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Abstract. Log-aesthetic curve is a plane curve proposed as a curve with high quality
curvature distribution. However, since the general expression is given in integral form, gen-
eration takes time, and there is a problem that drawing may not be possible for the given
boundary condition depending on the shape parameter α. In this research, we implement
the discretization of log-aesthetic plane curve and propose G1 Hermite interpolation method
based on the discretization to solve these problems. We also propose a method of generating
discrete log-aesthetic surfaces and G1 Hermite interpolation by extending the formulation of
planar curves to surfaces.

Keywords: log-aesthetic curve, log-aesthetic surface, discretization , G1 Hermite interpola-
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1 INTRODUCTION

Recently, aesthetic design which takes account of designability has become popular. In the aesthetic design,
the creation of high quality curve and surface models is demanded. However, on current CAD systems, the
operator must move control points by trial and error to obtain high-quality curves and surfaces. This incurs
high costs and requires a great deal of expertise. Therefore, an e�cient method to generate fair curves and
surfaces is desirable to achieve high quality that will satisfy customers' aesthetic requirements.

"Aesthetic curves" were proposed by Harada et al. as curve whose logarithmic distribution diagram of
curvature (LDDC) can be approximated by straight line. Miura et al. [3] derived analytical solution of the
curves whose logarithmic curvature graph (LCG)- an analytical version of the LDDC is strictly given by a
straight line and proposed these lines as general equations of aesthetic curves. For a given curve, we assume
the arc length of the curve, the radius of curvature and slope of LCG are denoted by s and ρ and α, respectively.
When α 6= 0, one of the general equations of aesthetic curves is given by the following equation on 2D plane.

ρα = cs+ d (1)

Computer-Aided Design & Applications, 17(3), 2020, 607-620
© 2020 CAD Solutions, LLC, http://www.cad-journal.net

http://orcid.org/0000-0001-6510-3607
http://orcid.org/0000-0002-2607-7204
http://orcid.org/0000-0003-1165-5507
http://orcid.org/0000-0001-9326-3130
mainto:yagi.kazumichi.14@shizuoka.ac.jp
mainto:sho.suzuki.14a@shizuoka.ac.jp
mainto:usuki@shizuoka.ac.jp
mainto:miura.kenjiro@shizuoka.ac.jp
mailto:yagi.kazumichi.14@shizuoka.ac.jp
http://www.cad-journal.net


608

where, α, c and d are constants. In particular, α is the slope of LCG and a parameter for controlling the
impression of the curve. Fig.1 illustrates log-aesthetic curves for various α values. Also, one segment of the
log-aesthetic planer curve is uniquely determined by both the endpoints and tangent vectors there [2]. Hence,
one can modify the log-aesthetic curve by changing these boundary conditions and α value. Since the log-
aesthetic curve is de�ned by use of curvature as the above equation, its curvature distribution is smooth. In
addition, it includes logarithmic (equiangular) spiral, clothoid, and circular involute as well as Nielsen's spiral.

α

α

α

α

α

α

α
α

α
αα

α

Figure 1: Log-aesthetic curves with various α's.

As a formulation of log-aesthetic surfaces, some surface formulas besides the minimum variation log-
aesthetic surface have been proposed that generate free-form surfaces by sweeping the log-aesthetic curve
[1, 6].Harada et al proposed the log-aesthetic curved surface [1]. It is de�ned as a sweeping surface using two
pro�le curves, which are composed of log-aesthetic curves, and one guide line composed of a non-log-aesthetic
curve. Saito et al. proposed the complete log-aesthetic surface [6]. It is de�ned as a pure sweeping surface with
two log-aesthetic curves. This formulation also uses the log-aesthetic curve as the guide line and guarantees
that all parametric curves are log-aesthetic. Suzuki et al proposed a new formulation of the minimum variation
log-aesthetic surface(MVLAS) for scale-invariance and Parameterization-independence [8]. However, it takes
time to generate these curves and surfaces.

In this research, in order to solve the problem, focusing on discrete curves that can be expected for
high speed in generation, we propose discretization of log-aesthetic plane curves based on point sequence
interpolation by discrete clothoid curves, and G1 Hermite interpolating method that generates curves from
end points and the tangential direction there. In addition, we extend the method used in the curves to the
surfaces.

2 RELATED WORK

In plane case, Schneider et al proposed a algorithm to construct an interpolating closed discrete clothoid spline
(DCS) purely based on its characteristic di�erential equation[5]. In the algorithm, �rstly, initial polygon are
speci�ed and interpolation points are inserted between the polygon so as to interpolate between initial point
sequences so that curvature change becomes monotonous. Furthermore, they extended the algorithm of planar
clothoid splines to closed surfaces of arbitrary topology[5].

3 EULER-LAGRANGE EQUATION

The Euler-Lagrange equation in the variational problem is a partial di�erential equation that characterizes a
functional, In this research, we transform the discrete curve and surface by this Euler-Lagrange equation. From
the variational principle, the log-aesthetic curve satis�es ρα = cs + d, so it is reformulated as a curve that
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minimizes the energy between two points in the space with arc length s on the horizontal axis and σ = ρα on
the vertical axis[4]. Then, the functional of the log-aesthetic curve is given by Eq.2[7].

KLAC =

∫
σ2
sds (2)

where σs is the derivative of σ with respect to s.
Therefore, the Euler-Lagrange equation is expressed as Eq.3.

d

ds
(
∂σ2

s

∂σs
) =

d

ds
(2σs) = 2σss = 0 (3)

Moreover,
d

ds
(κ−α) = −ακ−(1+α)κs (4)

where κ is curvature.

d2

ds2
(κ−α) =

d

ds
(ακ−(1+α)κs)

= α(1 + α)κ−(2+α)κ2s − ακ−(1+α)κss (5)

Hence, we obtain the following expression.

(1 + α)κ−(2+α)κ2s − κ−(1+α)κss = 0

(1 + α)κ2s − κκss = 0 (6)

When ei = 1, 2(min,max) as a unit principal direction vector and σ = (ρi)αi , σii = dσi

dei
, the functional KLAS

of MVLAS is de�ned as Eq.7 by extending the functional (Eq.2) of the log-aesthetic curve to surfaces with
respect to the principal curvature [8].

KLAS =

∫ 2∑
i=1

(σii)
2dA

=

∫ 2∑
i=1

(αi(κ
i)−(1+αi)κii)

2dA (7)

On the other hand, the unit principal direction vector ei is given by Eq.8 when the eigen vector that corre-
sponding to ei is (ξi, ηi).

êi =
∂S

∂u
ξi +

∂S

∂v
ηi (8)

From Eq.8, the principal direction di�erential dκidei
of the principal curvature becomes as shown in Eq.9, paying

attention to the fact that the principal direction is a unit vector.

dκi

dei
=

1√
E

dκi

du
ξi +

1√
G

dκi

dv
ηi (9)
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Moreover, ξ1 = η2 are 1, ξ2 = η1 are 0, when put E = G = 1 and consider curvature line coordinates s, t.
Hence Eq.7 will be following equation.

KLAS =

∫ ∫ 2∑
i=1

1

gii
(αi(κ

i)−(1+αi)κii)
2
√
EG− F 2dsdt

=

∫ ∫ 2∑
i=1

(αi(κ
i)−(1+αi)κii)

2dsdt

=

∫ ∫ 2∑
i=1

(σii)
2dsdt (10)

where, F = 0 because the principal directions are orthogonal to each other. From Eq.10, we obtain the
following Euler-Lagrange equation.

2∑
i=1

σiii = 0 (11)

2∑
i=1

(
(1 + αi)(κ

i
i)

2 − κiκiii
)

= 0 (12)

Schneider et al de�ned Discrete Clothoid Spline as a curve where the discrete curvature satis�es the following
equation[5].

∆κi = κi−1 − 2κi + κi+1 = 0 (13)

κi can be updated by following equation.

κi =
κi−1 + κi+1

2
(14)

Moreover, Schneider et al extended this theory of the curves to surfaces, considering a one-ring at the vertex,
and updated the inner vertex of the triangular mesh by Eq.15.

κi =
1

6

6∑
l=1

Hi,l (15)

Likewise, the curvature of the discrete log-aesthetic surface is updated the vertex of the Quadrilateral mesh
from the following expression.

2∑
j=1

σji =
1

8

2∑
j=1

8∑
l=1

σji,l (16)

Hence, when α1 = α2 = −1,
2∑
j=1

σji =

2∑
j=1

ρ−1
j = κ1 + κ2 = 2H (17)

since Eq.16 is twice the average curvature, the result of the optimization agrees with the case of Schneider.
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4 PROCESSING PROCEDURE

We show the �ow chart of our method in Fig.2 and explain its procedures in detail as below.

1. In curve case, input the start point, the end point, the tangent vector at there, α, and number of
subdivision. In surface case, input the surface that to determine the boundary conditions, α, and
number of subdivision.

2. While keeping the boundary conditions to satisfy G1 continuity, put the initial points.

3. In order to maintain G1 continuity, optimize the position of the target vertex by minimizing the ob-
jective function while �xing two points from the start point and end point respectively. Implement the
optimization until the convergence condition is satis�ed.

4. Repeat processing for the speci�ed number of subdivision, and output the curve (or mesh) when �nished.

Start

Input
(n:number of 
subdivision)

Initialize points
Optimization

Calculate 
objective function

Convergence 
test

output

End

Subdivision < n

Subdivide

No

No

Yes

Yes

Figure 2: Processing procedure.

5 G1 HERMITE INTERPOLATING WITH DISCRETE LOG-AESTHETIC CURVES

Schneider et al de�ne an initial point sequence as P = {P1, ..., Pn}, and de�ned a point sequence Q =
{Q1, ..., Qm} as a discrete clothoid curve when the point sequence Q including P satis�es Eq.18, Eq.19 [5].

‖Qi−1 −Qi‖ = ‖Qi −Qi+1‖ , Qi /∈ P (18)

∆2κi = κi−1 − 2κi + κi+1 = 0, Qi /∈ P (19)

Discrete curvature κi at Qi is expressed by Eq.20.

κi = 2
det (Qi −Qi−1, Qi+1 −Qi)

‖Qi −Qi−1‖ ‖Qi+1 −Qi‖ ‖Qi+1 −Qi−1‖
(20)
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In this research, in order to generate aesthetic curves we applied shape parameter α to the Eq.19. Hence,
the Eq.19 will be the following equation.

∆2κ−αi = κ−αi−1 − 2κ−αi + κ−αi+1 = 0, Qi /∈ P (21)

Curve shape is updated by iterative calculation so as to satisfy the de�nition of the above equations. Start
processing from the initial shape Q0 of the 0th step, update the point Qk+1

i (Fig.3) that is newly placed in the
k + 1th step Qk → Qk+1 using Eq.22.

Qk+1
i =

1

2

(
Qki+1 +Qki−1

)
+ tR

(π
2

) (
Qki+1 −Qki−1

)
(22)

where R(θ) is rotation matrix and t is parameter to determine amount of movement.

𝑸𝑖
𝑘+1

𝑸𝑖−1
𝑘 𝑸𝑖

𝑘 𝑸𝑖+1
𝑘

Figure 3: Updating vertex.

5.1 Determination of Initial Shape

G1 Hermite interpolation generates curves that satisfy their boundary conditions, specifying both endpoints of
the curve and the tangent direction there. The start and end points of the curve Ps, Pe and the unit tangent
vector there Ts, Te are input. Then, as shown in Fig.4, initial points P1, P2, P3 are de�ned such that the
distance between each point is l.

P1 = Ps + lTs (23)

P3 = Pe − lTe (24)

P2 = P1 + l
P 3 − P1

‖P3 − P1‖
= P3 − l

P3 − P1

‖P3 − P1‖
(25)
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where l is Eq.26, dP = Pe − Ps, sT = Ts + Te, and θ is angle between dP and sT .

l =
‖sT‖ cos θ −

√
4− ‖sT‖2 sin2 θ

‖sT‖2 − 4
‖dP‖ (26)

Ps

P1 P2 P3

Pe
Ts

Te

l

l
l

l

Figure 4: Initial shape of curves.

5.2 Optimization

First, interpolate the initial polygon P by the point sequence Q0
i . The newly arranged Qk+1

i is a vertical
bisector of Qki−1 and Qki+1, and is expressed as Eq.22. t is calculated by following equation.

t =
−κ̃k+1

i

∥∥Qki −Qki−1

∥∥ ∥∥Qki+1 −Qki
∥∥

2
∥∥Qki+1 −Qki−1

∥∥ (27)

Calculate the discrete curvature κ−αs , κ−αe at start point and end point respectively. Moreover, calculate
the arc length lc, and the slope aκ of the lc − κ−α diagram is determined as follows.

aκ =
κ−αe − κ−αs

lc
(28)

In order to maintain G1 continuity, two points at both end points are �xed and updated. The curvature κ
after movement is

κ =
(
κ−αs + saκ

)− 1
α (29)

where s is the arc length from start point to Qji

6 G1 HERMITE INTERPOLATING WITH DISCRETE LOG-AESTHETIC SURFACES

6.1 Subdivision Method in Discrete Log-aesthetic Surface Generation

In this research, discrete Log-aesthetic surface is expressed by square grid mesh. In order to de�ne the surface
uniquely, we use G1 continuity at the boundary, and input the four boundary lines(NURBS) and tangent
vectors that direct to the inside of the surface at the boundary lines. Also, as in the case of curves, the surface
is subdivided and optimization of inner vertices is performed at each division step. Here, when the mesh grid
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consists of m×m vertices, the interior vertices refer to the (m−4)×(m−4) vertices from which the boundary
and the vertex inside one of the boundaries have been removed. Fig.5 shows the subdivision of the discrete
log-aesthetic surface. Here, n is the number of divisions.

Figure 5: Subdivision of the discrete log-aesthetic surface Left:initial polygon, Middle:n=1, Right:n=2.

6.2 How to determine the initial coordinates of new vertices in each subdivision step

The determination of the initial coordinates of the new vertex is performed in the order of the boundary vertex,
the tangent vector designation vertex, and the inner vertex. For a new boundary vertex, the coordinates on the
boundary curve of the corresponding position are acquired, and the position is taken as the position coordinate
of the mesh vertex. For new tangent speci�cation vertices, the vertices are classi�ed into the following four
types, and position coordinates are determined sequentially from the outside of the mesh.

� Type 1: Tangent vector designation vertices at the four corners correspond to type 1. Let Pi,j−1 be
the boundary vertex in the u direction, Pi−1,j be the boundary vertex in the v direction, and Tu, Tv be
the unit tangent vector to the inside of the surface at each point. Moreover, the closest points of the
two straight lines Pi,j−1 + tuTu, Pi−1,j + tvTv with tu, tv as a parameter are calculated, and the middle
point is taken as the coordinate value of the new vertex Pi,j .

� Type 2: Type 2 corresponds to a boundary vertex of the neighborhood and a tangent vector designation
vertex when the inner vertex is an existing vertex. Here, a positive tangent vector designation vertex
in the u direction is described as an example. Let a adjacent bounding vertex be Pi,j−1, a tangent
vector to the inward direction at the bounding Pi,j−1 be Tu, a vertex at four corner side be Pi−1,j ,
and a vector (Pi,j−1 + Pi,j+1)/2− Pi−1,j be Tv. Moreover, the closest points of the two straight lines
Pi,j−1 + tuTu, Pi−1,j + tvTv with tu, tv as a parameter are calculated, and the closest point on the
straight line Pi,j−1 + tuTu side is taken as the coordinate value of the new vertex Pi,j .

� Type 3: Type 3 corresponds to the case where all adjacent four neighbors are new tangent vector
designation vertices. Here, a positive tangent vector designation vertex in the u direction is described
as an example. Let a adjacent bounding vertex be Pi,j−1, a tangent vector to the inward direction at
the bounding Pi,j−1 be Tu, a vertex at four corner side be Pi−1,j , and a vector (Pi−1,j−1 +Pi+1,j−1 +
Pi+1,j+1 + Pi−1,j+1)/4− Pi−1,j be Tv. Moreover, the closest points of the two straight lines Pi,j−1 +
tuTu, Pi−1,j + tvTv with tu, tv as a parameter are calculated, and the closest point on the straight line
Pi,j−1 + tuTu side is taken as the coordinate value of the new vertex Pi,j .
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� Type 4: Type 4 corresponds to the center of tangent vector designation vertices in each direction.
Here, a tangent vector designation vertex in the u direction is described as an example. Let a adjacent
bounding vertex be Pi,j−1, a tangent vector to the inward direction at the bounding Pi,j−1 be Tu, a
negative neighbor vertex in the u direction be Pi−1,j ., and a vector (Pi−1,j + Pi+1,j)/2 − Pi−1,j be
Tv. Moreover, the closest points of the two straight lines Pi,j−1 + tuTu, Pi−1,j + tvTv with tu, tv as a
parameter are calculated, and the closest point on the straight line Pi,j−1 + tuTu side is taken as the
coordinate value of the new vertex Pi,j .

The parameters tu, tv for each type above are calculated using the following formula.

tu =
TudP − (Tv · dP ) (Tu · Tv)

1− (Tu · Tv)2
(30)

tv =
−Tv · dP + (Tu · dP ) (Tu · Tv)

1− (Tu · Tv)2
(31)

Figure 6: Determine tangent vector designation vertex coordinates.

For new inner vertices, we classify the vertices into the following two types and assign vertex coordinate
values.

� Type 1: Type 1 corresponds to the case where two of the four neighboring vertices are existing vertices.
Let the average coordinates of two existing vertices be the coordinate values of the new vertex.

� Type 2: Type 2 corresponds to the case where not all vertices in 4 neighborhoods are existing vertices.
Determine the coordinates Pi,j of the new vertex by Pi,j = (Pi−1,j−1+Pi+1,j−1+Pi+1,j+1+Pi−1,j+1)/4.
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i,ji-1,j

i,j-1
i,j

i,j-1

i,j+1

i-1,j

i,j

i,j-1

i-1,j

i-1,j+1

i-1,j-1

i+1,j+1

i+1,j-1

i,j

i,j-1

i-1,j i+1,j

Figure 7: Class of new tangent vector designation vertices(n=2) Black:existing vertices, Red:new vertices,
Green:same type vertices, Upper left:type1, Upper right:type2, Lower left:type3, Lower right:type4.

6.3 Optimization

Updating vertices is based on Eq.12 and update the curvature of discrete log-aesthetic surface by following
equation.

2∑
j=1

σji =
1

8

2∑
j=1

8∑
l=1

σji,l (32)

when α1 = α2 = −1,
2∑
j=1

σji =

2∑
j=1

ρ−1
j = κ1 + κ2 = 2H (33)

Moreover, calculate the value of ti in Eq.34 below and update the vertex coordinates.

Qk+1
i = gp(Q

k
i + ti~n

k
i ) (34)

gp(Qi) =
1

8

8∑
l=1

Qi,l (35)
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i,ji-1,j i+1,j

i,j

i-1,j+1 i+1,j+1

i+1,j-1i-1,j-1

Figure 8: Class of new inner vertices(n=2) Black:existing vertices, Red:new vertices, Green:same type vertices�
Left:type1, Right:type2

gp(Hi) =
1

8

8∑
l=1

Hi,l (36)

Since the calculated ideal mean curvature satis�es the Eq.37, the objective function F (Eq.39) can be
obtained by using the Eq.38, so minimizing this objective function yields ti Find the value.

H̃k+1
i = gh(H̃k+1

i ) (37)

Hk+1
i = H̃k+1

i (38)

F = H(gp(Q
k
i + ti~n

k
i ))− H̃k+1

i (39)

7 RESULT

We show the results of G1 hermite interpolating with log-aesthetic curve and surface in Fig.9, Fig.10 re-
spectively. Moreover, Fig.11 shows mean curvature distribution of the surface and Fig.12 shows zebra map.
For all the following examples, we used a PC with Core i7-8700 3.20GHz CPU. Fig.9 shows the generated
log-aesthetic curve(α = −1.0) and the curvature distribution(α = −1.0). The number of subdivision is 2 and
processing time is 11ms(Fig.9a). Also, 16ms when the number of subdivision is 5(Fig.9b). It can be seen from
the curvature distribution that the curvature of the curve monotonically changes. In Fig.10, the α value in
the u and v directions is -1.0 respectively and the processing time was 5.1s for 2 divisions and 39.9s seconds
for 3 divisions. However, because it is far from the fast processing time required by CAD, it may be necessary
to further speed up. Moreover, Fig.13 shows a car model created with the discrete log-aesthetic surfaces
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Figure 9: G1 Hermite interpolating with discrete log-aesthetic curve Left:generated curves Right:curvature
distribution(α = −1.0).

proposed in this paper. The generation time of each surface in this model was about 0.004s on average. This
result is a considerably short processing time as compared to the case of Fig.10 and Table 1. The reason is
that the curves that constract the surface are simple. Table 1 shows the comparison of the processing time
according to the di�erence in the number of divisions in the case of each of curves and surfaces. The rise
width of the processing time in the case of curves is not large, but in the case of surfaces, the processing time
is greatly increased due to the di�erence in the number of divisions.

8 CONCLUSIONS

In this research, we propose a G1 Hermite interpolation method based on a discrete log-aesthetic curve aiming
at speeding up curve generation based on point sequence interpolation based on discrete clothoid curve, and
generated log-aesthetic plane curves. Also, by extending the method used on the curve to a surface, we propose

Figure 10: G1 Hermite interpolating with discrete log-aesthetic surface Left:input Middle:2times Right:3times.
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Figure 11: Mean curvature distribution Left:input Middle:2times Right:3times.

Figure 12: Zebra map Left:input Middle:2times Right:3times.

Figure 13: Car model composed of discrete log-aesthetic surfaces.
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2times 3times 5times

Curve 11ms 12ms 16ms

Surface 5.1s 39.9s 1229.3s

Table 1: Comparison of processing time by di�erence of division number

a G1 Hermite interpolation method based on a log-aesthetic surface, and generated log-aesthetic surfaces.
In the future, we would like to compare processing time and accuracy with existing methods, or create more
practical examples.
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