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ABSTRACT
Perceptually meaningful segmentation of amesh is one of the fundamental, yet unconquered prob-
lems in computer-aided design and geometry modeling. A critical component that affects the result
of segmentation is a similarity metric, which quantifies how likely two distinct points belong to the
same segment. Traditionally, similarity metrics were defined based on analytic properties of a sur-
face geometry such as the curvature. Although these metrics work well in dividing segments based
on creases and ridges, they provide unsatisfactory results in volumetric intersections between two
large chunks. To this end, in this paper, we present a novelmethod for improving any given similarity
metric in a way that is more suitable for segmentation tasks. We introduce the geodesic curva-
ture flow, which is a geometric flow that minimizes the arc length of level set contours, to evolve
the original similarity metric into a new metric. In our study, the new metric was discovered to be
more suitable for the segmentation tasks than the original metric in a sense that it compensates the
aforementioned limitations.
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1. Introduction

Triangular mesh segmentation [16] is one of the funda-
mental problems in computer-aided design and geome-
try modeling. The problem can be briefly stated as a task
of finding a partition S of a triangular mesh X. Mathe-
matically, a partition S of a set X is a disjoint collection
of nonempty and distinct subsets of X such that each
element of X is an element of some, and hence, exactly
one element of S [18]. Intuitively, there can be more than
one such a collection for a given X, and the problem of
mesh segmentation is, hence, to find the most perceptu-
ally sound partition of a givenmeshX. Albeit ambiguous,
the “perceptually sound” segmentation is determined,
most of the time, through a visual comparison to find the
most natural segmentation to our common intuition.

A critical component for distilling the perceptual
soundness of a segmentation into a numerical algorithm
is the similarity metric. The similarity metric is a mea-
sure of how visually similar and contiguous the elements
are, and thus, how likely they belong to the same seg-
ment. It provides a numerical tool for comparing the ele-
ments of a geometry. Many of the segmentation methods
(see Sec. 2) utilize some inherent measures that can be
computed directly from the mesh, for example, dihedral
angles between the faces, curvatures, and such. These
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measures often provide a reasonable fidelity of segmen-
tation since the human visual perception relies largely on
surface curvatures [4][11]. However, at the same time,
these are not capable of embracing geometric charac-
teristics in a global, volumetric scope, such as narrow
necks (i.e., regions where cross-sectional area reduces
rapidly) or intersections between large chunks of geome-
tries, when there is no prominent marks of creases and
ridges on the surface.

In our recent study,we discovered that, given a similar-
ity metric of any kind, the geodesic curvature flow (GCF)
significantly improves the metric in a way that better
conforms to the rules and the intuitions of visual segmen-
tation (see Fig. 1). In fact, the GCF, which is essentially a
geometric flowof a scalar function on amanifold, showed
in our experiment a strong tendency of improving a given
similarity metric in a form of the distance function that
satisfies important rules and principles of human visual
cognition, such as minima rule [11]. Therefore, in this
paper, we propose a novel framework of utilizing theGCF
for more perceptually sound segmentation of 3D mesh.
We review some of the previous approaches in mesh seg-
mentation (Sec. 2), presentmathematical backgrounds of
the GCF (Sec. 3), and discuss the result of segmentation
improved by the GCF (Sec. 4).
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Figure 1. Evolution of a level set function under the geodesic curvature flow (from left to right). Each of the figures corresponds to the
result after 0, 5, 20, 100, and 500 iterations respectively. The time step is set to h = 10. For the details on the parameters, see Sec. 3.3.

2. Related works

Mesh segmentation aims to decompose a surface mesh
into perceptually meaningful partitions. In order to
achieve such task, a large variety of computational meth-
ods has been proposed so far. Among those different
approaches, one of the key challenges they share in com-
mon is to define a metric quantifying the dissimilarity
between points on the surface.

Katz et al. [10] proposed an algorithm to compute
a hierarchical decomposition of a given mesh. In their
approach, the probability of a face belongs to a certain
segment depends on its distance from other faces in this
segment. They also used the dihedral angle between two
adjacent facets in addition to the geodesic distance to help
define the likeliness of the two facets belonging to the
same segment. Page et al. [14] developed a hill climbing
watershed algorithm for segmenting a triangular mesh
into visual parts. In their implementation, they precom-
puted the principal curvatures and their principal direc-
tions at each vertex of a mesh. The principal curvature
values was used as a metric to set the threshold for the
watershed clustering in the algorithm.

More recently, a group of shape descriptors developed
based on the spectrum of the Laplace-Beltrami opera-
tor [15],[19],[1] has gained a significant spotlight in the
research of mesh segmentation. Rustamov [15] intro-
duced the global point signature (GPS) which encodes
the geometry information about a point on the surface.
The GPS at each point on the surface was defined as
a vector containing the Laplace eigenfunctions of dif-
ferent modes scaled by the corresponding eigenvalues.
The Euclidean distance between such vectors was defined
as the similarity metric between two points on the sur-
face. In [15], it was shown that the GPS distance can
serve as a good similarity metric for the segmentation
tasks. The heat kernel signature (HKS), another spec-
tral shape descriptor based on the different heat diffusion

characteristics according to the shape of a surface, was
proposed by Sun et al. [19]. Skraba at al. [17] presented
a persistence-based segmentation technique using the
HKS. In their algorithm, the HKS function at each point
on the mesh for a user-defined time value t was used to
guide the persistence-based clustering, which results in
an isometry-invariant multi-scale segmentation. In [7]
and [22], HKS was also further developed or modified
to tailor the clustering task depending on specific appli-
cations. In a similar spirit with HKS, Aubry et al. [1]
proposed the wave kernel signature (WKS) based on a
characterization of the wave propagation on manifolds.
Physically, the WKS represents the average probability
of measuring a quantum mechanical particle at a surface
point. Mathematically, the WKS is another expression in
the eigenfunctions of the Laplace-Beltrami operator, and
essentially similar to the GPS and HKS. In [1], the WKS
value at each point on the mesh was used as the guid-
ance to group those points. For pose-consistent 3D shape
segmentation tasks, the WKS metric-based method was
reported to be more robust to data perturbed by various
kinds of noise.

A commonly shared problem of the existing meth-
ods is that they tend to ignore geometric characteristics
in a global, volumetric scope. In turn, narrow necks or
intersections between large chunks of volumes are often
ignored unless there is a prominent mark of creases and
ridges on the surface. This is critical for the intuitive seg-
mentation of a shape, because, for the segmentation and
abstraction of shapes, human cognition depends largely
on a volumetric composition of shapes in a global scope.

Motivated from this, we propose in this paper a novel
method for deriving a shape-aware surface metric using
the GCF. We have found from experiments that the GCF
has a strong tendency of improving a given similarity
metric in such a way that reflects the global, volumet-
ric composition of shapes more intuitively. For a given
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similarity metric of any kind, whether it be the geodesic
distance, GPS, HKS, WKS, or any other, the GCF can
significantly improve the initial metric in a way that
better conform to the rules and the intuitions of visual
cognition.

3. Themethod

A brief overview of the method is as follows. First, the
geodesic distance between every pair of vertices on an
input mesh X is computed as our initial surface metric.
We then evolve the surfacemetric via the GCF in order to
achieve bettermeasurement for the clustering task. Using
the eigenfunctions of the new metric, we find the spec-
tral embedding of X. Finally, we cluster the vertices on
the spectral configuration, which gives a visually intuitive
segmentation of X. The newmetric essentially is an indi-
cator of how likely two distinct points are in the same
segment. Hence, the spectral embedding will lead to a
projection ofX onto a higher dimensional space such that
the distances between the points are reconfigured accord-
ing to their likeliness of belonging to the same segment.
Relevant literatures report that well-known metrics (e.g.,
Euclidean distance, geodesic distance) perform well for
such a segmentation method based on a spectral embed-
ding [12][13], but we found that a new metric achieved
by evolving the geodesic distance via the geodesic cur-
vature flow performs much better than the conventional
metrics. In this section, we introduce and define the GCF
(Sec. 3.1), discuss how the GCF can be utilized for evolv-
ing the similarity metric for the clustering (Sec. 3.2), and
discretize the GCF on a triangular mesh domain without
loss of generality (Sec. 3.3).

3.1. Geodesic curvature flow

The geodesic curvature flow (GCF) is a geometric flow,
or informally, a continuous evolution of a curve that
minimizes the arc length of a curve. Given a closed
self-avoiding rectifiable curve γ lying on a differential
d-manifoldM embedded inR

n(d ≤ n), the energy func-
tional of the GCF is defined as follows:

E(γ ) =
∫

γ

dl (3.1)

where dl is an infinitesimal segment defined on the curve
γ for the integration. Here, we restrict our curve to be
rectifiable in order to make sure that it is integrable. A
curve γ on a manifold M is said to be rectifiable if and
only if the length of every geodesic polygon formed by
vertices γ (t1), . . . , γ (tn), 0 ≤ t1 < · · · < tn ≤ 1 can be
bounded from above by the length of the curve for some
parameterization γ (t), t ∈ [0, 1] and under the induced

metric ofM. This consequentlymeans that the curve γ is
a function with bounded variations, and thus integrable.

In a level set formulation, the energy functional in
Eqn. (3.1) is converted from a line integral to a surface
integral on a manifold by the coarea formula [6]:

E(γ ) =
∫

M
δ(φ)|∇φ|dA (3.2)

where φ is a level set formulation of the curve γ such
that the contour of φ = 0 is equal to γ and dA being an
infinitesimal area defined on the manifold M. δ is the
Dirac’s delta function. Consequently, the energy func-
tional in Eqn. (3.2) can further be reduced to the Euler-
Lagrange partial differential equation:

−∇ · ∇φ

|∇φ|δ(φ) = 0 (3.3)

∂φ

∂n

∣∣∣∣
∂M

= 0 (3.4)

where ∂M is the boundary of M and n is the outward
normal at the boundary. For closed M, the boundary
condition is ignored automatically.

Further, for the discretization, we introduce a so-
called “smoothed out” delta function, δ(φ) = |∇φ| as
like in the standard level set methods to obtain the fol-
lowing gradient descent flow:

∂φ

∂t
= ∇ · ∇φ

|∇φ| |∇φ| (3.5)

Time integration of Eqn. (3.5) provides us the “evoloved”
level set function φ(t) of the original function φ0. Fig. 1
shows such an evolution of a level set function defined
on a human model. An interesting behavior of the GCF
is that it “diffuses” and smooths out the level set function
except for the narrow necks of the manifold. This prop-
erty can also be observed from Fig. 1, in which the level
set function is smoothed out, and hence, the function
value does not change much over the large, continu-
ous areas; whereas the level set contours are converged
around relatively narrowparts such as neck,wrists, knees,
ankles, waist, and so on, and hence, the function value
changes relatively faster. Therefore, if the level set func-
tion was a surface distance from a certain point p (the top
of the head in Fig. 1), then the evolved function under
the GCF would be a better metric for the segmentation
tasks, which is our insight for the proposed method in
this paper.

3.2. Geometry-awaremetric via geodesic curvature
flow

As aforementioned, one of the characteristics of the GCF
is that it tends to evolve faster on large, continuous areas



680 Z. SUN ET AL.

and significantly slower on narrow areas. Especially, level
set curves under the GCF tend to converge near the
shortest homotopic cycles. Our key insight here is to
exploit such a characteristic of the GCF to evolve the dis-
tance metric on the surface in aware of the geometric
contiguity.

To achieve so, we first start with the geodesic dis-
tance d(p, x) from a given point p on themanifold surface
M. We then substitute φ(x) = d(p, x) in Eqn. (3.5) and
integrate along certain time t to obtain a new distance
function r:

r(p, x) := φt(x) =
∫ t

0
∇ · ∇φ

|∇φ| |∇φ|dt (3.6)

Note here that the initial computation of the geodesic dis-
tance function d does not have to be the exact geodesics,
since d converges to r under the GCF in a fairly robust
manner despite of small minor variations of the function
values. This allows the use of fast approximate methods
for the computation of the geodesic distance, such as [5],
or even, the simple Euclidean distance.

For the spatial discretization, we simply assumed that
the function value changes linearly on each of the tri-
angular facets in the mesh. Based on this, gradient and
divergence operators are defined as finite difference oper-
ators similar to the ones used in [5]. For the time dis-
cretization, we used the implicit Euler method.

We repeat this process for every vertex vi in the mesh
to obtain a distancematrixRwhose elements areR(i, j) =
r(vi, vj). The distance matrix R is initially not symmet-
ric, since there is no mechanism of restricting the GCF
to retain the symmetry r(x, y) = r(y, x). Hence, we make
R symmetric simply by updating it to R← 1

2 (R+ RT)

in a favor of computational simplicity, where RT is the
matrix transpose of R. Note that more rigorous sym-
metrization techniques such as [8] could also be utilized,
but there we found there was not much difference in the
final segmentation result.

3.3. Implementation

3.3.1. Temporal discretization of GCF
Let us write G and D to denote, without specification at
the moment, the discrete gradient and divergence oper-
ators respectively. Based on this notation, Eqn. (3.5) is
expressed in a matrix form as follows w.l.o.g.:

∂�

∂t
= SDMG� (3.7)

where � is a vector containing function values of φ, and
S and M are diagonal matrices whose elements are |∇φ|
and 1

|∇φ| respectively.

In this setup, we apply the backward Euler method for
the temporal discretization of Eqn. (3.5) as follows:

∂�

∂t

∣∣∣∣
t
≈ �t+h −�t

h
= SDMG�t+h (3.8)

Note that the use of the backward Euler is for the sake of
simplicity, and hence, that the other discretization meth-
ods such as Runge-Kutta method can also be used in
solving the problem.

Consequently, fromEqn. (3.8), we arrive to the follow-
ing linear system for updating the function φ at time a
given time t by the time step h:

�t+h = (I − hSDMG)−1�t (3.9)

3.3.2. Discretization of differential operators
From among the several possible discretization strate-
gies of the differential operators, we employ the results
derived from the discrete exterior calculus [9], which
provides a rigorous mathematical discretization of the
differential operators on a triangular mesh. This is the
most common choice in the field of computational geom-
etry because of its simplicity and relatively reliable perfor-
mance. However, the other discretization methods (e.g.,
[21]) could also be utilized. Note that our method is not
dependent upon the choice of the discretization of the
differential operators.

The Discrete gradient operator associated with each
triangle, acting on scalar valued functions defined at each
vertex is defined as follows:

∇φ = 1
2Af

∑
i

φi(N × ei) (3.10)

where ei is the edge vector opposing the vertex i, N is the
unit normal to the face, andAf is the area of the face. The
sum is taken over the vertices in the given face.

In addition, the discrete divergence operator associ-
ated with a given vertex acting on vector fields defined at
each triangle is defined as follows:

∇ · X = 1
2

∑
j
cot θ1(e1 · Xj)+ cot θ2(e2 · Xj) (3.11)

where e1, e2 are the edge vectors emanating from the ver-
tex i, and θ1, θ2 are the interior angles opposing the edge
vectors accordingly. The sum is taken over the incident
faces to the vertex i.

The above definitions of the discrete gradient and
divergence operators on a triangular mesh allows expres-
sions using matrices G ∈ R

3|F|×|V| and D ∈ R
|V|×3|F|

respectively. These notations are consistent with what
have been used in Section 3.3.1.
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Figure 2. Notations used to define the differential operators on
triangular meshes.

3.3.3. Spectral embedding and clustering
Spectral embedding is a commonly used technique for
projecting a manifold embedded in R

n to a different
mathematical space S, with applications such as nonlin-
ear dimensionality reduction [20], surface parameteriza-
tion [23], and so on. Similarly to [13], we utilize spectral
embedding to facilitate the clustering task. To do so, we
first compute the affinity matrix W using the Gaussian
kernel:

W(i, j) = e−R
2(i,j)/2σ 2

(3.12)

Note here that W(i, j) varies, by definition, in the range
(0, 1] depending on the likeliness between two vertices vi
and vj. In addition, from the inherent nature of the Gaus-
sian kernel,W(i, j) drops significantly towards zero when
R(i, j) > 2σ . Therefore, we simply cutoff values outside
2σ to zero to achieve a highly sparse affinity matrix
W(i, j), which has a significant numerical advantage for
the computation over the original dense matrix.

The affinity matrix is then normalized to N =
	−1/2W	−1/2 in order to eliminate the effect of differ-
ent vertex densities, where	 is a diagonal matrix each of
whose elements is the sum of the corresponding row of
W, i.e., 	(i, i) =∑

j W(i, j).
Finally, we compute the spectral embedding of the

mesh by performing the eigendecomposition of the
normalized affinity matrix N. That is, when we write
λ1, λ2, . . . , λK as the K-largest eigenvalues eigenvalues
of N and e1, e2, . . . , eK as their associated eigenvec-
tors, the spectral embedding of the mesh is then rep-
resented as Y = �1/2E, where � is a K-by-K diago-
nal matrix whose elements are λ1, λ2, . . . , λK and E =[
e1 e2 · · · eK

]
. Here,Ycan be thought of as a new

coordinate matrix in K-dimensional space for the ver-
tices of the mesh. The new embedding, Y brings the
similar points closer while it pulls the dissimilar points
further apart [3]. Therefore, the clustering task in the

spectral embedding is easier and more robust than that
in the original embedding.

4. Result

Using the proposed method, we computed segmenta-
tion for a number of benchmark models. Fig. 3 shows
the result of segmentation performed on the benchmark
models using the evolvedmetrics via GCF, in comparison
with the original distance metrics. All of the results were
generated using a time step h = 100 and the total of 100
iterations.

Segmentation results were significantly improved
when the proposed GCF metrics are used compared to
the original distance metrics. From Fig. 3, it is clear that
the objects are segmented in a more intuitive way via
the utilizing of the GCF metric. For example, segmenta-
tion of the ears of the Stanford bunny was more intuitive
and perceptually reasonable when the GCF metric was
used compared to the original cases. Such an improve-
ment could also be observed from the other models. For
instance, the segmentation results of the human model
have been improved by the GCF in both the geodesic dis-
tance and the GPS distance cases. It could be observed
that the segments around the torso were significantly
improved in such a way that makes more sense with
respect to anthropometrical intuition.

In fact, the level set contours of a function under the
GCF tend to shrink down in terms of the arc length.
Therefore, the level set contours, i.e., the equidistance
levels, tend to converge to the locally shortest homo-
topic cycle on a surface under the GCF. Hence, in turn,
a similarity metric under the GCF tends to develop more
equidistance levels near the “neck” areas or the regions
with the locally minimum cross section. This, in other
words, means that the distance from a point gets rapidly
further around the neck areas and therefore, the cluster-
ing algorithm can better discriminate visually different
chunks of volumes around such areas. Therefore, for a
given similarity metric of any kind, the GCF is able to
improve the metric in a way that better conforms to the
rules and the intuitions of visual segmentation. The result
presented in Fig 3 shows the significant improvements of
the segmentation by evolving any givenmetric (Geodesic
Distance & GPS Distance) via GCF.

Lastly, in terms of computational speed, the GCF
showed a reasonable performance. For all of the exper-
iments presented in the paper, we used an Intel R© CoreTM

i7-4770 CPU 3.40GHz personal computer with 16.0 GB
RAM. The code was implemented and tested in MAT-
LAB R2016b. The computational time varied depending
on the number of vertices in the input mesh. The average
computational time at one vertex per iteration is from
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Figure 3. Comparison of the spectral segmentationmethodwith the given similarity metrics (first and third columns) and the improved
metric via the GCF (second and fourth columns).

Table 1. Average computational time at one vertex per iteration
of models with different mesh sizes

Horse_2500
vertices

Elephant_5000
vertices

Bunny_10000
vertices

Human_5000
veritices

3.123 ms 12.35 ms 27.52 ms 10.67 ms

3.123 to 27.52 millisecond as the number of vertices of
different models increasing from 2,500 to 10,000. This
result is summarized in the Tab. 1.

5. Conclusion

In this paper, we presented a novel method for the seg-
mentation of a 3D mesh that utilizes the GCF. The GCF-
inducedmetric was preferable for the segmentation tasks
in a sense that it provides a better shape-awareness for
the dissimilarity measure. In addition, even though we

demonstrated the results only on the triangular meshes,
the method can be generalized to any 3D geometry
domain, since our formulation does not assume any
particular domain. Instead, as long as there is a well-
defined differential operators (i.e., gradient and diver-
gence), our method can be seamlessly scaled to different
domains including the parametric surfaces, point clouds,
and polygonal meshes (see e.g., [5]).

Despite of the satisfactory performance of our met-
hod, it could struggle for the tasks that requires the sur-
face segmentation with respect to small ridges and val-
leys, as the GCF tends to ignore such features. In this
regard, a mathematical insight to improve our method
is to introduce an additional weight function βto the
GCF energy E(γ ). For the GCFs, the weight function acts
as a “stopping function” that makes the flow relatively
slower than the other areas. Therefore, by introducing β

composed of the terms related to the principal curvature
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values, we could improve the distance metric even fur-
ther, which will be our future work. In addition, since the
new metric possesses a good shape-awareness, a shape
descriptor that encodes the geometric characteristics into
a set of numerical values could be developed in the simi-
lar spirit of e.g., [15].
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