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Abstract. In commercial software systems for production planning the movements of digital
humans have to be programmed manually. To improve the usability of digital humans in such
simulations, methods are needed that create work plans, actions and movements for digital
humans at least semi-automatically. The �Smart Virtual Worker� (SVW) is an experimental
software platform for the development of such methods. For given descriptions of transport
or assembly tasks the SVW computes action sequences and movements to ful�ll these tasks.
An optimization procedure is used to �nd solutions that balance the requirements of e�ciency
and ergonomics according to the speci�cations of Method Time Measurement (MTM) and
Rapid Upper Limb Assessment (RULA). Since these scores can only be computed as we
traverse the state space, learning methods must be used to compute the solution. In this
paper we present a way to systematically implement world knowledge in the form of an
action pre-selection mechanism to enhance the performance of such strategies. To show
the e�ectiveness of our method we demonstrate that even with a complete random action
selection our method is capable of solving non-trivial planning problems.

Keywords: Virtual Humans, Digital Factory, Human Factors, Process Planning, Virtual
Prototyping, State Space Search, Knowledge Modeling
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1 INTRODUCTION

Digital factory planning and digital commissioning are important tools for process and production planning.
Their main objective is to minimize costs by optimizing the factory layout in terms of process time and material
�ow. The focus of these planning methods recently has changed from the simulation of machine and material
movements to a human factor oriented viewpoint � especially considering an aging workforce. In this process
ergonomic methods are used for the evaluation and the identi�cation of potential problem areas. At the
moment, production simulations involving digital humans are mainly used in major enterprises, operating in
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the automotive and engineering sector. The high operational costs of available software systems, e.g. for
necessary sta� training, in combination with the enormous expenditure of time for creating a simulation, are
substantial shortcomings which make this approach nearly inaccessible for small and medium-sized companies
[14] [11]. To improve the usability of digital humans in simulations, methods are needed that avoid the time
consuming process of manual programming by automatically creating work plans, actions and movements for
digital humans.

In this paper we present a software system �The Smart Virtual Worker� (SVW) that has been developed
as an experimental platform to demonstrate the feasibility of such an approach. The SVW is capable of
performing �ve di�erent types of elementary actions (walkto, transport, align, assemble and disassemble) and
for any particular action that is performed our software calculates ergonometric scores based on Method Time
Measurement (MTM, [6]) and Rapid Upper Limb Assessment (RULA, [7]) for their evaluation. An Autodesk®

Inventor® plugin to our system is used to create a realistic virtual environment for the SVW. A task description
for the SVW can either be imported with this plugin or created with the GUI of our software. Tasks for the
SVW are internally represented as objectives. This means that any task is de�ned by criteria that must be met
(the terminal objectives, see Section 4.2), rather than a speci�c action sequence to reach it. The actions to
achieve the terminal objectives are generated by the planning algorithm that intends to minimize an objective
function speci�ed as a convex combination of the MTM and RULA scores of the movements of the virtual
worker. The user can in�uence the optimization by providing the weights to the convex combination.

The task of �nding optimal action sequences can be modeled as a shortest path problem in an abstract
state space. However, the state space is fairly large and unstructured (to keep generality and extensibility)
and we can only compute costs and states as we traverse the space. Therefore, a world agnostic (i.e. problem
independent) learning method seems appropriate, more precisely a reinforcement learning (RL) based state
space search is used to determine an ergonomically optimal solution to the planning problem. See [13] for a
detailed description of the RL agent.

The RL agent has no a priori knowledge about the world and consequently does not distinguish between
reasonable and unreasonable actions in any particular situation. Therefore the agent creates a tremendous
amount of useless action sequences (until enough knowledge has been build up in the reward mechanism of the
learning strategy) which results in high expenses for run-time and memory consumption. In this paper we report
on our approach to reduce the computational costs by combining the RL with a reasoning mechanism, which
pre-selects reasonable actions, and therewith counteracts the combinatorial explosion of the search space. To
formalize the selection mechanism we introduce the concepts of objective spaces and their predecessors. An
objective space O represents those states of the environment that satisfy a given objective and a predecessor
is the collection of all states which can be transformed into elements of O with a single action of the SVW. By
recursively generating the predecessors of objective spaces and storing them in the nodes of the objective tree
we create a data structure that represents preconditions for actions to be performed. A locking mechanism on
this tree is used to specify objectives that have to stay valid in the course of actions. Actions are considered
invalid, if the achieved states do not satisfy all locked objectives. In this way, we can avoid undoing achieved
goals, and hence, avoid getting stuck in loops. By systematically locking/unlocking objectives, it is possible to
narrow down the set of possible actions, and therewith avoid the combinatorial explosion on the state space
search.

In each cycle of the planning process the elements of the action sequence are generated one after another.
Each action is determined in a process consisting of three consecutive steps: selection of achievable objectives,
action pre-selection and action selection. Achievable objectives can be ful�lled with a single action in the current
state of the environment. For each achievable objective the action pre-selection determines the corresponding
actions and sorts out unreasonable actions (see Section 4.4). This list of actions is then handed to the action
selection based on reinforcement learning. It decides on a single action from the list, and sends it to the
environment for application (see Section 4.5).

The main contribution of this paper lies in the formalization of the action selection mechanism which allows
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to use it for di�erent applications. The concept of elementary intermediate goals (objectives) is abstracted
in a way, so that the world knowledge can be extended in an easy and structured manner. Whenever rules
can be formulated that distinguish reasonable from unreasonable action sequences, these can be implemented
with our framework. The pre-selection mechanism then provides a signi�cant reduction of the size of the state
space of the optimization problem.

The layout of this paper is as follows. The next section gives an overview of the related work. Following
this, Section 3 gives an overview of the developed framework as well as a description of the object, scene and
task de�nition. Section 4 is devoted to a discussion of the planning process, with focus on the pre-selection
mechanisms. We describe how the SVW translates the problem into a processable form, how it �nds a path
to a terminal state and how this path can be optimized. For a compact description, we concentrate on the
pre-processing and do not include the RL. In Section 5, we demonstrate the planning using a simpli�ed random
action selection instead.

2 RELATED-WORK

The application of digital human models in the context of factory planning not only reduces costs and time of
the process, it also leads to a better understanding of human factors at an early stage of the planning process.
A very comprehensive and detailed catalogue of human models in computer aided engineering applications can
be found in [12]. Among these Human Builder (part of the manufacturing simulation package DELMIA by
Dassault Systemes) and Jack (part of Siemens PLM software system Tecnomatix) are the most established
commercial solutions [1] [10]. In [4] an immersive VR system is presented using a Redirect Walking controller.
With the focus on human factors [15] realized a CAVE system for factory planning which is also able to visualize
the sound intensity of noise. The implemented planning algorithm uses a condition based pre-selection that
can be compared to the one presented in [8]. However, the focus of this paper is on the explicit knowledge
modeling [2] and its implementation rather than learning methods. While machine learning based techniques
seem to take over in many �elds, knowledge engineering still has many applications, especially where the system
must be well understood and reliable. The application of ontologies and knowledge design was considered
before in automated safety planning [16], automated construction safety [5] and support for cyber physical
systems [9].

3 OVERVIEW OF THE SMART VIRTUAL WORKER

Figure 1: Scheme of the smart virtual worker (SVW) framework.

The smart virtual worker consists of several modules shown in Fig. 1. The GUI module is used for o�ine
input, description and visualization of the scene, con�guration of the modules, input and alignment of the
tasks, and visualizing the results.

The central component is the environment module. It manages the scene graph (see Section 3.1), the
current and all previously visited states of the environment, and the static and dynamic parameters of the
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virtual worker. Thus it forms the data base for the operations of all other modules and holds their con�guration
data.

The SVW is capable of transforming abstract task descriptions into an action sequence for reaching these
goals, as well as a keyframe animation to display the solution (see Fig. 2). This happens using the following
pipeline in the planning module: the planning module receives a list of complex tasks and generates a discrete
sequence of elementary actions (e.g. go, carry, assembly, ...; see Tab. 2). For this purpose, an optimization
algorithm is used to optimize the order of elementary actions based on a prede�ned target function (see Section
4). The resulting set of actions can be divided into stationary actions (e.g. grab, release) and non-stationary
actions (e.g. walk, carry). For non-stationary actions, the path planning module computes a shortest collision-
free path between the virtual human and a given target position within the current scene. Based on the
anthropometric parameters of the worker, the path module is able to determine the accessibility of objects.
For stationary actions, further pre-de�ned keyframe animations are used to generate collision free motions
for the agent. One of the more complex steps in the simulation of virtual human models is the generation
of realistic and collision-free motions for each elementary action. Therefore, a method was developed which
generates human motion based on parameterized motion spaces [3]. These motion spaces correspond to the
elementary actions de�ned in the framework. The motion generation module uses these motion spaces in order
to calculate a motion sequence (keyframes) based on the discrete sequence of elementary actions. This motion
sequence is used to compute the costs of an action sequence. For each elementary action, the duration is
given by the MTM method, used for time standardization. The ergonomic costs are computed by summing the
ergonomic scores calculated for each pose of the motion sequence based on the RULA method. A customized
convex combination of the MTM and RULA scores are now considered the costs of the action sequence. These
costs are used in the planning module to optimize the actions sequence iteratively.

Figure 2: Screenshot of the graphical user interface of the SVW.

3.1 Scene Description

The scene description contains all information necessary to represent the con�guration of the environment:
position, orientation of objects and workers (agents), as well as their relations. It de�nes a hierarchical scene
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graph in which each node contains an object, a reference to its parent and the local transformation relative
to the parent's space.

An object is de�ned by four mandatory attributes: id, name, group, and path to the geometry �le. The
attribute group is used to form groups of objects with similar properties (for example storage, transport, etc.).
The SVW framework contains no function to create geometry. Therefore, there is a need to import desired
objects into the software. For this, a connection to Autodesk® Factory Design Utilities was created, which
allows the import of objects from their asset library. Along with the geometry description, further properties
such as weight, bounding box as well as assembly and grab points are imported. Furthermore, for objects such
as tables or workbenches, areas can be de�ned, where objects can be placed or assembled. Once these objects
are integrated to the SVW they are part of its library and thus can be reused in future scenes.

The agent is a special type of object with additional attributes, e.g. constitution, strength and functional
reach ranges. There are prede�ned agent types, that can be customized in the GUI.

3.2 Task Description

The task description module holds all de�ned tasks and tracks which of them are already solved and which
are still open. The task description is stored in an XML �le. Every task is listed as a <task> element. It
contains the type of task, the involved objects as a parent-child relationship, as well as the target position
and orientation relative to the parent. Further constraints can be speci�ed, e.g. the chronological order of the
objectives.

Within the software, there are two basic tasks for the interaction with objects: transport/alignment and
assembly/disassembly. Both task types could either be speci�ed within the GUI or imported as part of the
task description. A list of all available task types is shown in Tab. 1.

name description

Transport Move object from position A to B

Alignment Change object orientation without moving

Assembly Attach an scene object to another scene object

Disassembly Detach an scene object from other scene object

WalkTo Walk to a given location and optionally replay a captured motion

Table 1: Objectivs de�ned in the SVW framework.

In order to specify a transport task within the GUI, the user has to select the scene object, and then must
click at the target position. A further and more general approach is to declare the object and the target
position.

In a similar way, assembly tasks can be speci�ed. For the interactive de�nition in the GUI, the assembly
points of the scene objects to be joined need to be clicked. If the desired construction is more complex,
the Autodesk® Inventor® interface should be used. The supported assembly joints not only contain the
component's relative position but also de�ne possible types of degree of freedom, e.g. rigid, rotational, slider,
cylindrical, planar and ball.

The following example shows the description of three transport tasks implemented in the scene shown in
Figure 2. This example will be used throughout the paper to demonstrate the planning capabilities of the
SVW.

<sequence>
<task type="transport" taskId="1" objId="4" objP="5" pos="300 800 786" quat="0.7 0 0 0.7"/>
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<task type="transport" taskId="2" objId="6" objP="7" pos="300 300 786" quat="0.7 0 0 0.7"/>
<task type="transport" taskId="3" objId="10" objP="8" pos="300 800 786" quat="0.7 0 0 0.7"/>

</sequence>

The planning module translates the tasks �rst into a set of objective, and then generates a sequence of
actions to achieve these. All possible actions types (which are combined with speci�c parameters to form
a concrete action) are listed in Tab. 2. Note that in the following only walk, grabTH and release will be

name description

walk walk to a position

carry carry an object to a position

grabTH grab an object with both hands

grabLH grab an object with the left hand

grabRH grab an object with the right hand

release release an item at a given position

assemble assemble two items

separate disassemble two items

push push an object

relocate tilt or rotate an object

idle play a prepared action sequence

Table 2: Possible action types within the SVW framework. An action consists of an action type and several
paramters to specify the exact execution.

considered as all other actions (e.g. assemble) are variations of these with similar internal representations, but
maybe additional parameters (e.g. assembling part A onto part B is just releasing part A onto part B while
holding the necessary tools for assembly in the other hand). An internal di�erentiation between these action
types is still necessary for the motion generation, less so for the actions sequence planning.

4 OPTIMIZATION BASED PROCESS PLANNING

In this section we describe how the SVW automatically computes a solution to a given planning problem.
Here we only consider the generation of a discrete action sequence, rather than the keyframe animation, which
is generated from the actions by subsequent calls to the path planning and motion modules as described in
Section 3. We start with the formalization of the problem as a state space search.

We �rst give a general overview: the planning process consists of cycles, each of which returns a sequence
of actions that transforms the initial state into a terminal state corresponding to the tasks (represented by the
terminal objectives, see Section 4.2). Several cycles are performed to improve the quality of the results. In
each cycle, the action sequences are generated iteratively, one action at a time. To determine an appropriate
next action, each iteration performs the following three steps � objective pre-selection, action pre-selection,
and action selection.

Above iteration is repeated until a terminal state is reached (i.e. all terminal objectives are satis�ed).
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4.1 Formulation as a state space search

The planning problem of the SVW is modeled as a state space search. The general state space search problem
can be formulated as a 6-tuple (S, i, T,As, δs, cs), which consists of the following components:

� the state space S, i.e. the set of all possible con�gurations of the environment.

� an initial state i ∈ S.
� the set of all terminal states T ⊆ S. Note, that there may be several states that satisfy the terminal
objectives of the planning problem (compare Section 4.2).

� to each state s ∈ S, a set of possible actions As.

� to each state s ∈ S a transfer function δs : As → S, which to each action a ∈ As assigns the successor
state s′ that emerges from s when applying a. We denote δs(a) = s′ in the short form s

a−→ s′.

� to each state s ∈ S, a cost function cs : As → R+, which to each action a ∈ As assigns a non-negative
real number, which represents the costs of performing the action a in state s.

A feasible solution of the search is a sequence of zero or more actions (a0, ..., an−1), so that

i = s0
a0−→ s1

a1−→ · · · an−1−→ sn ∈ T.

The total costs of a solution are given by c(a0, ..., an−1) :=
∑n−1

t=0 c(st, at). We are looking for an optimal
solution, i.e. a feasible solution that minimizes the costs.

4.2 O-spaces and objective trees

Our planning algorithm uses the concept of objective spaces (O-spaces) O ⊆ S to model the informal use of
the term objective. Intuitively, an objective is a requirement on the con�guration of the environment, and the
O-space O represents the set of all those states in which this requirement is satis�ed. We will use the term
objective (and the associated requirement) interchangeably with its formalization as an O-space. If s ∈ O, we
say that s satis�es O, or that O is satis�ed in s. If there is some action a ∈ As with δs(a) ∈ O, then we say
that O can be satis�ed from s (or that O is satis�able in s). The state s is then called a predecessor state of
O. The set of all those predecessor states is denoted by P (O) � the predecessor space of O.

We construct our objectives (and corresponding O-spaces) from the tasks given by the SVW. To distin-
guish these initially constructed objectives from those which are added for sub-problems, we call the former
ones terminal objectives. Our general strategy to achieve the terminal objectives is to recursively generate
predecessor spaces and to represent these in terms of simpler objectives. More precisely, given an O-space O
and its predecessor space P (O), we use a representation O1 ∩ · · · ∩ Om ⊆ P (O). The O-spaces O1, ..., Om

are called preconditions of O and are determined using the knowledge base described in Section 4.7. Given a
set of preconditions of O, we can test whether O is satis�able, simply by checking whether all preconditions
are satis�ed. Note that if O is always satis�able, we can formalize this as P (O) = S.

Given above representation of the predecessor space of some O-space O as the intersection of further
O-spaces, it seems natural to organize O-spaces in a tree structure. An objective tree is a rooted tree in which
the nodes are O-spaces, and the children of a node are its preconditions. The roots of these trees will represent
the terminal objectives � they are not preconditions of other objectives. The goal of a single cycle is therefore
to satisfy the roots of all objective trees. If an O-space in the tree is not satis�ed yet, we can satisfy it by �rst
satisfying all its children, and then applying an appropriate action.

In the objective pre-selection step (see Section 4.3), we will use the objective trees to e�ciently conclude
on a set of relevant objectives. In the action pre-selection step (see Section 4.4), we will use the tree to
identify invalid actions (actions which undo certain already satis�ed objectives). More precisely, each node in
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Figure 3: The three objective trees generated at the beginning of a cycle for the problem of Section 3.2. A
gray number indicates the iteration of the tree updating loop, in which this node was added. A zero means
that this node was added during initialization of the trees. The check-marks indicate that these O-spaces are
satis�ed in the initial state, hence the updating process stopped there. A green boundary marks the satis�able
O-spaces, those which will be suggested by the objective pre-selection.

an objective tree is either locked or unlocked (initially, all nodes unlocked). Locked nodes are those which
are not allowed to become unsatis�ed again (how these are chosen is explained in Section 4.7). Formally,
an action is considered invalid, if its successor state does not satisfy all locked objectives (with an exception
explained in Section 4.4). In this way, we can avoid undoing achieved goals, and hence avoid getting stuck in
loops. By systematically locking/unlocking objectives, it is possible to narrow down the set of possible actions,
and therewith minimize the e�ect of combinatorial explosion on the state space search.

To discuss the example from Section 3.2, a set of only four objectives is su�cient. These are also su�cient
to model a wide range of transportation tasks in the SVW:

� XatL: Object X is located at location L.

� atL: The agent is at location L.

� atX: The agent is at the location of object X.

� hasX: The agent carries X.

Additionally it is useful to consider S as an O-space. It can be used as a precondition of O-spaces that
are always satis�able. Transport tasks will be interpreted as XatL objectives with appropriate object X and
location L. Walk-to tasks will be interpreted as atL objectives with appropriate location L.

4.3 Updating objective trees and objective pre-selection

The objective trees are initialized at the beginning of a cycle, before the �rst iteration. For each terminal
objective we create an objective tree Ti with the associated O-space as a root.

At the beginning of each iteration, we need to update the objective trees: for each unsatis�ed O-space O
that is a leave of an objective tree, we generate a set of preconditions of O and add them as children of O to
the tree. We repeat this iteratively, until all leaves are satis�ed. The objective trees generated in the example
of Section 3.2 are shown in Figure 3.

The task of the objective pre-selection is to generate a list of O-spaces which should be considered as goals
in this iterations. These O-spaces are called active, and are those which are satis�able, but not yet satis�ed.
The list of all active O-spaces is the result of the objective pre-selection step.
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4.4 Action pre-selection

The task of the action pre-selection is to take the list of active O-spaces, and generate a list of valid actions,
more precisely, a list of pairs (O, a), where O is a node representing an active O-space, and a is an action
for achieving O. A pair (O, a) is considered as valid, if the successor state δs(a) (s being the current state)
satis�es all locked objectives, except any locked descendants of O. The descendants of O can be ignored,
because they were added to the objective trees with the purpose to satisfy O, the goal we are trying to reach
by a anyway. The list of all valid pairs is the result of the action pre-selection step.

4.5 Action selection

The task of the action selection is to choose a single pair (O∗, a∗) from the list provided by the action pre-
selection. Since the action selection is implemented in a world-agnostic manner, the nature of the elements
of the list is ignored in this step. We therefore abbreviate a pair (O, a) by an abstract action a.

The action selection is the appropriate part of the planning to use the reinforcement learning. However,
for the sake of a compact description, we instead consider a simple (but already useful) implementation of
the action selection by always choosing a random action a from the list. Since the action pre-selection only
produces target-aimed actions, we can never enter a loop, independent of the actual choice process.

By the actual action selection process, we obtain a pair a∗ = (O∗, a∗). This pair is the result of the action
selection step. The following steps �nalize an iteration of the planning algorithm:

� The action a∗ is sent to the environment and applied to the current state s ∈ S. This results in the
new state δs(a∗).

� The O-space O∗ is locked.

� The objective tree is pruned at O∗, i.e. all descendants of O∗ are removed (this includes unlocking any
locked descendants).

Note, that while there may be other objectives becoming satis�ed when applying a∗, we only lock O∗. This
models the fact that we intentionally chose this objective to be important, so that we do not want it to become
unsatis�ed again. Locking other objectives might prevent us from reaching a terminal state.

4.6 The planning algorithm

The planning algorithm is guaranteed to terminate after a �nite number of iterations. This is evident from
the fact, that the locked O-spaces are successively moving closer to the roots of their respective objective
tree: in each iteration, the chosen O-space O∗ is locked. This lock will not be removed (and consequently the
objective will never become unsatis�ed) until an ancestor of O∗ is locked and O∗ is deleted.

The pseudo code of a single cycle of the planning algorithm is given in the following:
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(Ot
1, ..., O

t
n) = generateTerminaleObjectives(getComplexTasks());

initializeObjectiveTrees(Ot
1, ..., O

t
n);

while a terminal objective Ot
i was not achieved do

updateObjectiveTrees();
// objective pre-selection + action pre-selection
L = { };
for each active O-space O do

for each action a with δs(a) ∈ O do

if isValid(O, a) then
L = L ∪ { (O, a) }

end

end

end

if L is empty then

break;
// reached a dead end. End cycle

end

// action selction
(O∗, a∗) = makeDecision(L);
lock(O∗);
pruneObjectiveTreeAt(O∗);
apply(a∗);

end

4.7 Notes on the implementation

The objective and action pre-selection steps depend on world knowledge. This world knowledge is provided by
the implementation of the objectives. The algorithm is described as operating on abstract objectives, which
are modeled as sets of states. Set operations are not feasible for an actual implementation. Instead, we use
an e�cient and easily reproducible implementation of the concept of objectives, which allows us to

� determine, whether a state s achieves O.

� provides appropriate preconditions O1, ..., Om of O, as well as actions to reach O from P (O).

� determine whether an action a is valid for O, i.e. leaves O satis�ed.

An objective is uniquely determined by an implementation for only these three queries. The �rst query is mostly
trivial to implement, as it only checks a certain property of the environment. Table 3 contains descriptions
how the other two queries are implemented for the four fundamental objective types used in the example.
Note that in the example of Section 3.2, all objects must be grabbed two-handed, hence any grab action is of
the type grabTH.

5 COMPUTATIONAL RESULTS

To illustrate the applicability of our planning approach, we consider two example. As mentioned in 4.5, we
use a random action selection instead of the learning approach for a self-contained description and an easier
understanding of the results. Although random choice is one of the simplest action selection strategies, which
on its own is not guaranteed to terminate (e.g. we can loop on repeatedly picking up and releasing a box),
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objective decomposition of P (O) invalid actions

XatL Can be satis�ed by a �release X at L� action. This
action is meaningful if hasX and atL are satis�ed:
P (O) ⊇ atL ∩ hasX

Grab actions that involve X

hasX Can be satis�ed by a �grab X� action. This action is
meaningful if atX is satis�ed: P (O) ⊇ atX

Release actions that involve X

atL Can be satis�ed by a �walk to L� action. This action
is always meaningful, hence P (O) = S.

Walk actions

atX Can be satis�ed by a �walk to location of X� action.
This action is always meaningful, hence P (O) = S.

Walk actions

Table 3: Overview of the implementation of four fundamental objectives.

the used action pre-selection techniques su�ce to ensure termination after a small number of steps. We show
this by directly comparing action generation with and without the action pre-selection.

For the evaluation we used a further optimization to limit the run time and memory consumption. In each
cycle, the algorithm explores a random path in the state tree. In order to further minimize the number of
branches in each state, we decided to delete states which are no longer needed. A state deletion will happen
in one of the following cases:

� The planning algorithm prevents loops by two techniques: 1. only considering target-aimed actions,
2. excluding actions that undo former achievements. It can happen that these restrictions exclude
all actions, hence that the current state is a dead end in the current search path. More general, any
non-terminal state without successors can be considered dead. Dead states are deleted in order to be
not visited again.

� If a state is reached with more costs than the lowest costs known so far for reaching a terminal state,
then this state is deleted to be not considered again.

Note that the deletion of a state will reduce the number of branches of the parent state. If enough successor
states are deleted, the state will have no branches, is considered dead and will be deleted itself.

Both exemplary planning procedures where executed on a single core of an Intel(R) Core(TM) i7-6700HQ
CPU (2.60 GHz).

5.1 Example: Four tables, three boxes

The scene is given in Figure 4 with the example tasks from Section 3.2. This con�guration is chosen to have
a non-trivial optimal solution. A simple greedy strategy would always choose the cheapest action, which is to
transport the closest box one table to the right. However, the overall best solution is to walk to the left and
start with the box on the left table. This is, because then any box ends up where the next one can be picked
up.

Initially we ran 10,000 cycles (in under a second) without an action pre-selection (i.e. all logically valid
actions are considered). This, for example, allowed the agent to walk to tables, and subsequently leave
them again without doing anything there. This resulted in state spaces in the order of 1,300,000 visited states
(mostly all are remaining since dead ends cannot be detected without pre-selection) and not a single encounter
of an optimal solution. The �rst encounter of the optimal solution was not before the 1,000,000th iteration.
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Figure 4: Schematic representation of the scene from example 1, with the example task from Section 3.2.
The scene contains four tables with three boxes, each of which should be moved one table to the right. The
agent starts at the far rigth. The middle �gure shows the optimal path of the agent. The bottom �gure shows
the greedy solution, which is far from optimal. A red curve indicates that the agent is walking without moving
any box closer to is location. A green curve indicates that the agent is productive by carrying a box to its
target location. A blue line does not represent a relocation of the agent, it is just there to present the path
of the agent as a continuous curve. A blue line indicates that the connected places could be reached by the
agent from a single location and no intermediate walk action is necessary.

Running the planning procedure with pre-selection resulted in an optimal solution within 30 cycles with
a high probability. This is because the state space in average only contains 60 states and branch deletion
resulted in only 11 surviving states (an initial state plus one states per step in the optimal solution; compare
Fig. 4).

Running 10,000 cycles with pre-selection (in under a second), the percentage of cycles resulting in dead
ends drops to zero rapidly after all dead ends are removed. This example demonstrates how the state space
can be trimmed e�ectively. Here, the size of the state space was reduces by an order of 105 compared to a
run without pre-selection.

Figure 5 shows some initial iterations for a single objective tree from a cycle resulting in an optimal actions
sequence.

5.2 Example: Eight tables, twelve boxes

For the second example we considered a more complex transport scene with eight tables and twelve boxes,
and without any obvious optimal solution (see Fig. 6).

Running the procedure without pre-selection only gave highly sub-optimal solutions because the state
space without reduction is far to large. Even with pre-selection and 10,000 cycles run, we visited more than
13,000,000 states with still 10,000,000 of them remaining alive. During the search, approximately 1,600,000
states were dropped because they were dead, but still only about 50% of all paths lead into dead ends. Another
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Figure 5: Four iterations in a cycle that results in an optimal action sequence for the example from Section
3.2. The evolution of only one of the three objective trees is shown in the image. The green highlighted
objective represents the objective that was chosen by the action selection (the green boundary again indicates
active objectives). The red highlighted objectives are blocked from becoming satis�ed, because they contradict
a currently locked objective (indicated by a gray lock symbol). Note that in the second and fourth step, the
action selection had no real choice, because there is only a single remaining active and valid objective.

Figure 6: Schematic representation of the scene and task from example 2. The right �gure represents the
best solution found by the planning algorithm. The colors are to be understood as explained in the caption of
Fig. 4.
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1,000,000 states were removed because of sub-optimal costs. Running these 10,000 cycles took under a second.
The best solution found is shown in Fig. 6. This solution is probably optimal since a second run of the planning
algorithm for over a minute (and 500,000 cycles) resulted in no better solution. This example demonstrates
the application of the pre-selection in a case which is intractable otherwise.

6 CONCLUSIONS

For given descriptions of transport or assembly tasks the �Smart Virtual Worker� computes action sequences
to ful�ll these tasks. An optimization procedure is used to �nd solutions that balance the requirements of
e�ciency and ergonomics according to the speci�cations of MTM and RULA. Since these scores can only
be computed as we traverse the state space, world agnostic learning methods must be used to compute the
solution. In this paper we present a compact and easy extendable implementation of a world-knowledge based
action pre-selection mechanism to enhance the performance of such strategies. To demonstrate the usefulness
of the method we demonstrate that even with a complete random action selection our method is capable of
solving non-trivial planning problems by heavily reducing the size of the search space.
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