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Fast computation of accessibility cones for assisting 3+ 2 axis milling
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ABSTRACT
In this paper, we propose an algorithm for computing all appropriate cutter postures in the 3+ 2
axis milling of the mold part. As a measure of the appropriateness of the cutter posture, the peak
angle of the accessibility cone (AC) is used. We use the polygon rendering function of the graphics
processing unit for computing the AC. In this method, the necessary cost in the computation is basi-
cally proportional to the number of polygons to render in generating an image of the offset shape. A
novel technology named “visible surface offsetting” is developed for reducing the rendering cost of
the offset shape. An experimental system is implemented and some computation results are demon-
strated. Our system can determine the cutter postures appropriate for 3+ 2 axis milling of the mold
part in a fewminutes.

KEYWORDS
Cutter posture
determination; accessibility
analysis; offset computation;
parallel processing; GPU

1. Introduction

In the mold machining, rough milling with a large cutter
is applied first to efficiently remove excess material, then
semi-finishing with a smaller cutter removes thematerial
remained in corner shapes of themold. In the automobile
industry, molds with very deep shape are used for pro-
ducing large plastic parts, such as instrument panels and
bumpers. In the usual 3-axis milling, cutters with long
shank is necessary to avoid collisions between the holder
and themold in the semi-finishing process (see Fig. 1(a)).
Since large deformation of the cutter is unavoidable with
a long shank, it is difficult to realize stable machining in
the 3-axis milling.

To solve this problem, many manufacturers in Japan
use 3+ 2 axis milling for the semi-finishing in the mold
machining. In thismethod, themachine executes a 3-axis
milling program with a cutter locked in a tilted position
using its 2 rotational axes. In the 3+ 2 axis milling, shank
length can be reduced by properly selecting the cutter
posture as shown in Fig. 1(b). Similar advantage can be
expected by using a simultaneous 5-axismillingmachine,
however the cutter in a fixed posture is more rigid so
much accurate machining results can be realized.

In the 3+ 2 axis milling, determination of a proper
cutter posture is a critical task. In the following discus-
sion, milling operation with a ball-end cutter of radius r
is assumed. Position p of the ball end cutter is represented
by the center point of the spherical blade of the cutter.We
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use accessibility cone [7] as a measure for evaluating the
appropriateness of the cutter posture at p. For each cut-
ter posture (φ, θ) specified by 2 rotational angles φ and
θ around 2 mutually perpendicular axes of the milling
machine (see Fig. 1(b)), a cone whose axis is coaxial to
the spindle axis of the cutter and smoothly contacting
the spherical part of the cutter is considered. The peak
angle of the cone is enlarged until the cone touches the
mold surface as shown in Fig. 2. Such cone with the max-
imum peak angle is called accessibility cone (AC) of the
cutter at p in posture (φ, θ). AC represents the angular
clearance between the mold and the cutter at a specific
configuration (position and posture).

In this paper, we discuss an algorithm for computing
all appropriate cutter postures for the 3+ 2 axis milling,
where “appropriate posture”means that the cutter in such
posture can execute machining at all given points with
a sufficiently large angular clearance (= with an AC of
sufficiently large peak angle). We use the polygon ren-
dering function of the graphics processing unit (GPU)
for computing the AC [7]. In this method, the necessary
cost for the computation is basically proportional to the
number of polygons to render in generating an image of
the offset shape. In this paper, a novel technology named
“visible surface offsetting” is proposed for reducing the
rendering cost of the offset shape. In the next section,
some related studies are briefly reviewed. In Section 3, the
outline of our AC computation algorithm is illustrated.
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Figure 1. 3-axismilling (a) and 3+ 2 axismilling (b) for removing
excess material in a corner.

Figure 2. An accessible cone for a cutter at a specific positon p
and posture (φ, θ ).

Details of the visible surface offsetting, the novel contri-
bution of this paper are explained in Section 4. Experi-
mental computation results are given in Section 5, and
we summarize our conclusions in Section 6.

2. Related studies

5-axis milling is becoming popular due to its ability to
handle a workpiece with complex shape. Many research
results are known for automatically determining the opti-
mal posture in the 5-axis milling [5]. They can be classi-
fied to two groups, which are studies on the positioning
of the cutter with respect to the surface to machine it
without having gouges, and studies on the determina-
tion of the cutter posture without collisions between the
shank/holder and the workpiece. Since the ball-end cut-
ter is basically capable of machining the surface without
regarding its orientation, research works in the latter cat-
egory concern our study. Takeuchi et al. proposed a trial-
and-error-based method for computing collision free
cutter postures in the 5-axis milling [13, 14]. Morishige

et al. developed a method for determining collision free
cutting postures in the 5-axis milling using a C-space of
the cutter posture [8, 9]. Kaneko et al. introduced the
GPU technology for accelerating Morishige’s algorithm
[3], but their method is different from ours.

Determination of the collision-free cutter posture is
related to the accessibility problem of a point to a cer-
tain region on the offset surface of the workpiece. The
“visibility cone” is defined as the feasibility range of the
cutter posture (φ and θ) formilling a surface point. Tseng
and Joshi [15] and Kang and Suh [4] used the visibility
cone to determine the cutter accessibility in the 5-axis
milling. Convex-hull properties of the free-form surface
are used for bounding the feasible axis direction. Spitz
and Requicha developed a computation method of a vis-
ibility cone for the coordinate measurement machine
using the perspective projection [12].Morimoto and Inui
extended Spitz and Requicha’s method for determining
the cutter accessibility in the 3+ 2 axis milling [7].

In the computation of the accessibility cone, the offset
surface of the object is necessary. Conventional tech-
niques for offsetting 3D objects [1, 10, 11] are often com-
putationally expensive, and itsmodel reconstruction pro-
cess can be unstable. Since a picture of the offset shape is
only required in the perspective-projection-based com-
putation of the AC [7], much simple and robust method
is applicable. The picture of the offset shape of a polyhe-
dral object can be obtained by rendering spheres, cylin-
ders and thick plates placed on the object surface as
follows [2];

• Spheres of radius r are placed on all vertices of the
surface where r means the offset radius.

• On each edge of the surface, a cylindrical pin shape of
radius r is placed so that its center axis and the edge
become coincident.

• On each polygonal face, a plate shape of the same area
and thickness of 2r is placed so that the center plane
of the plate and the face become coincident.

The rendering operation of the offset shape is the
most time-consuming task in the AC computation using
the perspective projection. Visible surface offsetting pro-
posed in this paper can reduce the rendering cost of
the offset shape without deteriorating the picture qual-
ity. This method is especially effective in a case of milling
a complex shape with many cutting positions.

3. AC computation using perspective projection

3.1. Input and output

The input data of our algorithm consists of a polyhedral
model that approximates themold shape, radius r of a ball
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end cutter formilling, and a set of points representing the
cutter positions in the milling operation. Most commer-
cial CAD systems provide a function to output the model
data as a group of triangular polygons, such as in the STL
format. In our current implementation, STL models are
prepared so that the shape difference between the origi-
nal model with the curved surface and the mesh model
obtained by the tessellation becomes less than 0.01mm.
Cutter position data are obtained by using a conventional
CAMsystem for 3-axismilling.We assume that the cutter
posture (φ, θ) can be fixed in every one degree in a range
between 0 to 360 degree for φ and in a range between 0
to 90 degree for θ . The output of the algorithm is a set of
cutter postures with their corresponding ACs. The cutter
in such posture can execute 3+ 2 axis milling at all given
points with a certain angular clearance given as the peak
angle of its corresponding AC.

3.2. Algorithm outline

In the computation of AC, we consider a thin cutter of
zero-radius and an expandedmold shape obtained by off-
setting themold surface by the cutter radius r (see Fig. 3).
Points representing the cutter positions in the machining
locate on the offset surface. An AC for a normal cut-
ter with respect to the mold shape and another AC for
the zero-radius cutter with respect to the expanded mold
shape have equal peak angle as shown in the figure. In
the following discussion, we explain the AC computation
based on the zero-radius cutter and the offset shape of the
mold part using Morimoto and Inui’s method [7]

Consider a problem to judge whether a single point
p0 is machinable with a zero-radius cutter in a certain
posture. Zero-radius cutter in two different postures is
illustrated as segments ap0 and bp0 in Fig. 4(a). Cutter
bp0 can machine the point p0. On the other hand, cut-
ter in posture ap0 is not acceptable because the segment
intersects the object. This cutter accessibility analysis can

Figure 3. AC for a cutter with respect to a mold surface (a) and
AC for a zero-radius cutter with respect to the offset surface of the
mold part (b).

Figure 4. Accessibility analysis of a zero-radius cutter ap0 and
bp0 using the perspective projection.

be achieved by using the perspective projection in the 3D
computer graphics. A viewing point is placed on p0 and
a displaying screen in a certain background color is pre-
pared in a sufficient distance from p0. A viewing image of
the object and points a and b from p0 are rendered in the
display using the perspective projection (see Fig. 4(b)). If
the picture of the point appears in the background of the
image (point b in the figure) then its corresponding cut-
ter posture (segment bp0) is acceptable formachining the
point, otherwise it is not.

By using a similar method, ACs of a zero-radius cut-
ter for machining a point p0 can be computed. A viewing
point is placed on p0 and the offset shape of the mold
part is rendered using the perspective projection. In the
rendered image, regions in the background color repre-
sents a set of end points of segments corresponding to the
zero-radius cuttersmachinable at p0. Consider a pyramid
shape whose bottom face is the background color region
in the display and whose peak point corresponds to p0
(see Fig. 5). We call this shape “visibility pyramid”. For
each cutter posture (φ, θ) allowed in the ranges for φ and
θ , a straight line starting from p0 and being extended in
the cutter axis direction is checked. If the line reaches the
bottom face of the pyramid, then the cutter in this posture

Figure 5. Definition of a visibility pyramid and the determination
of two ACs using the pyramid.
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is accessible to p0. For each accessible line, a cone whose
peak point is at p0 and coaxial to the line is considered.
The peak angle of such cone is enlarged until the cone
surface touches some side faces of the visibility pyramid
as shown in the figure. Obtained cone with themaximum
peak angle allowed in the visibility pyramid becomes the
AC for the cutter posture.

Consider anACacceptable formultiple points given as
the cutter positions. Such common AC can be computed
by repeating the rendering operation of the offset shape
for each point and overwriting the images to obtain a final
image. The background-color-region in the final image is
extracted and the visibility pyramid is computed. The AC
obtained by using this pyramid corresponds to the com-
mon AC applicable to all cutter positions. Computation
of the common AC can be realized in a different manner.
Select a representative point from the point set. The view-
ing point for the perspective projection is fixed at this
representative point. For each point in the cutting posi-
tions, a vector from the point to the representative point
is computed and stored. In the rendering process, the off-
set shape of the mold is translated by each stored vector
and rendered. This translation and rendering operation
is iterated for all the stored vectors. After rendering all
translated offset shapes, the background color region in
the frame buffer is extracted and the visibility pyramid
is constructed. The latter method is employed in our AC
computation software.

In the perspective projection, a viewing direction and
a field of view (FOV) parameter are necessary. Since FOV
must be less than 180 degree, the peak angle of the visibil-
ity pyramid becomes less than 180 degree also. Therefore,
a single projection cannot support the AC computation
for all cutter postures (φ, θ) allowed in the range (0 to
360 degree for φ and 0 to 90 degree for θ). A picture pro-
jected to the screen has large distortion if too large FOV
value (near 180 degree) is used, and it causes less accuracy
in the AC computation result. To solve this problem, we
compute multiple pictures with different viewing direc-
tions and a smaller FOV value, and combine the pictures
to a single one for computing the AC for all possible
cutter postures. In our current implementation, perspec-
tive projections in 5 different viewing directions are used
which are+X, -X, +Y, -Y and+Z directions. 90 degree
is used as the FOV value as illustrated in Fig. 6. After ren-
dering in the 5 directions, obtained images are stitched to
a single image covering all cutter postures allowed in the
ranges for φ and θ .

4. Visible surface offsetting

In the algorithm mentioned above, the offset shape of a
mold part in different positions must be rendered many

Figure 6. Perspective projection for 5 different viewing
directions.

times. Offset shape of a polyhedral object corresponds
to a combined shape of spheres, cylinders, and plate
shapes being placed on the vertices, edges, and faces of
the object, respectively. In a simple method, the render-
ing of these component shapes is iterated for all cutter
positions. The necessary cost for rendering an object is
basically proportional to the number of polygons of the
object. Since spheres and cylinders of the offset shape
are finely tessellated before the rendering, their render-
ing cost (especially rendering cost of tessellated spheres)
dominates the total rendering cost of the offset shape.

4.1. Reduction of rendering spheres

To reduce the rendering cost, new method named visi-
ble surface offsetting is developed. Fig. 7 illustrates the
basic idea. In this figure, a rendering operation of the
offset shape of a polyhedron with m vertices (m = 8 in
the figure) is considered. This operation is iterated for
n cutter positions. In Fig. 7(a), 5 red points p0, p1, p2,
p3, p4 represent the cutter positions. Since m is usually
more than 100,000 and n is more than 10,000, huge num-
ber of spheres must be rendered in our original method.
After rendering the offset shape n times, their overwrit-
ten image is obtained in the frame buffer. In Fig. 7(b),
such rendering result is illustrated for a case that p2 is
selected as a representative viewing point. A viewing frus-
tum is given in light blue color in the same figure. Visible
portion of the offset surface is specified by red curves.
Visibility pyramid (green shape in the figure) is con-
structed based on such visible surfaces. As shown in the
figure, most spheres of the offset shape do not contribute
the final image.

Our visible surface offsetting can eliminate the ren-
dering of such non-contributing spheres. In this method,
rendering operation of the part shape (not its offset
shape) is iterated for each cutter position and their
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Figure 7. Apolyhedronwith 8 vertices, its offset shape, and 5 cutter positions (a). Overwriting result of 5 offset shapes of the polyhedron
(b). Offsetting result of the visible surface obtained by overwriting 5 polyhedrons (c).

overwritten image is obtained as shown in Fig. 7(c). After
the rendering, the coordinates of the points correspond-
ing to pixels of the visible surface (red curves in Fig. 7(c))
are sampled. Such coordinates are computed using the
pixel location in the frame buffer and its corresponding
depth information. In Fig. 8, a determination process of
the coordinates of a visible point p at pixel (i, j) with
depth value d in the frame buffer is illustrated. In the hid-
den surface removal using the depth buffer, two clipping
planes named near and far perpendicular to the viewing
direction are defined [6]. These two planes limit the vis-
ible range in the viewing direction. Depth value 0.0 and
1.0 are assigned to near and far planes, respectively. Con-
sider a ray from the viewing point going through the pixel
at (i, j). Coordinates of a visible point p on the ray can
be determined by using the depth information d repre-
senting the relative position of pwith respect to near and
far planes. Spheres are placed on such visible points in
the display and their image is rendered again by using
the perspective projection. Visibility pyramid is finally

Figure 8. Determination of the coordinates of a point p visible at
pixel (i, j) with the depth value d.

constructed based on the rendering result of the spheres
as shown in Fig. 7(c). In this method, the number of
spheres to render is limited by the total number of pix-
els in the display (1024× 1024 in our implementation)
which is usually far less thanm x n.

Rendering result using the visible surface offsetting
(Fig. 7(c)) becomes identical to the rendering result
obtained by our originalmethod (Fig. 7(b)). Image differ-
ence between the two rendering results can occur when
the offset result of certain points hidden by other shapes
appear in the display, but such result is never obtained
in the perspective projection. Point q in Fig. 9 is such
an invisible point hidden by a wedge shape. Consider a
line connecting q and the viewing point. A visible point
pmust exist on the line between q and the viewing point
as shown in the figure. Since p is visible, a sphere S of
an offset radius r is placed as its center point is at p in our
visible surface offsetting. Consider a sphereT of the same
radius is placed at q as an offset result of the hidden point
q. Since T is more distant than S from the viewing point,

Figure 9. Offset shape T of an invisible point q never appears in
the display because offset shape S of a visible point p hides T .
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Figure 10. Offset shape of a point p existing in the outside of the
viewing frustumcanaffect the rendering result of theoffset shape.

S completely hides T and the image of T never appears
in the display.

In our method, some surface points locating outside
of the viewing frustummust be considered in the render-
ing operation of the spheres. Fig. 10(a) illustrates a case.
Consider a surface point p locating in the external part
of the viewing frustum. This point is not visible when
observing the objects from e in the viewing direction v.
A part of the sphere of radius r whose center point is at p,
however, can enter the viewing frustum and it affects the
rendering result of the offset shape. To evaluate the effect
of such points locating outside of the viewing frustum,
we implement the visible surface offsetting algorithm in
the following 2 step manner. Since such point p is visible
when observing in a different viewing direction (view-
ing direction v’ in Fig. 10(b)), our algorithm executes
the rendering operation of the part shape for 5 different
viewing directions (+X, -X, +Y, -Y, and+Z) first and
collects all visible surface points. In the second step of
the algorithm, rendering operation of the spheres is exe-
cuted for each viewing direction to obtain the picture of
the offset shape. In this process, spheres are rendered not
only for the surface points in the viewing frustumbut also
for some points locating outside of the viewing frustum
if their distances from the viewing frustum are less than
or equal to r.

In the computation of the AC, a background color
region left in the frame buffer after the rendering is
extracted and used as the bottom face of the visibility
pyramid. A silhouette picture of the offset shape is only
necessary in this purpose. As shown in Fig. 11, the sil-
houette of a sphere viewing from a point e becomes a
circular disk corresponding to the tangent curve between
the sphere and a cone whose peak vertex is at e. We
improved the AC computation software so that it does
not render the tessellated spheres, but it renders only
their silhouettes. The number of polygons required for
approximating the circular disk is much smaller than
the number of polygons covering the tessellated spheres,
therefore the silhouette picture of the offset shape can be
obtained in a shorter time period

Figure 11. Silhouette of a sphere viewing from point e.

4.2. Culling using hierarchical AABB and
grid structure

To further reduce the computation time, culling oper-
ation is introduced in the rendering of the part shape.
In the perspective projection, the polygons locating out-
side of the viewing frustum do not contribute the ren-
dering result. These non-contributing-polygons can be
efficiently detected and excluded from the rendering
by using the hierarchical Axis-Aligned Bounding Boxes
(AABB) [6].

The surface polygons of the input model are classified
into small groups according to their proximity. Consider
n polygons forming the model surface. An AABB that
tightly confines the polygons is defined by measuring the
coordinate ranges of the polygons in the x-, y-, and z-
directions. One root AABB is defined that holds all the
polygons of the model. Polygons in the AABB are sorted
and classified to two groups with n/2 polygons. For each
polygon group, a smaller AABB is formed and registered
as a descendant of the original AABB. The process of
defining descendant AABBs is iterated until the number
of the polygons in a group becomes less than or equal to
a predetermined number nmax, and a binary AABB tree
is obtained. nmax is set to be 4 in our current implemen-
tation. This number is determined based on numerical
experiments.

In the rendering operation with a viewing frustum
of the perspective projection, hierarchical AABB tree is
traversed from the root node in the depth first manner.
At each node, positional relationship between the AABB
corresponding to the node and the viewing frustum is
checked. If the AABB locates completely outside of the
frustum, then polygons in the AABB do not contribute
the rendering result and the traversal of its descendant
nodes can be canceled, otherwise the traversal contin-
ues. After the traversal, leaf AABBs holding the visible
polygons are obtained.

Execution of the culling operation for each viewing
point (= cutter position) cost much. This problem can
be solved by using the spatial coherency in the perspec-
tive projection. In Fig. 12, p0 and p1 are 2 close viewing
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Figure 12. Viewing frustums for 2 close viewing points.

Figure 13. Culling using the representative frustum.

points. In the perspective projection with the same view-
ing direction, a viewing frustum for p0 and another frus-
tum for p1 usually concern similar set of AABBs as shown
in the figure. To utilize this spatial coherency for reducing
the number of culling operations, given cutter positions
are classified to a spatial grid structure with small cubic
cells. Culling operation with the hierarchical AABB is
executed only once for each cell, and the culling result
is shared by all point in the same cell.

In this method, the center point of the cell is used as
a representative viewing point for the cell and the view-
ing frustum for this point is used in the culling operation.
Some AABBs visible from a point in the cell are not rec-
ognized as visible one because they locate outside of the
representative frustum. For example, AABBi in Fig. 13 is
visible from viewing point pj in the cell, however it is not
selected as a visible one because it locates outside of the
representative frustum for the center point of the cell. To
properly select such boxes, AABBs are expanded by the
half size of the cell in the x, y, and z-directions before the
culling operation.

5. Numerical experiments

A system for computing appropriate cutter postures and
their ACs common for all cutter positions was imple-
mented using Visual C++, CUDA 7.5, and OpenGL.
Series of computational experiments were performed
using a PC with Intel Core i7 Processor (2.6GHz), 16 GB
memory, and an nVIDIA GeForce GTX-960M GPU.

We applied the system to seven cases of polyhedral
models of mold parts and points representing the cutter

Table 1. Required time for computing appropriate cutter
postures.

Case
Number of
polygons

Cutter radius
(mm)

Number of
cutter

locations

Computation
with AABB and

cells (s)

Computation
without AABB
and cells (s)

A 2,518 1.0 3,758 6.93 7.16
B 2,968 1.0 3,848 8.43 8.29
C 45,174 3.0 11,757 10.25 11.31
D 844,180 5.0 5,142 8.77 110.76
E 844,180 5.0 5,417 11.68 115.63
F 618,143 0.5 23,016 58.55 357.94
G 618,143 0.5 24,310 87.70 368.79

positions for semi-finishing them. Tab. 1 shows number
of polygons of the models, cutter radius, number of cut-
ter positions, and the required time for computing the
appropriate cutter postures (data given in the fifth col-
umn of the table) for the sample cases. First three cases
(case A, B and C) are simple models for tests. Case D, E,
F and G are actual mold cavity and core models and cut-
ter position data for machining them. As shown in the
table, more computation time is necessary for complex
caseswithmanypolygons andmany cutter positions.Our
system can determine the appropriate cutter postures for
complex cases in a few minutes.

In the same table, necessary computation time with-
out using the hierarchical AABB and the cell structure
are also given (time given in the rightmost column). For
simple cases (case A, B and C), performance difference
between the system using the AABB and cell structure
and the system without using them is small, however it
becomes very large for complex cases (cases D, E, F and
G) with many polygons and many cutter positions.

For the purpose of maintaining confidentiality, com-
putation results for case C and E are only illustrated in
Fig. 14 and Fig. 15, respectively. In these figures, (a) show
sample parts. Red points in the figures represent the cut-
ter position data. As shown in close-up figures (b), points
are classified to a spatial cell structure. In each cell, 10
points are stored on the average. (c) in Fig. 14 and Fig. 15
show the computation result. In these figures, colored
spherical surface is a Gauss map representing the appro-
priate cutter postures for 3+ 2 axis milling. Color on
the surface corresponds to the peak angle of the AC for
each cutter posture (φ, θ) common for all cutter posi-
tions. Red corresponds to cutter postures with 0.1 degree
peak angle and blue corresponds to postures with the
maximum peak angle allowed in the sample case.

As mentioned in section 4, the same rendering result
is obtained by directly rendering the offset surface of the
part for all cutter positions. Since the collecting operation
of the visible surface points in the display and the render-
ing operation of the circular disks at the collected points
are not necessary, some reduction of the computation
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Figure 14. A simple mold model and cutter positions of case C (a), cell structure for recording the cutter positions (b), and appropriate
cutter postures for executing 3+ 2 milling for all cutter positions (c).

Figure 15. A cavity model and cutter positions of case E (a), cell structure for recording the cutter positions (b), and appropriate cutter
postures for executing 3+ 2 milling for all cutter positions (c).

time can be expected in this method. The offset surface
of a polyhedral object is generally obtained by shifting
the polygonal faces in their normal vector directions by
the offset radius and by inserting the cylindrical sur-
faces and spherical surfaces to fill the gaps between the
shifted polygons. These curved surfaces are further tes-
sellated to a set of small polygonal faces before the ren-
dering. The result offset surface thus contains several
times more polygons compare to the original polyhedral
model. Increase of the number of polygons causes more
computation time in the rendering operation especially
for cases with many cutter positions.

Tab. 2 shows a comparison of the necessary computa-
tion time using our visible surface offsetting method and
time using the tessellated offset surface in the rendering.
Fig. 16(a) shows the offset shape used in the computation.
This shape is obtained by offsetting the model for case C
by 3mm. The originalmodel has 45,174 surface polygons
and the offsetmodel has 216,746 surface polygons. Cutter
position data with different number of points are used in
the experiments. These data are generated by duplicating

Table 2. Necessary computation time using part shape in the
rendering operation and time using tessellated offset shape in the
rendering operation.

Number of
cutter locations

Computation using
part shape (s)

Computation using
offset shape (s)

11,757 10.25 7.15
23,514 12.05 11.45
47,028 15.30 19.32
94,056 22.30 36.91
188,112 33.59 70.94
376,224 62.69 137.50

the sameposition data shown in Fig. 14(a)multiple times.
Appropriate cutter postures computed by using the off-
set surface are shown in Fig. 16(b). This result is the
same to the result given in Fig. 14(c). Our visible surface
offsetting method shows the better performance as the
number of the cutter positions increases. The number of
the polygons of the offset shape can be reduced by directly
offsetting the curved surface of the original CAD model
(not tessellatedmodel) prior to the tessellation.Offsetting
an object with curved surfaces is still a difficult problem
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Figure 16. Computation result using the tessellated offset surface.

Figure 17. Computation result after rotating the part shape and cutter positions. (a) rotation by 30 degree, (b) rotation by 60 degree,
and (c) rotation by 90 degree.

and it often needs large computation time in preparing
the data.

Since ourmethod uses the polygon rendering function
in the computation, the result is affected by the tessella-
tion accuracy of the object, polygonization accuracy of
the circular disk in the visible surface offsetting, the view-
ing direction, and the pixel resolution of the display. In
these parameters, we consider that the rendering direc-
tion has impact on the computation accuracy. To check
the robustness of the computation by changing the view-
ing direction, we rotate the part shape and the cutter
positions around the z-axis every 15 degrees and exe-
cute the computation. Fig. 17 illustrates the computation
result for cases with rotation angles 30 degree, 60 degree
and 90 degree, respectively. As shown in the figure, simi-
lar distributions of the peak angles of the AC are obtained
for three cases. We checked the AC with the maximum
peak angle for three cases and we found that the variation
of the peak angles is less than 0.1 degree. This result is well
acceptable for our cutter posture determination purpose.

6. Conclusions

In this paper, we discuss an algorithm for computing
all appropriate cutter postures in the 3+ 2 axis milling
of the mold part. As a measure of the appropriateness
of the cutter posture, the peak angle of the accessibility
cone is used. Our algorithm realizes the fast computa-
tion using the polygon rendering hardware. Rendering
operation of spheres in the offset shape consumes most
part of the computation time. To reduce the number of
rendering spheres, a novel method named visible surface
offsetting is developed. Culling operation using the hier-
archical AABB is introduced for further accelerating the
rendering operation. Spatial coherency in the perspec-
tive projection enables the reduction of the number of
the culling operations. An experimental system is imple-
mented and some computation results are demonstrated.
Our system can determine the cutter postures appropri-
ate for machining the mold part using 3+ 2 axis milling
in a few minutes.
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