COMPUTER-AIDED DESIGN & APPLICATIONS
2018, VOL. 15, NO. 6, 852-862
https://doi.org/10.1080/16864360.2018.1486961

(onpiter: fidedlerjgn Taylor &Francis
p— —— Taylor & Francis Group

'.) Check for updates

Fast and cross-vendor OpenCL-based implementation for voxelization of

triangular mesh models

Mohammadreza Faieghi ©2, O. Remus Tutunea-Fatan

b and Roy Eagleson ©®¢

aBjomedical Engineering, Western University, Canada; ®Mechanical and Materials Engineering, Western University, Canada; “Electrical and

Computer Engineering, Western University, Canada

ABSTRACT

As the open standard for parallel programming of heterogeneous systems, OpenCL has been used
in this study in the context of a particular and intensive computing task, namely the voxelization of

KEYWORDS
OpenCL; Voxelization;
GPGPU; GPU Computing

tessellated objects. For this purpose, OpenCL platform has been utilized to develop a parallelized
voxelization algorithm that relies on a fast and efficient triangular mesh facet/cube overlapping test.
The extensive numerical tests conducted with heterogeneous hardware configurations on geomet-
ric objects of varying complexities, mesh/domain sizes, and voxel resolutions suggest that up to
99.6% or 260 times decrease in the computation time can be obtained when GPU- or CPU-based
parallelized techniques are used instead of the conventional single-thread CPU approach. Future
developments will attempt the integration of the current implementation into a virtual orthopaedic

surgery platform.

1. Introduction

The recent advancements in the field of computer graph-
ics have led to a number of changes in the way the
geometry of objects is modeled and rendered. Among
the technologies that have been used for these purposes,
voxel-based modeling continues to receive an increased
attention. According to a more or less generic definition,
voxels are small cubes used to represent volumetric units.
As such, a voxel-based representation consists of a set
of cubes that belong to a - typically uniform - 3D
grid placed over the domain of the object. Since any
point on the grid is easily identifiable, the structure of
the voxelized geometry can be conveniently described
in terms that are comparable to - if not simpler than
- the polygonal mesh counterparts. This advantage of
voxelized representations has been typically exploited
in the context of computer-aided design and manu-
facturing such is the case of material removal simu-
lation [2],[10],[15],[19],[23], skeleton extraction from
mesh [18], composite model representations of function-
ally gradient materials [21], 3D printing [20], genera-
tion of porous surfaces [3], mesh repair [11], thickness
analysis [14], etc. Since in many cases, the geometry is
solely available in a triangular mesh format, voxelization
becomes one of the mandatory preprocessing steps to
enable subsequent geometry manipulation/computation
operations.

Asimplied by Fig. 1, the core of the voxelization is rep-
resented by the computation of the intersection between
the triangular facets of the mesh and the voxel grid used
to discretize the bounding box of the 3D object. To calcu-
late the required intersections, conventional approaches
relied on iterative single-thread routines that loop over all
voxels of the grid by repeatedly testing for intersections
with each of the mesh facets. In many cases, robust and
reliable overlapping test techniques - such as the separat-
ing axis theorem [1] — were used to identify and process
the required voxel-facet intersections. However, the effi-
ciency of these techniques is somewhat limited when it
comes to fine meshes and/or voxels.

To accelerate voxelization, some of the prior studies
have involved the graphics pipeline for parallelization of
the voxelization in rendering passes [4-7],[9]. Neverthe-
less, the point sampling method used by the conventional
rasterizers of the pipeline is known to cause inaccurate
voxelizations for thin structures. To address this, [22]
proposed a “conservative voxelization” technique that in
turn introduced redundant voxels, an issue that was later
rectified in [8] by means of hardware-based tessellation
and point-based rendering. Even though the latter tech-
nique is faster by two orders of magnitude, the fixed-
function tesselator of the pipeline was found to intro-
duce inaccurate results such that while the involvement
of the graphics pipeline might be sufficient for real-time

CONTACT 0. Remus Tutunea-Fatan @ rtutunea@eng.uwo.ca, Mohammadreza Faieghi 8 mfaieghi@uwo.ca, Roy Eagleson 8 eagleson@uwo.ca

© 2018 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/16864360.2018.1486961&domain=pdf
http://orcid.org/0000-0003-0075-2969
http://orcid.org/0000-0002-1016-5103
http://orcid.org/0000-0001-9264-8135
mailto:rtutunea@eng.uwo.ca
mailto:mfaieghi@uwo.ca
mailto:eagleson@uwo.ca
http://www.cadanda.com

COMPUTER-AIDED DESIGN & APPLICATIONS 853

Calculate
Bounding Box

Create
Voxel Grid

y

Input Mesh

Identify Triangles

Intersection ‘—'

Y

Voxelized
Geometry

Figure 1. Phases of the voxelization process.

voxelization, its limited flexibility might be responsible
for inaccurate results.

In the recent years, General Purpose Graphics Pro-
cessing Units (GPGPUs) gradually became a versatile tool
for high-performance computations. Both CUDA [12]
and OpenCL [13] programming platforms were designed
to facilitate the access to the many GPU cores that can be
used to parallelize a multitude of computing tasks for an
efficient solving of the complex problems. As an illustra-
tion of the CUDA-capabilities, Schwarz and Seidel [17]
have shown that the GPU-based parallelization of the
triangle-cube overlapping test can reduce the computing
time reported in [22] by one order of magnitude, while
preserving the accuracy of the voxelization.

Contrasting with the vendor-specific nature of CUDA,
OpenCL-based developments are compatible with a
wide-range of graphics hardware from all major ven-
dors. However, unlike CUDA, OpenCL tends to be
more verbose in a sense that more low-level code is
required to establish the parallel computing infrastruc-
ture. Because of this, OpenCL-based parallelization con-
tinues to remain a challenging task and this might explain
its relatively limited deployment. With this in mind, the
primary goal of the current work was to assess the feasi-
bility of OpenCL platform to an extensive computational
problem such as voxelization. While not apparent in the
limited context of this study, the problem of fast and
accurate voxelization to be performed on cross-vendor
hardware represents one of the first milestones to be com-
pleted as part of an extensive virtual surgery simulator
that is presently under development.

2. OpenCL framework

The OpenCL standard defines a set of data types, data
structures, and functions that augment C and C++ to
enable parallel processing by means of either CPUs or

GPUs. The major components of a typical OpenCL pro-
gram are depicted in Fig. 2. While all these compo-
nents will be briefly explained further, for more in-depth
details on the OpenCL programming framework, the
reader is invited to consult a more extensive resource,
such as [16].

Kernels are functions to perform parallel computing
tasks and they are programmed in OpenCL C, a lan-
guage established on C99 specifications [13], but further
enriched to accommodate parallel programming. Ker-
nels are executed by OpenCL devices that can be either
multi-core CPUs or GPUs. It is important to note that
most computers have several OpenCL devices in their
architecture. The OpenCL context allows to choose from
these devices and manage them for a specific computa-
tional task. Control of the kernels and devices in a con-
text are initiated by a segment of regular C/C++ code,
termed host application.

According to OpenCL terminology, control instruc-
tions are called command queues, while the CPU run-
ning the host application is called OpenCL host. In a
typical computing task, the input data for kernels is pre-
pared on the host side and is stored within the host
memory (i.e., general computer RAM). Following this,
OpenCL buffers transfer the prepared data to the device
memory and if the device is a GPU, the device memory
becomes the memory of graphics card. Once the kernel
is executed, the output can be either fetched by the host
memory or stored in the device memory for subsequent
computations.

The generic OpenCL device model is presented in
Fig. 3. According to this, the processing cores of a CPU or
GPU are called compute units. After the kernel is invoked,
the computing task is divided into several subtasks, called
work-groups, each of them being executed by a com-
pute unit. Furthermore, several processors are available
inside of every compute unit, each of them being tasked

854 M. FAIEGHI ET AL.

Host Memory <
Host Host Application
A
Command Queue
COIltEXt \ Kernel
/// \\\
I/ \\
e
foo() bar() baz() \\ qux() //
\ /
\\ |,/
Device 0 Device 1 Device 2 Device 3
Device 0 Device 1 Device 2 Device 3
Memory Memory Memory Memory
1 t t t
Figure 2. Generic structure of the OpenCL program.
Compute unit ——0o o
Processor <\
e T)| () (=) ()
Local Memory >] [] [] []
y A y v

A

Global Memory

Figure 3. Generic structure of the OpenCL device.

to complete a certain work-item, i.e., a certain portion of
the work-group.

To accommodate this complex type of hierarchi-
cal computing pattern, different layers of memory are
embedded into the device. Every processor from the
compute unit has a set of dedicated registers called private
memory, while all processors belonging to the same com-
pute unit share a segment of memory called local mem-
ory. All compute units can also access the global memory
(i.e., device memory). A brief comparative analysis of all
different types of memory available suggests that private
memory remains the fastest, but also the most limited
one. By contrast, global memory is the largest, but the also
the slowest option. Because of this, efficient OpenCL pro-
gramming needs to limit the number of times of access

to global memory to a maximum of two: one for kernel
input reading and another one for output writing.

It is also important to optimally parallelize a com-
pute task by partitioning it into several work-groups.
The number of work-items in a work-group is called
local size and the total number of work-items is denoted
by the term global size. While the best practice recom-
mends the maximization of the local size, local mem-
ory tends to be limited such that the global mem-
ory has to be used in most cases and its extensive
access will inevitably compromise the performance of
the algorithm. As such, data partitioning often comes
down to a challenging tradeoft between the maximum
use of the local size and the minimal access to the global
memory.

3. Implementation
3.1. Input data preparation

The vast majority of common triangular mesh formats
store mesh data in two different arrays: a float array used
for vertex coordinates (i.e., mesh geometry) and an inte-
ger array used to describe how the vertices are connected
to form the triangles in the mesh (i.e., mesh topology).
This particular type of data storage saves memory space
but results in a cluttered memory access during kernel
execution that in turns slows down the entire process.
To address the issue, a data preparation step has been
devised to construct a new float array in which vertex
coordinates were sorted per triangle. To be more specific,
if M is a mesh with # triangles, then a float array of length
9n will hold the vertex coordinates such that the elements
9i to 9i + 8 will correspond to the vertices of the i-th tri-
angle. Because of this, the entire vertex information for
each of the mesh triangles will be orderly available in
one location and this will facilitate the coalesced memory
access (Fig. 4).

3.2. Voxel data

3.2.1. Voxel grid construction

The voxel grid G is a set of cubes that reside within
the Axis Aligned Bounding Box (AABB) of the mesh.
To construct G, the AABB is first identified by means
of minimum and maximum of mesh vertex coordinates
and then divided into identical cubes whose size is user-
defined/controlled. This manner of grid construction
guarantees that all resulting voxels will be aligned with
the axes of the coordinate system and thereby the calcu-
lation of the normal vectors for all voxels becomes trivial.
In addition, Gcan be uniquely represented by means of
three independent parameters:

(i) corner/origin of the grid py € R?,
(ii) grid dimension i.e., the number of voxels in each
directiond € NT and
(iii) voxel diagonal Ap € R>.

COMPUTER-AIDED DESIGN & APPLICATIONS 855

To access a voxel V € G(pg,d, Ap), the three integers
(x, y, z) ranging from (0,0,0) to (dx — 1,dy, — 1,d, — 1)
were used for indexing. As a result, the spatial informa-
tion of every voxel can be readily calculated. For example,
the minimum corner of the voxel V(x, y, z) is yielded by:

0 =po+ < Ap, (x,,2) > (3.1)

where < > denotes the dot product operation.

3.2.2. Voxel information storage

Following the construction of the voxel grid, an array of
length d,d,d, was dynamically allocated in order to store
material-specific information to be subsequently associ-
ated with each voxel. The spatial information of every
voxel can be determined by their location in this array.
As such, the corresponding index of voxel V(x,y,2) €
G(po,d, Ap) in the array is:

i =x+ ydyx + zdyd, (3.2)

Conversely, the indices of the corresponding voxel in
the 3D grid can be calculated by solving the following
equations in the order

i i— zd,d
y=—01-"
X

, x=1i—zdedy — ydy

(3.3)

Therefore, the array represents a mapping between the

3D voxel grid and a contiguous 1D stack of memory
which ensures coalesced access to the voxel data.

3.3. Voxelization kernel

3.3.1. Mesh facet/Voxel overlap test

The method utilized here was adopted from [21] and
essentially represents an enhanced version of the sepa-
rating axis theorem [11] that requires a lower number of
operations and is thereby faster. The verification of the
intersection between triangles and voxels is a four-step
process centered on the verification of facet plane/voxel
intersection/overlapping. For this purpose, let 7 with
vertices vy, v}, v2 be a triangular mesh facet and V be a

Triangle #0 Triangle #1 Triangle #2
e rray: [3 T+ o [3 Te [e]2 1]
2 \2
Vertex Array: | 0.5 | 0.5 | 0.0 | 0.8 | 1.0 | 0.0 | 03 | 1.2 | 0.0 | 15 | 11 | 0.0 | 10
V|D B | & 05 Vo
’ ' 05 10 15 20
| 08 | 1.0 | 0.0 | 03 | 1.2 | 0.0 | 05 | 05 | 0.0 | 0.8 | 1.0 | 0.0 |

Figure 4. Example of input data preparation.

856 M. FAIEGHI ET AL.

voxel characterized by the extreme corners p and p +
Ap, respectively. Under these conditions, the facet/voxel
overlap test comes down to the calculation of 7”’s normal
and critical point:
APX)
C =
({ 0’

n, >0 Apy,
n, <0f’

ny>0
0, ny§0’

Apz, nz; >0
tope o) (.4
followed by the verification of validity for:
(<n,p>+a)(<np>+ay) <0 (3.5)

wherea; =< n,c—vyp >anda, =< n, Ap —c— vy >.

The rest of the intersection test comes down to the
evaluation of the projections of 7 and V onto the prin-
cipal planes of the coordinate system. For instance, the
following expressions are to be calculated with respect to
XY plane:

1 n,>0
Xy e)T > z Z
ng = (_et,y, €ix) - {_1’ n, < 0} > (3.6)
a}e(iy =—-< n)e(,y)Vi,xy > + max{0, Apxn)e?,’x}
+ max{0, Apyng),} (3.7)

for all three edges e; = V4] mod 3 — Vi. If the three tests
in Eq. (3.8) are all true, then the projections of 7 and V
on XY are intersecting.

<ny,py > +a,, >0,i€{0,1,2} (3.8)

One of the important advantages of this routine is that
if only one of the statements in Eqns. (3.5) or (3.8) are
false, then it can be immediately concluded that 7 and
V) are separated. This approach saves the unnecessary
computations and ultimately leads to a faster voxelization
algorithm.

3.3.2. Algorithm parallelization

In the context of the present study, the primary target
of data parallelization technique were the nested loop
structures that could be sped up by either launching
a work-item: i) per voxel of the grid, or ii) per mesh
facet. In the first approach, the number of work-items
required to accomplish voxelization is essentially equal to
the total number of grid voxels. Every work-item starts
up with voxel selection followed by a loop over mesh
facets to verify their relative positioning with respect to
the analyzed voxel. As soon as an intersection is detected,
the testing loop breaks off and the voxel is assigned a
boundary status. At the end of the loop, voxels found

Table 1. Comparison between triangle- and voxel-based paral-
lelization schemes for Stanford Bunny model.

Number of Intersection Tests

Order of Magnitude
Voxel Size (mm) Approach 1 (VB) Approach 2 (FB) Ratio (VB/FB)
3 1,767,431 93 4.2789
2 4,615,507 224 43140
1 44,406,021 1,107 4.6033
0.5 368,832,950 5,874 4.7979

in a non-intersecting condition with mesh facets have to
be removed from the voxel-based representation of the
object. However, the limited size of the local memory
requires the storage of the extensive mesh data in global
memory and in turn this diminishes the performance of
the technique.

In the second approach, the vertices of each triangu-
lar facet are assigned to an individual work-item. Since
the voxels outside of the AABB of a triangle will not be
overlapping with the triangle itself, the voxelization prob-
lem reduces in this case to the verification of the relative
positioning between the facet and its AABB within the
voxel grid. The data in Tab. 1 demonstrates that the switch
from Approach 1 (voxel-based = VB) to Approach 2
(facet-based = FB) enables reductions of more than four
orders of magnitude for the number of intersection tests
required.

Furthermore, each work-item in Approach 2 requires
for processing only the coordinates of the vertices for a
single triangular facet instead of those of the whole mesh.
Since this small amount of information can be handled
by the local memory, the number of I/O operations with
global memory will be reduced to two: one read of the raw
data followed by one write of the results. As such, facet-
based parallelization is deemed more efficient than the
conventional voxel-based method and Fig. 5 depicts the
pseudocode of the kernel based on this method.

3.4. Overall structure of the OpenCL program

An overview of the OpenCL code used to implement par-
allel voxelization is shown in Fig. 6. In brief, the program
starts with the identification of the OpenCL platform
that is available through the hardware followed by the
selection of a device to perform the required computa-
tions. Next, the kernel code is compiled and brought to
an executable form to be run on the selected device.

As discussed above, the number of work-items
required to complete voxelization is equal to the number
of mesh triangles n. Since OpenCL requires that global
size is a multiple of the local size, the program has to
determine first the maximum local size that is avail-
able in the device such that it can set the global size to

INPUT: n, mesh vertices, po, d, ApP
OUTPUT: voxel array

Set 1 to work-item number
IF i < n

Extract wo,
Copy Vo, Vi,

vi, vy of trianglel[i]
V2, Pos

Find the voxels within AABB
FOR
IF triangle[i]’s plane overlaps
IF triangle[i] and voxel[j]
IF triangle[i] and voxel[j]

IF triangle[i]

© W J o s W N

R e
S T N)

ELSE

=
o v

ENDIF
ELSE

=
®

i
©

ENDIF
ELSE

NN
[

ENDIF
ELSE

[SIENY
SWw

N
«

ENDIF
ENDFOR
ENDIF

N
o

[N}
-

Figure 5. Pseudocode of the voxelization kernel.

OpenCL entry point]

COMPUTER-AIDED DESIGN & APPLICATIONS 857

from mesh vertices
d, Ap to local memory
Calculate the AABB of the trianglel[i]

1 to number of voxels in AARB

voxel[j] THEN

projections on xy-plane overlaps THEN

projections on xz-plane overlaps THEN

and voxel[j] projections on yz-plane overlaps THEN
Calculate voxel[j]’s location in voxel array
Assign material information to the voxel array location
|Continue to the next iteration

| Continue to the next iteration

|Continue to the next iteration

| Continue to the next iteration

¥ <=z
o (0]
Identify a platform o 5 I%
clGetPlatformIDs] o | |'s
! 2| |z
Slle
| Selecta device
clGetDeviceIDs
Create a context buffers and pointers
clCreateContext
Build the device executable Create kernel Set kernel arguments
clBuildProgram clCreateKernel clSetKernelArg
v v v
Create Command Queue N Launch the kernel Device-host memory map
clCreateCommandQueue clEnqueueNDRangeKernel clEnqueueMapBuffer
1 v
L,/ Find the device localsize Set global and local size for Device-host memory map
clGetDeviceInfo kernel execution clEnqueueMapBuffer
v

OpenCL exit point

Figure 6. Core structure of an OpenCL algorithm to implement parallelization in the context of a voxelization task.

the appropriate value that is greater than or equal to n.
Evidently, OpenCL buffers and pointers will pass fur-
ther all the variables and arrays required by the kernel.
Once the entire data is passed to the device memory and
kernel work-items are configured, the command queue
will launch the kernel. Following the start of the kernel,
a write-only buffer operation is used to pass the voxel

data to the host. OpenCL allows two primary modes
of device to host memory transfer: i) clEnqueueRead-
Buffer = reading from the buffer and ii) clEnqueueMap-
Buffer = mapping device to host memory. The direct
comparison of the two options - illustrated in Fig. 7 -
implies that memory mapping consistently outperforms
the read buffer approach.

858 M. FAIEGHI ET AL.

180 T T T

—O—Memory Mapping
—O- Read Buffer

160

140

—_
no
o

100

80

60

Data Transfer Time (ms)

40

20

0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1

Data Size (GB)

Figure 7. Comparison between techniques used to transfer data between video and system RAM.

Because of this clear superiority, memory mapping
was the only method employed for voxel data transfer
following the kernel execution. Both techniques were
tested when transferring variable amounts of data from
the GDDR5 memory of a GeForce 970 GTX graph-
ics card to a DDR4 RAM and as Fig. 7 demonstrates,
the advantage of using memory mapping becomes more
prominent as the amount of data to be transferred
increases.

4. Results

This section presents several test results that were
obtained during the evaluation of the performance for
the developed voxelization toolkit. The analyzed config-
urations included high- and mid-range desktop video
cards (NVIDIA GeForce 970 GTX, AMD Radeon R7
240), a high-end video card for laptops (Nvidia GeForce
960 GTXM) as well as an integrated desktop video card
(Intel HD Graphics 530). Since OpenCL allows CPU,
not only GPU parallelization, additional tests were also
conducted on desktop Intel 6700 K and AMD FX 770K

processors, as well as the mobile Intel 6700 HQ. Table 2
summarizes the specifications of all the aforementioned
hardware components.

Here, the number of compute units indicates the num-
ber of work-groups that can be concurrently executed
in a device, the maximum local size represents the limit
of the work-groups, while the local memory size consti-
tutes the amount of dedicated memory that is available
for each of the work-groups within a certain process-
ing unit. As it can be inferred from the entire discus-
sion above, these three parameters play a critical role
on the parallelization capabilities of a certain hardware
configuration that in turn are dependent on an appropri-
ate partitioning of the problem into parallel work-items.
The last two columns of the table, namely maximum
clock frequency and global memory, denote the speed of
the GPU/CPU processor along with its associated video
memory size (for GPU)/system RAM (for CPU), respec-
tively. As expected, the size of the global memory limits
the maximum resolution of the voxel grid since — at some
point during the execution of the code - the entire voxel
data has to be stored in it.

Table 2. Summary of hardware components used in voxelization tests.

Hardware Number of Compute ~ Maximum Local Size Local Memory Size Maximum Clock Global Memory Size
Component Name Processor Type Units (KB) Frequency (MHz) (GB)

NVIDIA GeForce 970 GTX GPU 13 1,024 48 1,177 4

NVIDIA GeForce 960 GTXM GPU 5 1,024 48 1,176 4

AMD Radeon R7 240 GPU 6 256 32 780 2

Intel HD Graphics 530 GPU 24 256 64 1,050 1

Intel Core i7 6700K CPU 8 8,192 32 4,000 16

Intel Core i7 6700HQ CPU 8 8,192 32 2,600 12

AMD FX 770K CPU 4 1,024 32 3,493 8

COMPUTER-AIDED DESIGN & APPLICATIONS 859

@ 6 W 3

894 triangles 16,301 triangles 100,000 triangles 4,006 triangles 470,340 triangles
(63.17, 39.31, 29.48) (15.55, 15.33, 12.06) (56.37, 25.21, 39.76) (21, 36.47, 36.50) (144.76, 137.24, 73.28)
(a) (b) (©) (d) (e)

Figure 8. Benchmarked models (including mesh and domain sizes): (a) Utah teapot, (b) Stanford bunny, (c) Stanford dragon, (d) surgical
tool/reamer, and (e) scapula.

Table 3. Effect of geometric model, voxel resolution, and hardware configuration on GPU-based parallelization.

Voxelization
Time (ms)

Intel HD Graphics

GeForce 970 GTX GeForce 960 GTXM 530 Radeon R7 240
Voxel Grid
Model Voxel Size (mm) Dimension (X,Y,Z) OpenCL CUDA OpenCL CUDA OpenCL Single-Thread
Utah Teapot 0.5 127,79,59 2.12 1.39 2.07 1.28 24 6.49 21
0.25 253,158,118 13.57 8.41 13.1 7.78 14.66 259 108
0.1 632,394,295 166.52 102.61 164.68 93.53 151.95 31531 1081
Stanford Bunny 0.5 32,31,25 0.05 0.1 0.09 0.12 0.1 0.21 13
0.25 63, 62,49 0.08 0.14 0.16 0.15 0.19 0.22 18
0.1 156, 154,121 0.32 0.30 0.66 0.44 0.86 1.81 65
Stanford Dragon 0.5 113,51,80 0.31 0.30 0.72 0.53 0.76 1.77 85
0.25 226,101, 160 1.09 0.76 2.75 1.70 2.42 4.04 159
0.1 564, 253,398 10.17 5.57 25.55 12.96 19.44 34.52 757
Surgical Tool 0.5 42,73,73 0.77 0.50 0.75 0.48 0.82 2.46 25
0.25 84,146, 146 532 345 513 2.88 5.56 8.51 61
0.1 211, 365, 366 71.89 41.54 68.84 36.54 69.42 109.23 412
Scapula 0.5 290, 275, 147 2.31 1.34 5.44 2.72 3.8 5.47 420
0.25 580, 549, 294 11 4.87 25.79 10.06 133 24.14 868
0.1 1488,1373,733 112.66 4368 28397 88.80 82.10 256.34 4913
[Single Thread 8 OpenCL/GeForce 960 GTXM
E3a OpenCL/GeForce 970 GTX EE CUDA/GeForce 960 GTXM
CUDA/GeForce 970 GTX 0@ OpenCL/Radeon R7 240
E3 OpenCL/Intel Graphics HD 530
100+ reeeereeseee e ' LERLRRRREREERPEEPPERPED = CEREEETERPPERPEPPREPRE T BRCRRERREERREEPPEPPEEP T RRCRRERTEEERERPEPRE
$ 30| [e B B R
- —
£
H rm
o0
g
=SL EEL I CERCERRERIERRE || SERRERY N ERERRRIEREERRERIERIEE) B EETERERCIERCIERERCIE (f SERCIERERCIEY | EEERRS] I SERCERTIEREEEREAEE
g
5]
o]
104-- --
Y
N
&Q’@Q
\3‘§

Figure 9. Normalized results of the GPU-based parallelization.

860 M. FAIEGHI ET AL.

(@) (b)

Figure 10. Sample voxelization results at different voxel sizes: (a) 0.5 mm, (b) 0.25 mm, and (c) 0.1 mm.

Table 4. Effect of geometric model, voxel resolution, and hardware configuration on CPU-based parallelization.

Number of Voxels

Voxelization Time (ms)

Model Voxel Size (mm) in the Grid (X, Y, 2) Intel 6700K Intel 6700HQ AMD FX 77K Single-Thread
Utah Teapot 0.5 127,79,59 3.82 4.85 6.54 21
0.25 253,158,118 20.84 275 36.5 108
0.1 632,394,295 244,834 290.92 403.63 1081
Stanford Bunny 0.5 32,31,25 0.66 0.71 0.91 13
0.25 63,62,49 1.24 191 1.9 18
0.1 156,154, 121 5.39 7.66 6.75 65
Stanford Dragon 0.5 113,51,80 2.12 3.94 6.17 85
0.25 226,101,160 6.8 7.91 18.53 159
0.1 564,253,398 48.64 55.81 106.87 757
Surgical Tool 0.5 42,73,73 2.09 2.72 239 25
0.25 84,146, 146 9.18 11.79 7.37 61
0.1 211, 365, 366 9431 117.2 75.65 412
Scapula 0.5 290, 275,147 7.59 9.13 325 420
0.25 580, 549, 294 26.94 35.33 82.56 868
0.1 1488,1373,733 24471 292.21 610.57 4913

The numerical experiments whose results will be
detailed further have been conducted on tessellated
representative geometries whose principal characteristics
are presented in Fig. 8. In addition to the size of the mesh,
the data also includes the size of the bounding box.

As it can be noticed, while the Utah teapot features a
coarse mesh, both Stanford bunny and dragon are char-
acterized by fine meshes. By returning to the general sur-
gical orthopaedic context of the present study, the last two
objects represent the cutting end of a surgical tool used in
glenoid reaming procedures along with the geometry of
a scapula obtained through the reverse engineering of a
patient-specific CT model.

The main metric used during the numerical trials was
the voxelization time, ie. the time required to gener-
ate voxels at a preset size/resolution for each of the five
faceted geometries. To eliminate subjectivity, voxeliza-
tion time was measured by means of the built-in profiling
tool available in OpenCL. The comparison baseline used
for all voxelization tests was generated by a single-thread
implementation running on an i7-6700 K processor with
16GB DDR4 RAM and the results obtained were sum-
marized in Tab. 3 as well as graphically represented in a
normalized form in Fig. 9.

As it can be noticed from the table, although the
Utah teapot geometry has the smallest mesh size, its

larger domain has determined voxelization times sur-
passing those associated with Stanford bunny model. On
the other hand, the topological complexity of the sur-
gical tool object has led to voxelization times that were
sometimes over six times larger than those obtained for
Stanford dragon, a geometric object characterized by
considerably larger domain and mesh sizes. While the
exact root cause of the increase might be difficult to iden-
tify, it can be probably assumed that the aforementioned
topological complexity of the model has a direct effect on
the partitioning of the work-items that — in turn - will
significantly prolong the voxelization time.

Moreover, while no definite conclusion can be drawn
with respect to GPU performances - other than perhaps
the mid-range Radeon R7 240 card seems to be some-
what overall weaker than the rest, the exception being
the scapula model for which GeForce 960 GTXM has
managed to underperform it - the data shown in Fig. 9
implies that GPU-based parallelization can speed up vox-
elization anywhere between 73.5% or 3.8 times (surgical
tool on Radeon R7 240) and 99.6% or 260 times (Stanford
bunny on a GeForce 970 GTX) when compared to single-
thread CPU. With respect to OpenCL-CUDA compar-
isons, while the latter seems to perform better for most
NVIDIA-based hardware configurations, its major draw-
back remains related to its portability to other hardware.

COMPUTER-AIDED DESIGN & APPLICATIONS 861

3 Single Thread && Intel 6700HQ
Intel 6700K E= AMD FX 77K

100 = - pmprevrrrrrnnnnnnns e a s E s s s a s aaay e e
S
<)
.g 404 <] beerereeineniin ferrenennnnicin e e b
= =
o0 =
5 =
g 30-) IR E ...
) g
S - E
o 204 -- w cSN A T oy EEEEEPEEEE [PEPPPPPPRR

] = &
10+ E E D =1 e I [.
0 = T mﬁ EE
) 4 &
& 5 <° Q&
N O & &
& & L &
S & & &
"'3& *

Figure 11. Normalized results of the CPU-based parallelization.

A sample of final voxelized geometry obtained for differ-
ent voxel resolutions is presented in Fig. 10.

Since CPU-based parallelization is also an option, the
next set of tests/numerical experiments have quantified
the performances of the three CPUs included in Tab. 2.
The results obtained are summarized in Tab. 4 and graph-
ically represented in a normalized form in Fig. 11.

A brief comparative analysis of the results shown in
Tab. 3 and 4 suggests that the parallelized execution
of the voxelization kernel takes longer on CPUs than
on GPUs. However, same as in the GPU-based case,
CPU-based parallelization led to voxelization times that
were between 62.7% or 2.7 times (Utah teapot on AMD
FX77K) and 97.5% or 40.1 times shorter than those
obtained on the single-thread CPU (Stanford Dragon
on Intel 6700K). Interestingly, the OpenCL voxeliza-
tion algorithm ran faster on a slower/older CPU (AMD
FX 77 K) than it did in the single-thread implementation
executed on more powerful CPU (Intel i7 6700 K).

5. Conclusion

The OpenCL algorithm developed in the context of this
study represents one of the first attempts made to demon-
strate the portability as well as the efficiency of this pro-
gramming platform in the context of a voxelization task.
The actual/final voxelization time is largely dependent on
the size/complexity of the tessellated object used as an

input, the target voxel resolution as well as the configu-
ration of the computing hardware involved. The results
obtained demonstrate that GPU-based parallelization
can bring significant reductions of the voxelization — or
in general computing - time such that whenever the
efficiency of an algorithm is of concern, parallelization
of the code should be considered. Furthermore, while
CPU-based parallelization might not be as effective as
its GPU-based counterpart, significant computation time
decreases are still possible even on low-end/less pow-
erful processors. For better or worse, the results of the
present study do not identify any of the hardware devices
as being an absolute “winner”. This essentially means that
the decision to select one over the other should always
be relative to the computational task at hand that in turn
would require a more extensive and in-depth testing of
all hardware configurations/options available.

Future extensions of this work will attempt to inte-
grate the current OpenCL voxelization algorithm into
a fast material removal technique that it is hoped that
will be capable to function in a real-time manner within
the virtual orthopaedic surgery platform that is currently
under development. Finally, while CUDA remains an
efficient and robust parallelization platform, it is hoped
that the current results will inspire future OpenCL-
based applications whose versatility/independence of
vendor-specific hardware offers certain developmental
advantages.

862 M. FAIEGHI ET AL.

Acknowledgements

The authors would like to acknowledge the financial support
provided in part by Natural Sciences and Engineering Research
Council (NSERC) of Canada and Canadian Institutes of Health
Research (CIHR) that was received under the framework of the
Collaborative Health Research Projects (CHRP) program.

ORCID

Mohammadreza Faieghi
2969

O. Remus Tutunea-Fatan
5103

Roy Eagleson

http://orcid.org/0000-0003-0075-
http://orcid.org/0000-0002-1016-

http://orcid.org/0000-0001-9264-8135

References

[1] Akenine-Moellser, T.: Fast 3D triangle-box overlap test-
ing, Journal of Graphics Tools, 6(1), 2002, 29-33. http://
doi.org/10.1080/10867651.2001.10487535

[2] Arbabtafti, M.; Moghaddam, M.; Nahvi, A.; Mahvash,
M.; Richardson, B.; Shirinzadeh, B.: Physics-Based Hap-
tic Simulation of Bone Machining, IEEE Transactions on
Haptics, 4(1), 2011, 39-50. http://doi.org/10.1109/ToH.
2010.5

[3] Dinis, J. C.; Moraes, T. F; Amorim, P. H. J.; Moreno,
M. R.; Nunes, A. Aj; Silva, J. V. L.: POMES: An Open-
Source Software Tool to Generate Porous/Roughness on
Surfaces, Second CIRP Conference on Biomanufacturing,
49, 2016, 178-182. http://doi.org/10.1016/j.procir.2015.
07.085

[4] Dong, Z.; Chen, W.; Bao, H. J.; Zhang, H. X,; Peng, Q. S.:
Real-time voxelization for complex polygonal models, in
Proceedings of the 12th Pacific Conference on Computer
Graphics and Applications, 2004, 43-50.

[5] Eisemann, E.; Decoret, X.: Fast scene voxelization and
applications, in Proceedings of the 2006 symposium on
Interactive 3D graphics and games, 2006, ACM: Redwood
City, California. p. 71-78.

[6] Eisemann, E.; Decoret, X.: Single-pass GPU solid vox-
elization for real-time applications, in Proceedings of the
Graphics Interface 2008, Canadian Information Process-
ing Society: Windsor, Ontario, Canada. p. 73-80.

[7] Fang, S. E; Chen, H. S.: Hardware accelerated voxeliza-
tion, Computers & Graphics, 24(3), 2000, 433-442. http://
doi.org/10.1016/S0097\T1\ textendash8493(00)00038-8

[8] Fei, Y; Wang, B; Chen, J., Point-tessellated voxeliza-
tion, in Proceedings of Graphics Interface 2012, Cana-
dian Information Processing Society: Toronto, Ontario,
Canada. p. 9-18.

[9] Li, W;; Fan, Z.; Wei, X.; Kaufman, A.: Flow simulation with

complex boundaries, in “GPU Gems 27, 2005, Addison

Wesley Professional, 747-764.

Lin, Y. P; Wang, X. D.; Wu, E L.; Chen, X. J.; Wang, C.

T,; Shen, G. E: Development and validation of a surgical

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

[22]

(23]

training simulator with haptic feedback for learning bone-
sawing skill, Journal of Biomedical Informatics, 48, 2014,
122-129. http://doi.org/10.1016/1.jbi.2013.12.010
Nooruddin, E S.; Turk, G.: Simplification and repair
of polygonal models using volumetric techniques, IEEE
Transactions on Visualization and Computer Graphics,
9(2), 2003, 191-205. http://doi.org/10.1109/Tvcg.2003.
1196006

NVIDIA. CUDA Toolkit Documentation v8.0. [cited
2017 March 7]; Available from: http://docs.nvidia.com/
cuda/#axzz4Qpkp88ijf

OpenCL. OpenCL C Specifications. [cited 2017 March
7]; Available from: https://www.khronos.org/registry/cl/
specs/opencl-2.0-openclc.pdf

Patil, S.; Ravi, B.: Voxel-based representation, display and
thickness analysis of intricate shapes, in Proceedings of
the Ninth International Conference on Computer Aided
Design and Computer Graphics, 2005, 415-420. http://dx.
doi.org/10.1109/CAD-CG.2005.86

Razavi, M.; Talebi, H. A.; Zareinejad, M.; Dehghan, M. R.:
A GPU-implemented physics-based haptic simulator of
tooth drilling, International Journal of Medical Robotics
and Computer Assisted Surgery, 11(4), 2015, 476-485.
http://doi.org/10.1002/rcs.1635

Scarpino, M.: OpenCL in Action, Manning Publication
Company, New York, USA, 2012.

Schwarz, M.; Seidel, H. P.: Fast Parallel Surface and Solid
Voxelization on GPUs, ACM Transactions on Graphics,
29(6), 2010, http://doi.org/10.1145/1866158.1866201
Song, C.; Pang, Z.; Jing, X.; Xiao, C.: Distance field guided
L1 -median skeleton extraction, The Visual Computer,
2016, 1-13. http://doi.org/10.1007/s00371-016-1331-z
Vankipuram, M.; Kahol, K.; McLaren, A.; Panchanathan,
S.: A virtual reality simulator for orthopedic basic skills: A
design and validation study, Journal of Biomedical Infor-
matics, 43(5), 2010, 661-668. http://doi.org/10.1016/j.jbi.
2010.05.016

Vidim, K.; Wang, S.-P; Ragan-Kelley, J.; Matusik, W.:
OpenFab: a programmable pipeline for multi-material
fabrication, ACM Transactions on Graphics, 32(4), 2013,
1-12. http://doi.org/10.1145/2461912.2461993

Wang, E: Composite model representation for computer
aided design of functionally gradient materials, PhD The-
sis, Missouri University of Science and Technology, Rolla,
Missouri, 2016.

Zhang, L.; Chen, W,; Ebert, D. S.; Peng, Q. S.: Conserva-
tive voxelization, The Visual Computer, 23(9-11), 2007,
783-792. http://doi.org/10.1007/s00371-007-0149-0
Zheng, F; Lu, W. E; Wong, Y. S;; Foong, K. W. C.:
Graphic Processing Units (GPUs)-Based Haptic Simula-
tor for Dental Implant Surgery, Journal of Computing and
Information Science in Engineering, 13(4), 2013, http://
doi.org/10.1115/1.4024972

http://orcid.org/0000-0003-0075-2969
http://orcid.org/0000-0003-0075-2969
http://orcid.org/0000-0002-1016-5103
http://orcid.org/0000-0002-1016-5103
http://orcid.org/0000-0001-9264-8135
http://doi.org/10.1080/10867651.2001.10487535
http://doi.org/10.1080/10867651.2001.10487535
http://doi.org/10.1109/ToH.2010.5
http://doi.org/10.1109/ToH.2010.5
http://doi.org/10.1016/j.procir.2015.07.085
http://doi.org/10.1016/j.procir.2015.07.085
http://doi.org/10.1016/S0097{T1	extendash }8493(00)00038-8
http://doi.org/10.1016/S0097{T1	extendash }8493(00)00038-8
http://doi.org/10.1016/j.jbi.2013.12.010
http://doi.org/10.1109/Tvcg.2003.1196006
http://doi.org/10.1109/Tvcg.2003.1196006
http://docs.nvidia.com/cuda/{#}axzz4Qpkp88jf
http://docs.nvidia.com/cuda/{#}axzz4Qpkp88jf
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf
http://dx.doi.org/10.1109/CAD-CG.2005.86
http://dx.doi.org/10.1109/CAD-CG.2005.86
http://doi.org/10.1002/rcs.1635
http://doi.org/10.1145/1866158.1866201
http://doi.org/10.1007/s00371-016-1331-z
 http://doi.org/10.1016/j.jbi.2010.05.016
 http://doi.org/10.1016/j.jbi.2010.05.016
http://doi.org/10.1145/2461912.2461993
 http://doi.org/10.1007/s00371-007-0149-0
http://doi.org/10.1115/1.4024972
http://doi.org/10.1115/1.4024972

	1. Introduction
	2. OpenCL framework
	3. Implementation
	3.1. Input data preparation
	3.2. Voxel data
	3.2.1. Voxel grid construction
	3.2.2. Voxel information storage

	3.3. Voxelization kernel
	3.3.1. Mesh facet/Voxel overlap test
	3.3.2. Algorithm parallelization

	3.4. Overall structure of the OpenCL program

	4. Results
	5. Conclusion
	Acknowledgements
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

