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ABSTRACT
Container stacking is a common activity in various industries. At a large scale, the shipping industry
stacks cargo containers, while at a smaller scale the home and office storage providers stack paper
or plastic boxes. An interesting question behind container stacking is how to efficiently move con-
tainers from one stack to another. In this paper, we investigate a remotely related question: shape
transformation between LEGOmodels.Whilemany computational algorithms have been developed
to construct LEGOmodels, the problem of constructing a LEGOmodel using bricks from an existing
model has not been explored in open literature.We propose two objectives to optimize the transfor-
mation: the movement cost and the reuse rate of LEGO bricks. Two basic approaches coupled with
three strategies are implemented to achieve shape transformation. Experiments and analysis reveal
the efficiency of different algorithms under several metrics of evaluation.
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1. Introduction

Efficiency is crucial to all kinds of physical construc-
tion and in different scenarios, the meaning of effi-
ciency varies. In cargo container stacking, the efficiency
is strongly related to the number of movements because
each move involves loading and unloading of a heavy
container using a crane. The cost comes from crane usage
and time taken to complete a job. While minimizing the
number of movements is a central objective, the effi-
ciency is also related to the use of space. A movement
sequence that requires less space is often preferred as
it increases the capacity of a ship yard. In the scenario
of providing home and office storage service, the effi-
ciency might be more related to space usage than the
number of movements because a service provider always
tries to maximize the usage of his warehouse, while the
movement of boxes is largely done by his employees (not
machines), who are paid for a fixed wage.

An interesting question behind container stacking is
the generation of motion sequences that optimize cer-
tain goals. In this paper, we investigate a remotely related
question based on LEGOmodels.We propose algorithms
that generate motion sequences of LEGO bricks so that a
new LEGO model can be constructed fully or partially
using bricks from an existing model. In this scenario, we
may consider a LEGO brick as a container and a LEGO
model as a stack of containers. Our investigation is an
attempt to address motion-sequence-generation issues
under a multi-objective framework; however, the results
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of this paper may not be directly applicable to a specific
industrial application, such as cargo container stacking.
Using LEGO models as the basis of our study has the
advantage that the scenario is well defined and is famil-
iar to a reader. The high-level strategies proposed in
this paper is potentially useful as a reference to generate
solutions to a specific container stacking problem.

LEGO is a type of popular edutainment toy. Its applica-
tion has been found in research ideas relating to software
engineering [4], rapid prototyping [14], material science
[1], and nucleic acid nanoengineering [6,9]. LEGObricks
are inherently suitable for constructing 3D shapes: they
enable diverse part combinations; they are in various col-
ors; and they can be reused; however, the complexity of
LEGO construction increases significantly with the size
of a 3D shape. Although many ways of part combina-
tion are feasible, it is difficult to build an accurate LEGO
model without step-by-step instructions.

A LEGO construction problem was proposed in 1998
[7]: Given any 3D body, how can it be built from LEGO
bricks? Nowadays, the problem is largely solved owing
to several computational algorithms [10]. These algo-
rithms mostly fall into two categories: one focuses on
interlayer connectivity and the other on structural stabil-
ity. For example, the algorithm proposed in [7] evaluated
the connectivity between bricks by heuristics, in which
a cost function was defined as the evaluation metric.
The algorithm aimed to optimize the cost and automati-
cally generate an assembly. Later, alternative optimization

© 2018 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/16864360.2018.1477670&domain=pdf
http://orcid.org/0000-0002-0933-2453
http://orcid.org/0000-0002-9153-9348
mailto:vpan@foxmail.com
mailto:chenlujie@sutd.edu.sg
http://www.cadanda.com


COMPUTER-AIDED DESIGN & APPLICATIONS 797

methods, such as an evolutionary algorithm [20] and
a cellular automata algorithm [22], were introduced to
improve to the computational speed and the generated
LEGO assembly.

More recent work focused on the balance and stabil-
ity of LEGO models [8, 13, 16, 23, 24, 29, 30]. In [16]
and [24], an initial LEGO structure was represented by
a graph; then a graph algorithm was applied to identify
structurally weak points corresponding to weak LEGO
bricks; the vicinity of these bricks were replaced by
an alternative layout to achieve stronger assembly. The
process was iteratively applied till the overall structural
strength was up to certain criteria. Luo et al. [13] used
a force-based metric to evaluate the balance condition
of LEGO bricks in terms of the force and torque they
were subject to. Weak and unstable bricks were modified
to avoid collapsing. Several real-sized objects were con-
structed to verify the force-based method. Hong et al.
[8] proposed a centroid adjustment method that can
optionally hollow the interior of a LEGO model. Struc-
tures produced by the method can stand in a particular
pose steadily. Zhang et al. [30] proposed a divide-and-
conquermethod through a concept called “pseudofloor”,
which divides a structure into components without float-
ing bricks. The components can be assembled separately
and then be connected to each other to produce the final
assembly.

All the above methods address the problem of LEGO
construction, while Pasek and Yip-Hoi [19] proposed an
interesting computer integrated manufacturing system
based on LEGO bricks. They described various compo-
nents of the system aimed at educational purposes, and
ways to assemble and disassemble LEGO models. They
even showed conceptual ideas of a gripper designed to
pick and place LEGO bricks automatically. Their work
touches upon a research topic has not been explored to
the best of our knowledge. That is how to achieve shape
transformation from one LEGO model to another. This
involves optimization strategies to minimize the steps of
transformation and to maximize the reuse rate of LEGO
bricks.

2. Related work

Shape transformation was investigated in building con-
struction as large-scale motion control systems that
applied robots to construct modular houses [12]. It was
studied as optimization strategies to control bricklaying
robots [28]. It was tightly interwoven with a relatively
new type of construction: aerial robotic construction
[5, 26], where unmanned aerial vehicles (UAVs) car-
ried bricks from palettes to designated positions to build
structures based on predetermined sequences. It was also

touched upon in research in swarm intelligence [25],
where a swarm of robots assembled structures by mim-
icking social animals such as termites. In these studies,
shape transformation was limited to producing a par-
ticular shape from material stock. Efficiency in motion
control is the main concern, while reusability is not.

Shape transformationwas also investigated in depth in
the field of modular self-reconfigurable robots (MSR) [3,
15, 27]. AMSR system often consists of many equal-sized
modular robots, which can be reconfigured into different
86 shapes to achieve various functions. Shape transfor-
mation is a key factor for the evaluation of versatility of
a system. During transformation, a governing algorithm
determines how and where each module should move.
The algorithm may be hosted on a central station, or be
embedded in each module’s firmware. Motion sequence
planned by the algorithm is affected by sensor data, e.g.
positions, collected from each module.

An important idea to achieve shape transformation in
MSR was reported by Pamecha et al. [17] and Chiang
and Chirikjian [2]. Firstly, they defined a few basic moves
that could be easily achieved by each module. Secondly,
they recursively simplified a complex transition from a
start to an end configurations bymany intermediate ones.
Their recursive algorithm came to a stop if the transition
between each two consecutive configurations can be real-
ized by the basic moves. Then, the Hungarian method
[11] was used to obtain optimally matched module pairs
between two configurations. This approach is generally
applicable to transformingmany kinds of shapes, and has
been applied to 2D hexagon [17] and 2D lattice [2].

Pan et al. [18] applied the Hungarian method in a
large-scale shape transformation system based on pick-
and-place (PnP) realization. The time in completing a
task in the above assignment problemwas associatedwith
the cost of moving a cube, the basic building block of
a rasterized structure. Physical constraints were intro-
duced to the system to ensure that cubes can only be
picked from and placed on the top surface of a structure.
The constraints affected how the Hungarian method was
applied in generating a feasible PnP motion sequence.
The authors compared several strategies of motion plan-
ning and proposed a heuristic framework in obtaining
a near-optimal solution under arbitrary physical con-
straints. As in studies of MSR, the reusability issue was
not fully investigated because both robot modules and
cubes are treated as identical units; hence, the reuse rate
is simply the volume ratio between two different shapes.

When it comes to shape transformation of LEGO
models, the problem exhibits multiple objectives. Min-
imizing the number of steps of motion remains impor-
tant, while maximizing the reuse rate becomes a new
meaningful metric. This paper presents optimization
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strategies that consider both objectives in achieving
shape transformation.

3. Principle

A LEGO package has bricks in various shapes and col-
ors. To facilitate the presentation of the principle, we used
seven different shapes, as shown in Figure 1, and one
hundred and fourteen colors. PnP of a LEGO brick is
subject to physical constraints. A brick fully or partly
under other bricks cannot be picked; a brick discon-
nected from a partially built model cannot be placed as it
would be hanging in the air. Figure 2 shows an additional
constraint. Although the 2-by-2 yellow brick is on the
top surface, it is completely surrounded by green bricks;
while it is not impossible to pick the yellow brick without
moving the green one, it is almost certain that additional
PnP actions are needed; for example, to place another 2-
by-2 brick on top of the yellow one and try to pull out the
two bricks together. To simplify the calculation of PnP
steps, bricks that cannot be directly picked are assumed
to be not movable under their current status. Hereafter,
we refer to bricks that satisfy the physical constraints as
movable bricks.

3.1. Basic approaches

Two basic approaches are proposed. The first approach
assumes that a source and a target LEGOmodel are avail-
able. A PnP motion sequence to transform the source to

Figure 1. Seven different-shaped LEGO bricks used in this study.

Figure 2. A fully surrounded brick, the 2-by-2 yellow brick, is not
movable.

Figure 3. Two basic approaches: rigid transformation (RT) and
flexible transformation (FT).

target is generated by an algorithm. The second approach
assumes that the source LEGO model is available while
the LEGO representation of the target is not fixed but is
created from an interim voxelizedmodel during transfor-
mation. Figure 3 depicts the difference between the two
approaches: rigid transformation (RT) and flexible trans-
formation (FT). In both approaches, the source model is
disassembled from top to bottom and the target model
is built from bottom to top, layer by layer. In RT, with-
out loss of generality a variant of the algorithm described
in [8] is applied to generate both LEGO models; at each
layer, large LEGO bricks are used with priority. In FT,
movable LEGO bricks on the source model are used with
priority. When required bricks are unavailable, they are
obtained from a stock that is assumed to have unlim-
ited supply of all types of bricks; then large bricks are use
with priority just as in RT. The motivation behind FT is
to increase the reuse rate; however, the side effect is that
the target model generated by FT has larger number of
LEGO bricks and is less stable than that by RT. While we
are not concerned with the stability issue in this study, we
will evaluate the cost of shape transformation associated
with the number of LEGO bricks.

3.2. LEGO generation

The most common format of a 3D object is a trian-
gle mesh model. When a LEGO representation is to be
generated from a triangle mesh, at least two steps are
needed. Firstly, the triangle mesh is converted to a ras-
terized model made of identical voxels. Then, the voxels
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are grouped into LEGO bricks, which is the key step in
LEGO generation. The algorithm described in [8] gener-
ates various possible voxel groups (i.e. LEGO bricks) at
each layer by heuristics, and applies a scoring system to
determine the final bricks. The scoring system is not fixed
and can be changed according to different situations. We
propose the following scoring system to generate LEGO
models.

In the RT approach, the score of a brick b is calculated
by

S1 =
{
Ab, Bottom layers
Nc, Other layers

(3.1)

where Ab is the area of the brick (e.g. Ab = 4 for a 2-by-
2 brick), and Nc is the number of bricks at a lower layer
that b is connected to. LEGO generation goes from bot-
tom to top. A bottom layer does not have a layer beneath
it; this includes a base layer and the lowest layer of an
overhung section. On a bottom layer, a large brick gets
a high score; on upper layers, a brick with many connec-
tions gets a high score. If there is a tie (e.g. a 2-by-2 or
a 1-by-4 brick on the bottom layer), one of the bricks is
selected randomly to be generated.

In the FT approach, the source model is generated in
the same way as in RT. For the target model, the score of
a brick b is calculated by

S2 =
{
NbS1, Nb > 0
Nc/V , Nb = 0

(3.2)

where Nb is the number of movable b type bricks cur-
rently available from the source, and V is the number
of voxels in the target model. Nb works as a weighting
factor that biases towards a type of brick that has abun-
dant supply from the source. If the b type is unavailable
from movable bricks (Nb = 0), its score is S1/V , effec-
tively the same as switching back to Eqn 3.1. Dividing
V ensures that movable bricks always get a higher score
than unavailable bricks.

Based on the calculated scores, voxel groups are con-
verted to LEGO bricks in a score-descending order. In
general, LEGO models generated by Eqn. 3.1 is more
robust, whereas the target models generated by Eqn 3.2
would make use of more bricks from the source model.

3.3. Strategies

Under each approach, three strategies were investigated,
as illustrated in Figure 4. In Strategy 1, the sourcemodel is
disassembled completely and the LEGO bricks are put to
a buffer; then the target model is built using bricks from
the buffer and a stock with the buffer used by default. If
certain brick cannot be found in the buffer, it is obtained

Figure 4. Three strategies under each approach. Strategy 1: Dis-
assemble the source model completely to a buffer; then build the
target from thebuffer anda stock. Strategy2: Build the target from
the source, a buffer (disassembled bricks from the source), and a
stock. Strategy 3: Build the target from the source and a stock. The
size of arrow represents its priority to move.

from the stock, which can supply of all types and colors
of bricks.

In Strategy 2, movable bricks from the source model
are directly picked and placed on the target model. If
some required bricks on a target layer do not havematch-
ing movable bricks on the source, an initially empty
buffer is searched for such bricks. If they exist, PnP con-
tinues from the buffer to target; otherwise, one layer of
bricks is disassembled from the source and placed to the
buffer so that a new layer can be uncovered on the source
model. If movable bricks on the new layer satisfy the
requirement of the target layer, PnP can resume from the
source to target; otherwise, another layer is disassembled
to the buffer; so on and so forth till there is no brick on
the source. If that happens, a stock will be used to provide
a required brick for the target. Then, bricks are moved
from the buffer and stock to the target, just as in Strategy
1. In other words, Strategy 2 tries to move bricks from
the source to target directly; if stuck, it disassembles some
bricks hoping that newly uncovered bricks can be used
for transformation; but if no suitable one is found even
when completely disassembling the source, the stock will
be used.
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In Strategy 3, no buffer is involved. Movable bricks are
transported from the source to target; if no suitable brick
is available from the source, the stock will provide one.
So on and so forth till the target model is finished.

3.4. Evaluationmetrics

Coupling the strategies with the basic approaches, we
have six algorithms for shape transformation of LEGO
models: FT1, FT2, FT3, RT1, RT2, and RT3. To evalu-
ate the algorithms, three metrics are applied: cost (C),
reuse rate (R), and overall performance (P). The cost is
defined as the number of PnP needed to build the target
model. Each PnP action is associated with a cost value of
1. (The cost defined here is not the value of a brick. Asso-
ciating the cost to a PnP action reflects the motivation
of this study: to simulate PnP of a container in container
stacking.) This includes PnP actions on one LEGO brick
from source to buffer, from source to target, from buffer
to target, and from stock to target. Low cost suggests high
efficiency.

The reuse rate is defined as

R = Nr

Nr
(3.3)

where Nr is the number of bricks on the target model
that are originally from the source, and Ns is the num-
ber of bricks on the source model. Nr includes the bricks
moved directly from the source and those moved indi-
rectly through a buffer.

The overall performance is defined as

P = V
R
C

(3.4)

where V is the number of voxels in the voxelized target
model. P increases with the reuse rate and decreases with
increasing cost. V puts the P metric on a relatively nor-
malized scale against model size. It is not ideal to replace
V with the number of LEGO bricks because different FT
algorithms do not produce the same number of bricks on
the target model, while V is same in all algorithms given
a fixed model size.

4. Results and discussions

Eight triangle mesh models, as shown in Figure 5, were
converted to LEGOmodels and used to test the proposed
algorithms. Three types of tests were conducted. In the
first two tests, performances of the algorithms were eval-
uated by the cost, reuse rate, and overall performance
metrics without considering the color information. In the
third test, the color information was incorporated, and a
sequence of transformation was visually examined.

4.1. Test 1: Transformmodel A to othermodels

Model A in Figure 5 was transformed to the other seven
models at a particular resolution which produced an
average of 2500 voxels on each model. (A typical vox-
elization process cannot guarantee an exact number of
voxels on a triangle mesh model but this does not affect
the test.) LEGO models were generated using methods
described in [8]. Figure 6 shows the results of the algo-
rithms under different performance metrics. The three
strategies exhibit a descending order of cost as expected.
Strategy 1 always disassembles the source model to a
buffer, thereby having the highest cost. Strategy 3 does
not use the buffer; hence, its cost is exactly the number

Figure 5. Triangle mesh models used to test the algorithms. The models were obtained from Reiner “Tiles” Prokein (http://www.
reinerstilesets.de/graphics/lizenz) [21].

http://www.reinerstilesets.de/graphics/lizenz
http://www.reinerstilesets.de/graphics/lizenz
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Figure 6. Performances of the algorithms in transforming model A to other models. (a) Cost, (b) reuse rate, and (c) overall performance
of transformation.

of LEGO bricks on the target model. Comparing FT3
and RT3, we see that the number of bricks on the target
generated by the two algorithms is different. In RT, the
LEGO target was generated before transformation, and
large bricks were used with priority. In FT, the LEGO tar-
get was generated on the fly, and available bricks from the
source and buffer were used before resorting to the stock;
therefore, each FT algorithm produces different number
of bricks on the target, and they use more bricks than the
RT algorithms.

Intuitively, Strategy 1 and 3 should produce the high-
est and lowest reuse rate respectively.While this is indeed
reflected in the trend of FT and RT respectively in Figure
6(b), we see exceptions in model A-to-E and A-to-G
transformations by FT. The reuse rate of FT2 is slightly
higher than that of FT1. This is caused by the different
number of bricks in the targetmodel generated by the dif-
ferent FT algorithms. FT1 has the source completely dis-
assembled to the buffer; somany large bricks are available
when the target is generated on the fly. FT2 exposes mov-
able bricks layer by layer; hence, the available large bricks
at any point of time are not that many; on-the-fly target
generation is forced to use smaller bricks. Consequently,

more bricks are used in FT2 than those in FT1, which
makes the reuse rate of the former marginally higher
than that of the latter. We also see that the reuse rate of
a FT algorithm is higher than that of the correspond-
ing RT algorithm. Being flexible in target model gener-
ation, FT naturally makes use of more bricks from the
source than RT; however, these bricks tend to be smaller
than the best-fit large bricks, resulting in weaker LEGO
structures that have internal sliding planes. Overall, FT
increases the reuse rate by compromising the structural
strength.

The overall performance, shown in Figure 6(c), mea-
sures efficiency of the algorithms. In the FT series, FT3
stands out as it achieves similar reuse rate as FT1 and
FT2 at a much lower cost. This suggests that for on-the-
fly target generation, it is not efficient to involve a buffer
because a brick is very likely to be reused given only seven
types of bricks without considering color (Figure 1). In
theRT series, RT2 is better thanRT3onmodelA-to-D,A-
to-E, A-to-F, and A-to-H transformations. This suggests
that if the target bricks are fixed types, making moderate
use of a buffer produces a good balance between the cost
and reuse rate.
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Figure 7. Average performances of the algorithms in transforming eight models to each other. (a) Cost, (b) reuse rate, and (c) overall
performance of transformation.

4.2. Test 2: Transform eightmodels to each other

This test was conducted at seven resolutions, i.e. seven
average model sizes, from 300 to 4500 voxels per model.
The eight models were transformed to each other and
there were 7 × 8 = 56 transformations at each model
size. Figure 7 shows the average results over the 56 trans-
formations. It is obvious from Figure 7(a) that the cost
increases linearly with the model size. Strategies 1, 2,
and 3 have a consistent descending cost at a particular
model size. The average of these transformations reveals
the inherent cost associated with each strategy. A FT
algorithm has a higher cost than its corresponding RT
algorithm because FT produces a target model made of
more bricks.

Figure 7(b) shows that Strategies 1 and 2 produce very
similar reuse rate, suggesting that completely disassem-
bling the source upfront (Strategy 1) is not worthwhile; it
is better to do partial disassembly to save some cost while
maintaining a high reuse rate.When Strategy 3 is coupled
with the FT approach (i.e. FT3), the reuse rate is actu-
ally quite high, comparable to the best of RT algorithms;

however, the reuse rate of RT3 is significantly lower than
that of RT1 and RT2. This implies that when the bricks
that will be used to construct the target model have been
determined previously, disabling the buffer makes it dif-
ficult to find matching bricks from the source, and on
average more than half of the target bricks would come
from the stock. It is also seen from the figure that the
reuse rate is not that sensitive to the change of model size
above 1700 voxels per model. Smaller model size (fewer
than 1700 voxels) does reduce the reuse rate because the
reduced brick samples in smaller models make it harder
to find matching bricks.

In Figure 7(c), statistics of the overall performance
shows that FT3 is much better than other algorithms.
Within RT algorithms, RT2 is statistically the best. Note
that the overall performance is only an empirical metric.
Different scenarios may emphasize different evaluation
criteria. It may be possible that in certain scenario the
cost metric must be redefined, and the relative perfor-
mance of the algorithms will vary from our results; nev-
ertheless, the contribution of this study is in framing the
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Figure 8. Typical FT sequences between model A and H.

LEGO transformation problem as a multi-objective opti-
mization process, in which different strategies should be
explored to achieve some balance between objectives.

4.3. Test 3: Transformationwith color information

This test incorporated the color information of each
triangle mesh model when building the corresponding
LEGOmodel. A legitimate match between a source and a
target brick should be the same color as well as the same
shape. Due to the fact that more than one hundred colors
were used, finding a match was much less likely than in
Tests 1 and 2 where the color information was ignored;

however, in our implementation of the algorithms, an
interior brick can take on any color; only exterior bricks
must find exact color match. Consequently, although the
average reuse rate in this test is lower than that in Tests 1
and 2, it is not down to zero.

Figure 8 shows typical FT sequences between two
models. FT1 first disassembles the source to a buffer, dis-
played next to the stock, at a cost of 4502 PnP. Then
it builds the target using bricks from the buffer and
stock. Interior bricks of the target model can be of any
color, while exterior bricksmust be the surface color. FT2
moves the source bricks to the buffer only if there are no
suitable ones. The reuse rate of FT2 are about the same
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Figure 9. Typical RT sequences between model A and H.

as that of FT1. FT3 does not use the buffer. The source is
only partially disassembled when the target is fully built.
FT3 produces the lowest cost and reuse rate.

Figure 9 shows RT sequences between the same two
models. As both models contain many white surface
bricks, the reuse rates of RT1 and RT2 are relatively high,
above 59%. In RT3, the interior of the target contains
many black bricks. We have used them to indicate bricks
obtained from the stock and placed on the interior of the
target. (They do not have to be black; any color is fine.)
Comparing FT3 with RT3, both do not use the buffer,
while FT3 has the liberty to build the target based on
available bricks; therefore, it does not use the stock to

provide many interior target bricks and its reuse rate is
much higher than RT3.

5. Conclusion and future work

Shape transformation of LEGO models has been inves-
tigated as a multi-objective optimization problem. Two
basic approaches have been proposed. The first approach,
FT, allows for on-the-fly generation of a target model
based on available LEGO bricks from a source model.
The second approach, RT, requires both the source and
target models to be generated before transformation.
Three strategies are adopted under each approach, which
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leads to six algorithms. A cost, a reuse rate, and an over-
all performance metrics have been applied to evaluate
the algorithms. Strategy 1 produces the highest cost and
reuse rate on average. Strategy 3 produces the lowest lost
and reuse rate. Strategy 2 achieves a balance between
Strategies 1 and 3. It gives the best overall performance
in RT algorithms. In FT, owing to on-the-fly target gen-
eration, Strategy 3 obtains a reasonably high reuse rate at
a low cost; hence, it outperforms the other strategies in
overall performance.

FT achieves better results than RT due to flexible
model generation; however, this has the disadvantage of
producing relatively weak LEGO structures, which have
internal sliding planes. FT also tends to produce a model
made of more bricks than RT.

In this study, we only used one brick as a unit of PnP.
In practice, sometimes a group of LEGO bricks can be
reused as a whole. Future work along this direction may
look into novel LEGO model generation methods that
tend to producemodularized LEGOmodels. Then, shape
transformation may be achieved at a modular level, not
at a single brick level. Successful implementation of such
modular-oriented methods would lead to highly efficient
LEGO transformation algorithms.
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