate relevant design intentions, but
also indicate the due behavior of this function. Cog-
nitive studies have found that designers tend to spend
more effort to find appropriate algorithms fitting their
intentions [16], rather than testing possible outputs by
modifying parameters. To indicate the due behavior of a
function via its name is found to facilitate finding appro-
priate algorithms and to validate the functional behavior
of the algorithms.

However, topological relationships may only be math-
ematical, but not directly involve geometric features.
As an example, the Taiwan’s 2016 architect qualifica-
tion exam asked candidates to use three quarters of
the given site as a community park. The ratio of land
usagewas onlymathematical, andwas independent of the
shape, position, and other geometric features. In addi-
tion, land usage ratios required the calculation of cor-
relations among different usages of the site, which were
situated properties and could not be asserted within an
ontology in advance. The “Topology” module in STGf
therefore serves as a key controller matching the seman-
tic ontologies of design intentions with the geometric
features of design objects. Most abstract design inten-
tions still need to be validated visually through the geo-
metric features of design proposals. Even in the case
of mathematical topologies such as land usage ratios, it
is better for architects to visually inspect this kind of
abstract concept than to rely on exclusively on text or
numbers.

COMPUTER-AIDED DESIGN & APPLICATIONS 659

4.3. Geometric views of architectural design
algorithms

Regardless of design intentions, the geometric features of
design objects, including physical building components
and void indoors/outdoors spaces shaped by the build-
ing and its surrounding, should be the ultimate goal of
algorithmic modeling. Thanks to the strong ability of
Grasshopper to generate 3D models using algorithms,
the problem is therefore not how to generate a model,
but why the geometric features of a model should be
the way they are. This is not just a matter of aesthetics;
the best way to validate whether an algorithm reflects a
design intention should be through the generated model.
However, design intentions sometimes cannot be directly
recognize by generated models. For example, the pub-
lic/private domain and static/dynamic recreation levels
of spaces must be interpreted and judged on the basis
of the site situation and design context, and sometimes
cannot be directly recognized in the geometric features
of 3Dmodels. In these circumstances, the use of different
colors to visualize the levels of public/private domain or
static/dynamic recreation should be able to help design-
ers to determine whether an algorithm has responded to
his/her intentions or not. In order to perform the effective
visual validation of topological algorithms, there must be
more visual clues other than vectors, curves, surfaces, and
other geometric features.

For example, the site context employed in the 2016
architect qualification exam included two adjacent paral-
lel streets on the north and south sides, and the presence
of a kindergarten adjacent to the southeast corner and
the south street. Based on the “community-friendly” con-
cept, the site needed passages allowing children to cross
the site to return to their homes on the north side. In
this situation, the critical feature of the proposed pas-
sages did not consist of a certain geometric shape, but
that the passages’ nodes had to connect the entrances
of the kindergarten with the street on the north. More
algorithmic explorations were therefore needed to deter-
mine how to check whether the connecting topology
was accomplished through the input geometric features
of the proposed passages. However, developing algo-
rithms inevitably involves programming skills, under-
standing of data structures, and other computer science
knowledge, which sometimes go beyond the domain
knowledge of architectural design. Providing demon-
strations and guidance through examples is therefore
more helpful to architects than to teaching them pro-
gramming skills and computer science knowledge from
scratch. The “Geometric” module of STGf consequently
provides rewritable sample scripts and adjustable algo-
rithmic modules, which can help architects to explore

their own intentions beyond geometric features of design
objects.

5. Conclusions

While critics have suggested that the use of generative
tools can result in the complexification of simple things
[3], generative algorithms should potentially be able to
go beyond geometric intentions. However, programming
and computer science knowledge typically becomes the
biggest obstacle for architects who wish to implement
algorithms of their intentions beyond geometric knowl-
edge. Since software frameworks can dramatically sim-
plify and accelerate the development of an application,
the STGf framework proposed in this paper can also help
designers to simplify and accelerate the development of
generative algorithms used in parametric architectural
design.

One purpose of the MVC pattern is to divide complex
systems programming tasks into independent objects.
The STGf framework divides parametric design into
three procedural algorithmic steps, and can implement
generative algorithms developed by different design-
ers/scripters. As building projects becomemore complex,
instead of requiring architects to possess knowledge in
other domains, it would be better to hand over pro-
gramming/scripting tasks to professional scripters, and
performance optimization to MEP engineers. The time
has therefore come to embed architects’ design inten-
tions in the parameters, variables, and algorithms used in
parametric architectural design.However, since there still
have no effective version control system for a graphic pro-
gramming language like Grasshopper, there are technical
difficulties in tracking users’ processes of developing an
algorithm in Grasshopper. Post commentary and textual
annotations in Grasshopper are the only data that can
be accumulated at present. Therefore, one of the future
works is to analysis the accumulated information in order
to improve the functions of STGf.

Acknowledgements

The Ministry of Science and Technology of Taiwan supported
this paper under grant number MOST 105-2221-E-165-002.

ORCID

Chieh-Jen Lin http://orcid.org/0000-0001-9981-5864

References

[1] Alexander, C.; Ishikawa, S.; Silverstein,M.:APattern Lan-
guage : Towns, Buildings, Construction, Oxford University
Press, New York, 1977.

http://orcid.org/0000-0001-9981-5864

660 C.-J. LIN

[2] Bazalo, F.; Moleta, T.J.: Responsive Algorithms - An inves-
tigation of computational processes in early stage design,
in: Proceedings of the 20th International Conference
of the Association for Computer-Aided Architectural
Design Research in Asia (CAADRIA 2015), Daegu, 2015,
209-218.

[3] Burry, M.: Scripting Cultures: Architectural Design and
Programming, JohnWiley and Sons, Ltd., Chichester, UK,
2011.

[4] Chang, M.-C.; Shih, S.-G.: A Hybrid Approach of
Dynamic Programming and Genetic Algorithm for
Multi-criteria Optimization on Sustainable Architec-
ture Design, Computer-Aided Design and Applications,
12(3), 2014, 310-319. http://doi.org/10.1080/16864360.
2014.981460

[5] Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K.: BIMHand-
book: A Guide to Building Information Modeling for Own-
ers, Managers, Designers, Engineers and Contractors, 2nd
ed., John Wiley & Sons Inc., Hoboken, N.J., 2011. http://
doi.org/10.1002/9780470261309

[6] Gursel, I.; Sariyildiz, S.; Stouffs, R.; Akin, Ö.: Contextual
Ontology Support as External Knowledge Representa-
tion for Building Information Modelling, in: T. Tidafi,
T. Dorta (Eds.) Joining Languages, Cultures and Visions:
CAADFutures 2009, PUM, 2009, 487–500.

[7] Ho, H.-Y.; Wang, M.-H.: Meta Form as a Parametric
Design Language, in: eCAADe 2009, Istanbul, Turkey,
2009, 713-718.

[8] Kotnik, T.: Digital Architectural Design as Exploration of
Computable Functions, International Journal of Architec-
tural Computing, 8(1), 2010, 1-16. http://doi.org/10.1260/
1478-0771.8.1.1

[9] Leach, N.: Parametrics Explained,Next Generation Build-
ing, 1(1), 2014, 33–42.

[10] Lin, C.-J.: Design Criteria Modeling - Use of Ontology-
Based Algorithmic Modeling to Represent Architec-
tural Design Criteria at the Conceptual Design Stage,
Computer-Aided Design and Applications, 13(4), 2016,
549-557. http://doi.org/10.1080/16864360.2015.1131551

[11] Lin, C.-J.: The STG pattern – Application of a “Semantic-
Topological-Geometric” Information Conversion Pattern
to Knowledge-Based Modeling in Architectural Cncep-
tual Design, Computer-Aided Design and Applications,
14(3), 2017, 313-323. http://doi.org/10.1080/16864360.
2016.1240452

[12] Su, H.-P.; Chien, S.-F.: Revealing Patterns: Using paramet-
ric design patterns in building façade design workflow,
in: Proceedings of the 21st International Conference on
Computer-Aided Architectural Design Research in Asia
(CAADRIA 2016), Melbourne, 2016, 167-176.

[13] Tedeschi, A.; Wirz, F.; Andreani, S.: AAD_Algorithms-
Aided Design : parametric strategies using Grasshopper,
Le Penseur Publisher, Brienza, Italy, 2014.

[14] Woodbury, R.: Elements of Parametric Design, Routledge,
New York, 2010.

[15] Wortmann, T.; Nannicini, G.: Black-Box Optimisation
Methods for Architectural Design, in: 21st International
Conference on Computer-Aided Architectural Design
Research in Asia (CAADRIA 2016), Melbourne, 2016,
177-186.

[16] Yu, R.; Gero, J.; Gu, N.: Architects’ Cognitive Behaviour in
Parametric Design, International Journal of Architectural
Computing, 13(1), 2015, 83-102. https://doi.org/10.1260/
1478-0771.13.1.83

http://doi.org/10.1080/16864360.2014.981460
http://doi.org/10.1080/16864360.2014.981460
http://doi.org/10.1002/9780470261309
http://doi.org/10.1002/9780470261309
http://doi.org/10.1260/1478-0771.8.1.1
http://doi.org/10.1260/1478-0771.8.1.1
http://doi.org/10.1080/16864360.2015.1131551
http://doi.org/10.1080/16864360.2016.1240452
http://doi.org/10.1080/16864360.2016.1240452
https://doi.org/10.1260/1478-0771.13.1.83
https://doi.org/10.1260/1478-0771.13.1.83

	1. Introduction
	2. An algorithmic framework for parametric architectural design
	2.1. Semantic components as representing models of design intentions
	2.2. Topological modules as generative controllers of design intentions
	2.3. Use of the geometric modules to validate design intentions
	2.4. Summary

	3. Initial test of the STG framework
	3.1. Example of design contexts
	3.2. Analysis of design intentions
	3.3. Implementation of generative algorithms

	4. Discussion
	4.1. Semantic models for architectural design concepts
	4.2. Topological controllers of architectural design intentions
	4.3. Geometric views of architectural design algorithms

	5. Conclusions
	Acknowledgements
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

