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ABSTRACT

This study proposes that a “predictive value” obtained through neural network learning be used
instead of the “simulation value” in judging whether design goals have been met, and thereby
enhance the optimization ability of Green BIM in the design decision-making process as a whole.
There are inevitably discrepancies between Green BIM ‘s simulated performance data and the per-
formance data obtained from the actual completed environment, neural network learning can be
used in conjunction with training to obtain a predictive ability, and the resulting predictive values are
more representative of actual performance than simulation values. In order to construct a simulated
adaptive building facade based on light environment performance, this project plans to conduct the
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following six steps in a two-stage process:

Stage 1:data collection, learning algorithm, achieving predictive ability: (1) BIM modeling, (2) BPA
performance simulation, (3) production of an actual structure and illuminance measurement, (4) and
collection of sample data in order to perform training in supervised neural network learning.

Stage 2: After obtaining a predictive ability, finding an optimized proposal and implement-
ing automated control: (5) Setting targets in order to find an optimized adaptation plan, and (6)

implementation of script-oriented automatic control.

1. Motivation and goal

Green building information modeling (Green BIM) inte-
grated design and analysis procedures have become an
important tool for architects and design teams wishing to
select and improve design proposals. Nevertheless, when
using building performance analysis (BPA) software to
predict building performance in actual environments,
there are inevitably discrepancies between simulation
data obtained from the software and measurements in the
actual environment (Fig. 1), which has caused the soft-
ware’s simulation performance validity to be questioned.
This project therefore seeks to use supervised learning
by a neural network to reduce this gap, and enhance the
optimization ability of Green BIM.

2. Literature review

This study addressed the subjects of Green BIM, con-
struction technology, BIM usage, facility management
mechanisms, and neural network supervised learning.
Green BIM involves building information modeling
(BIM) and building performance analysis (BPA), and
these two methods have been used extensively in sus-
tainable building design. Eddy Krygiel's and Bradley

Nies’ book “Green BIM: Successful Sustainable Design
with Building Information Modeling” first proposed the
Green BIM concept in 2008, and explained the integrated
application of BIM and BPA to promote the development
of sustainable design [15]. “McGraw-Hill Construction,
2010” points out that Green BIM can greatly enhance the
results of sustainable design through the application of
BIM tools [18].

BIM involves the two subjects of building informa-
tion modeling and building information management.
The use of BIM encompasses the entire building life
cycle, including building design, construction drawing
production, construction, operation management, and
even waste recycling. The term BIM” originated from
the Autodesk Company’s use in 2002 of the building
information modeling concept to explain the function
and design of its AEC (architecture, engineering, and
construction) products [1]. Nevertheless, in his 1999
“Building Product Models,” [10], Prof. Chuck Eastman
defined building product model concepts, technologies,
and standards, which set the stage for BIM. Eastman’s
2008 “BIM Handbook” defined BIM and related tech-
nologies, and provided BIM applications and illustrative
cases for various types of participants (project owners,
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Figure 1. Discrepancies consistently exist between performance simulation data and actual measurement data.

project managers, designers, engineers, and contractors,
etc.) [11].

While BPA and BIM consist of two different tech-
nologies, they have become increasingly integrated. BPA
[2], which is also known as building performance sim-
ulation (BPS), involves the use of computer software
to predict building performance and output visualized
images, data, statistical analysis charts, and forms result-
ing from simulation. BPA can help users to understand
the performance of their design proposals, which will
facilitate design decision-making and provide a basis for
the continuing optimization of design proposals. BPA
is an effective, scientific, internationally-acknowledged
tool [21]. Early modeling tools and performance sim-
ulation tools were independent, and performance sim-
ulation tools usually consisted of two parts, where the
first part was a simulation engine, which included for-
mulas and procedures, and the second part consisted of
a user interface, which facilitated the input of parame-
ters and data and display of results, and handled various
user needs (Fig. 2) [17]. Basic building simulation work
began in the 1960s and 70s, and focused on building
cooling performance, specifically thermal load calcula-
tions and energy consumption analysis [16, 8]. By the
1980s, researchers performed analytical verification and
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Figure 2. General framework of performance simulation tools.
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Figure 3. Integration of BIM and BPA technologies.

experimental testing in order to improve simulation tools
[4]. The focus of performance analysis efforts shifted
from energy consumption to many other building per-
formance characteristics during the early 1990s [3], and
integrated modeling was used to assess heat and mass
transfer, air flow, and visual and acoustic performance.

In recent years, BPA has gradually come to be seen
as part of integrated design procedures, and is generally
integrated with a BIM platform. For instance, Autodesk’s
BIM software (Revit) includes a built-in BPA function
(such as energy and lighting analysis) menu. After per-
forming modeling with BIM software, designers can also
transmit geometric and non-geometric data to simula-
tion engines in the cloud (such as Green Building Studio),
and the visualized results of analysis will be transmitted
back to the BIM software [12]. Although the results of
analysis by simulation engines required the use of third-
party user interface software (such as Design Builder) for
display in the past, this role is gradually being assumed
by BIM software platforms (such as Revit) (Fig. 3).

BPS is based on hypothetical models of real situ-
ations, and provides approximate values. As a conse-
quence, discrepancies inevitably exist between the results
of performance simulation and the real data, which has
caused the validity of the software to be extensively



questioned. Nevertheless, the use of BIM models to mon-
itor actual building operating performance during the
operating management stage can provide environmen-
tal and building performance data that can be used to
improve actual building management and enhance build-
ing performance. If this data could be used for compara-
tive purposes, and specifically to revise the predictive val-
ues obtained during the design stage, it should be possible
to improve the predictive accuracy of Green BIM [5]. In
the following sections, this project employs supervised
learning by a neural network to reduce BIM’s predictive
discrepancy.

3. Theory and method

To summarize the foregoing literature, Green BIM
emphasizes the use of BIM has a basic design tool
from the earliest stage of the design process. Respond-
ing to local climatic conditions, BPA can be used in the
decision-making cycle consisting of design and analysis
steps to achieve the continuing optimization of design
and generate an optimized proposal consistent with envi-
ronmental performance requirements [7]. Nevertheless,
when an optimized proposal derived using Green BIM
is realized under real-world conditions, the simulation
values obtained by the software invariably have discrep-
ancies with the actual measured environmental perfor-
mance. Taking light environment adaptation as an exam-
ple, when working surface illuminance value with win-
dow opening ratio of X% derived by a simulation tool is
Y’ lux, and the actual measured illuminance value in a
real environment with a similar window opening ratio is
Y lux, a discrepancy will exist between Y” and Y. (Fig. 4)

Neural network learning roughly includes the three
categories of supervised learning, unsupervised learning,
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Figure 4. Discrepancies typically exist between simulation val-
ues and actual measured performance data in Green BIM.
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and reinforcement learning. This study employed super-
vised learning with a back propagation network (BPN)
in an effort to reduce the data discrepancy; the principles
and theory of this process are as follows:

Supervised learning is an inferential process in which
the corresponding functions are derived from the inputs
and outputs for given examples. For instance, the net-
work will generate a function h approximating f from
a group of examples of f. An example consists of a set
(x, f(x)), where x is the input, f (x) is the output of the
function applied to x. Function h is termed the “hypoth-
esis,” and the set of all possible hypotheses is termed the
“version space.” All hypotheses in the version space must
be consistent with examples. Supervised learning takes
prior knowledge as the basis for a current best hypothesis
search in the version space, and this consists of a search
for hypothesis h best approximating the target function
f. The process of searching for function f or its optimal
hypothesis in a version space is known as learning or
training [14].

In a basic neural network such as the one shown
in Fig. 5, data undergoes four processing stages from
input to output, including (1) input, (2) aggregator func-
tion (sometimes an activation function must be added
to make the aggregator function more sensitive), (3)
transfer function, and (4) output. In addition, the sys-
tem estimates the cost of the output value and desired
value, calculates the error, and adjusts the weight (wn)
in accordance with the error. The process that begins
from the time the neural network starts revision until
the error is less than a certain preset threshold value
is termed learning, training, or adaptation. Supervised
learning refers consists of constantly revision of the net-
work’s transmission weights to achieve consistency with
the expected value. In the training process, weights are
adjusted in order to reduce the discrepancy between the
network’s output values and the target output values, until
the difference is less than a certain threshold value, at
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Figure 5. A multilayer back propagation network (edited by
Principe, 2000 [20]).



834 S.-Y.CHEN

which point the process stops [6]. In principle, a good 4. Experimental verification
hypothesis must be generalized well, which will allow the
system to make correct predictions concerning unknown
examples [20].

Inaccordance with the foregoing neural network learning
characteristics and steps, this study verified the feasibil-
ity of this method in a six-step, two-stage experimental
process. (Fig. 6, 7)

Data
Callection . . . .
A. Stage 1: data collection, learning algorithm, acquiring
Design Learning predictive ability (Fig. 6)The steps are as follows
(BIM) Algorithm 1. BIM modeling'
Revit was used in modeling, and Dynamo
ok plug-in software was used to control the Revit
Simulation . : ; ; :
& Analysis ﬁdawT i model in ad]ust.lng the fagade window open-
(BPA) TRROE Target ing ratio X% (Fig. 8).
A
parigp it Y- iu) fopening rao s, ¥ lux} 2. BPA performance simulation:
l_ — — — | tearningalgorithm ( 2 _ | cppr:::)l::f . .
(ANN) The BIM model was imported in order to per-
form analysis of the performance of the light
Computer (Virtual envi ¢ Physical envi Automati . . .
SEAE IR SR Smhataniname A environment. The Revit model was output in
gbXML format to Ecotect for simulation of
working surface illuminance, and the simu-
Figure 6. Stage 1. lated illuminance value (Y’ lux) was obtained
from an exported text file. The latitude and
Bata longitude in this trial consisted of 24.1638,
Collection 120.6471, and the date of the simulation anal-
ysis was December 25. The four red dots in
:!ean?ti:s Fig. 9 (sp1-sp4) represent the simulated illu-
e minance value (Y’ lux) at different points in
— time. The recorded illuminance values for the
dictive .
(opering ratio X%, ¥* ux) start of each hour and 30 min. past each hour
T — were used as the training set input values (left,
& Analysis Prediction Serting Fig. 10), while the recorded data for 15 min.
Gl Target and 45 min. past each hour were used as the
Hpsmp i gLasTRETie testing set input values (right, Fig. 10).
Optimized
HiErGE) 3. Production of an actual structure and illuminance
measurement
Computer {Virtual envircnment) * {Physical environment) LTSRS
; Coptret The actual structure was produced and used
in accordance with the BIM model. Dynamo
Figure 7. Stage 2. was linked with the plugins Firefly and

Figure 8. Revit modeling using Dynamo plug-in software to adjust the facade window opening ratio X%, drawn by Yen-Hsuan HO.
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sp3, sp4
spl, sp2

T 53525 5.

Time spl sp2 sp3 spd
7:00 561 573 566 583
7:30 1332 1346 1408 1440
3:00 2767 2789 2036 2960
3:30 3955 3991 4256 4330
9:00 4987 4976 5347 5389
9:30 5442 5436 6003 6038
10:00 2371 2389 2887 2908
10:30 2220 2249 2691 2738
11:00 2009 2047 2425 2532
11:30 1836 1890 2251 2307
12:00 1654 1740 1988 2100
12:30 1463 5102 1772 1819
13:00 1316 1399 1600 1690
13:30 1150 1205 1396 1457
14:00 1016 1058 1238 1289
14:30 889 9344 1059 1152
15:00 737 778 899 955
15:30 585 611 709 150
16:00 422 438 517 546
16:30 259 271 280 301
17:00 110 115 135 143
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Figure 10. Exported text file; acquired simulated illuminance values (Y').

Arduino, and the window opening ratio (X%)
was entered into Arduino to drive and con-
trol the adaptive building fagade in the actual
structure, and a light meter was used to mea-
sure the actual illuminance of the working
surface. The latitude and longitude at actual
structure was the same as that of the simu-
lated location, and the date was also Decem-
ber 25. The four red spots (rp1-rp4) in Fig. 11
represent the actual measured illuminance at
different points in time. The recorded illumi-
nance values for the start of each hour and
30 min. past each hour were used as the train-
ing set input values, while the recorded data

spl

720

2110
3369
4500
5341
2365

sp2 sp3 spd

726 759 1777

2114 2208 2251
3393 3613 3658
4534 4831 4875
5368 5761 5815
2473 2865 2980|

for 15 min. and 45 min. past each hour were
used as the testing set desired value (blue
background, Fig. 12).

4. Collection of sample data, implementation
supervised learning training, acquisition
predictive ability:

Collected BPA light environment simulated
BPA data was used as the input values, and
the measured illuminance values from the
actual structure served as the desired val-
ues. After implementing supervised learn-
ing training, the neural back propagation

of
of
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network acquired predictive ability, and was
able to predict the approximate Y” (predictive
values) from the Y’ lux (simulation values).
The following steps were employed when
using neural network software to perform
learning from the sample data:

(1) This study employed NeuroSolution soft-
ware [19], and opted to use a multilayer
back propagation network (BPN) as the
learning algorithm. The training set and
testing set were both selected from the
sample data. (Fig. 13)

(2) Definition of the input values and desired
values in the rows and columns of the

training.
(3) Definition of the cross validation data set
percentage: 20% in this example. (Fig. 14)
(4) Definition of the transfer function.
(5) Training set learning. (Fig. 15)

] A T ———
| Time pl 2 p3 4
7:00 59 65 90 84
: 7:30 337 352 471 454

500 940 1006 1302 1232

8:30 2440 2090 2920 3180

19:00 2460 2100 3510 4070

Figure 12. Actual illuminance value (Y).
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Figure 14. Setting of the cross validation data set percentage.

(6) After acquiring predictive ability, the sam-
ple data in the testing set was used to per-
form validation. The left side of Fig. 16
shows the predictive value of Y”, and the
right side shows the actual measured value
of Y.

(7) It was confirmed that the network sys-
tem had learned from the sample data and
possessed predictive ability. In the table
below, the values with a blue background
comprise the testing set, and the absolute
value of the predictive value (apn) minus
the measured value (rpn) was consistently
less than the simulation value (spn) minus
the measured value (rpn). For instance,
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at time 0715, 220 <568, at time 0815,  B. Stage 2: Setting of targets in accordance with pre-

263 <1579, and so on. This verified that diction, finding an optimized adaptation plan, and
all predictive values Y” were far closer to performing automated control (Fig. 7) The following
the measured value Y than the simulation steps were employed:

value Y’ (Fig. 17). 5. Finding an optimized adaptation plan:

File Edit Alignment Tools View Window Help
BarChart DataWriter MatrixView CrossVal  Training Testing I

M & m =5 = - N

Figure 15. Training set learning.
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Figure 16. Comparison of predictive value Y” and actual value Y.
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Figure 17. Comparison of training set and testing set data.
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Table 1. CNS indoor illuminance standards [9].

llluminance Living room Studio Children’s room

2000 ~ 1000 © Handicrafts

1000~750 (@ Sewing

750 ~ 500 © Reading @ Makeup  ®© Writing © Homework
© Telephone use © Reading @© Reading

After the system acquired predictive ability,
it was able to use the predictive value Y”
as its target setting conditions and find an
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Figure 18. Firefly plugin driving Arduino IED (source: Firefly, 2016 [13]).

optimized adaptation plan. In other words, in
the future, it will only be necessary to input
a simulation value set as the testing set in
the trained neural network, and the network
will be able to obtain the corresponding pre-
dictive values. As for setting targets, taking
the light environment as an example, illumi-
nance levels can be set according to a space’s
planned uses and activities referring to CNS
illuminance standards (Tab. 1). For instance,
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Figure 19. System design.



the function of the location of the actual
measurements was designated as a “studio,”
which had the uses of reading and writing. As
aresult, the appropriate illuminance scope for
working surfaces within the space was set as
500-1000 lux. The window opening ratio X%
and predictive value Y in the adaptation plan
had to satisfy this target setting scope.

6. Implementation of script-oriented automatic con-
trol:

In accordance with the parameters of the
optimized proposal, Dynamo relied on link-
age with the Firefly and Arduino plugins
to perform script-oriented automatic con-
trol driving the adaptive fagade elements of
the actual structure. This system operated in
cyclic fashion, and enhanced environmen-
tal quality by responding to environmen-
tal changes employing adaptive mechanisms.
The figure below shows Dynamo employ-
ing the Firefly plugin to send and receive
data, and the embedded control microproces-
sor (Arduino IED) implementing the physical
model and sending script implementation to
the operating end [13] (Fig. 18).

5. Conclusions and recommendations

BPS simulation values are approximations of the real
values. The greater the validity of Green BIM, the bet-
ter it can discover problem early in the design stage,
enabling the proposal of precise decision-making strate-
gies and dramatic reductions in construction and oper-
ating costs. This study focused on the empirical veri-
fication of the use of supervised learning involving a
neural network to reduce the discrepancy between pre-
dictive and actual values, and determine the feasibility of
this approach to enhancing the validity of Green BIM.
This study further applied supervised learning to sample
data representing a certain period of time, and desig-
nated inputs and expected outputs. In theory, the longer
the time learning from sample data, the better the pre-
dictive values should be; further research accompanied
by long-term observations will be needed to verify this
point.

In accordance with the foregoing theory and method,
a six-step, two-stage process was employed to verify the
optimization strategy in a virtual environment, construct
an adaptive mechanism based on the light environment
in a physical environment, and perform script-oriented
automated control. The completed system was compiled
as shown in Fig. 19. This system enables design and anal-
ysis work during the initial stage of Green BIM to be used
in conjunction with environmental data during the oper-
ating management stage, which can boost the validity
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of government through the use of environmental data
records and feedback.

In addition, BPA is gradually being considered part
of integrated design procedures, and is increasingly inte-
grated with BIM platforms. A BIM platform (Revit) can
already use a lighting analysis plugin to perform analysis
of natural lighting and visualization of illuminance. How-
ever, this plugin lacks a numerical output function. The
Ecotect software used in this study was withdrawn from
use in March 2015, and illuminance analysis could be
performed only by exporting data from the Revit model
in gpXML format to Ecotect, which cannot be consid-
ered a fully-integrated part of the BIM platform. In the
future, if lighting analysis plugins can add a numerical
output function, this will facilitate the convenient gen-
eration of predictive value and enable script-oriented
automatic control. In this way, the integrated light envi-
ronment adaptive capability of Green BIM will become
increasingly accurate and effective.
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