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Abstract. We propose a novel algorithm for computing a contour-type cutter path 
for a mold CAD model in the polyhedral representation. Our algorithm uses a 

Minkowski sum shape of the mold model and a cutter model in the inverted 
orientation. To realize a robust Minkowski sum computation, a grid-based shape 

representation called a two-directional dexel model is used. This method can 
represent the 2D object with a much smaller amount of memory than the regular 
square-mesh-based method. Using this advantage, we realize a two-directional 
dexel models based on an ultra-high-resolution grid. Parallel processing with many 
cores of graphics processing unit (GPU) is also introduced for reducing the 

computation time. An experimental path computation software is implemented, and 
its performance is analyzed.  
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1 INTRODUCTION 

Cutter path computation for numerical-controlled (NC) three-axis machining is still an important 
topic for computer-aided manufacturing (CAM) systems. In the machining of a mold part with a 
complex curved surface, a contour-type cutter path with very small vertical intervals is required. 
The Development of an algorithm for a robust, accurate, and fast cutter path computation is 
required by CAM software companies. In this paper, we propose a novel algorithm for computing 
the contour-type cutter path for mold CAD models in the polyhedral representation.  

Our algorithm uses a Minkowski sum of the mold CAD model and a cutter model in the 
inverted orientation in the cutter path computation. The Minkowski sum for a polyhedral object can 
be obtained by computing the Minkowski sum shapes for the individual polygons (triangles) of the 
object and by computing their Boolean union shape. In the conventional boundary representation 
CAD modeling, the difficulty of the Minkowski sum computation increases significantly in the case 
of a complex model with many polygons, because topological reconstruction by trimming and 

reconnecting the surface elements into a closed model is iterated many times.  
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To overcome this difficulty, a grid-based shape representation with no topological information 
is used. Grid-based shape representation can be considered as the sampling of the surface points 
according to the spatial cell structure. To reduce the shape error caused by the sampling interval, 
the use of a cell structure based on an ultra-high-resolution grid is necessary. This approach 

results in an inevitable increase in the memory usage and processing time required. A two-
directional dexel model is introduced for reducing the memory consumption in the model 
representation. Parallel processing with many cores of graphics processing unit (GPU) is also used 
for reducing the computation time. An experimental path computation software is implemented, 
and its performance is analyzed. 

In the next section, related studies on the cutter path computation are briefly explained. In 
Section 3, a two-directional dexel model for representing the Minkowski sum shape and a GPU 

accelerated parallel algorithm for computing the Minkowski sum shape are illustrated. The 

computation method of the contour-type cutter path using the Minkowski sum shape is given in 
Section 4. The experimental computation results are provided in Section 5, and we summarize our 
conclusions in Section 6.  

2 RELATED STUDIES 

Because cutter path computation is a core function of the CAM software, several corresponding 

methods have been studied. A survey paper [5] presented a classification of the cutter path 
computation methods developed from the period 1989 through 1994. In this paper, the path 
computation methods for three-axis milling are classified as iso-parametric methods, methods for 
pocketing, tool-positioning methods, and Minkowski-sum-based methods (offset-based methods in 
[5]). Although several methods have been developed since then, they can be classified into any of 
these four groups. In the contour-type path generation, either the tool-positioning method or 

Minkowski-sum-based method are used. In the former method, it is necessary to repeat the 

convergence calculation when determining the appropriate tool position, which generally requires a 
longer processing time. Therefore, recently, the path computation based on the Minkowski sum 
has become more popular.  

Incorrectly computed paths may result in the undesirable results of milling too deeply 
(gouging) or leaving too much material on the workpiece surface. These problems can be avoided 
by computing a cutter location (CL) surface before the path generation. The CL surface represents 
a trajectory surface of the reference point of a cutter when the cutter is slid over the mold surface. 

Figure 1(a) illustrates a CL surface for a rather large cutter that is typically used in the initial rough 
milling stage. Once the CL surface is obtained, the computation of a gouge-free cutter path is 
easily realized by controlling the reference point of the cutter such that it is always on or above the 
CL surface. Let us consider a local coordinate frame at the reference point of the cutter and 
generate its inverted shape by transforming point p in the cutter to (- p). The CL surface 

corresponds to the top surface of the Minkowski sum shape of the part surface and the inverted 

cutter as shown in Figure 1(b). 

 

Figure 1: Cutter location surface (a) and Minkowski sum of a mold part and the inverted cutter 
(b). 
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In this method, the path computation process can be subdivided into two steps, the Minkowski 
sum computation step for obtaining the CL surface (Step 1) and its succeeding step for tracing the 
cutter path in the CL surface (Step 2). In the contour-type path computation, the latter step is an 
iteration of the slicing operation of the CL surface with horizontal planes. As the process in the first 

step is more critical than the slicing operation, we review previous studies on the Minkowski sum 
computation in this section. The Minkowski sum of a solid object and an inverted ball-end cutter 
can be obtained using the offset computation. Offsetting is one of the most fundamental 
operations in geometric modeling [15]. The offset computation of a 3D object in the boundary 
representation is a complex process, because it must handle both the offsetting of individual 
surfaces in the model as well as topological reconstruction by trimming and connecting the offset 
surfaces into a closed model.  

Earlier techniques for offsetting 3D models [6, 15, 17] were often computationally expensive, 

and model reconstruction can be unstable. To overcome these difficulties, new offset computation 
methods based on the discrete representation of the 3D model have become popular. Known 
representation schemes utilize points, voxels, dexels [19], rays [13], and layered depth images 
(LDIs) [18], and various improvements, e.g., triple-dexels [1], have been reported. As discrete 3D 
models do not have surface elements, the topological reconstruction step, which is the most 

critical process in conventional offsetting, is unnecessary. After the offsetting, a polyhedral model 
of the offset shape is derived by applying a surface extraction technology, such as marching cubes 
[12] or dual contouring [19], to the discrete model. 

Let us consider a 3D object in a box-like space. The distance field is the spatial grid structure 
in which the distance from the point to the closest surface of the object is recorded at each grid 
point. Many researchers have presented distance field-based offsetting methods [2, 3, 7, 11]. For 
some offset radius r, the offset surface of the model goes across an edge connecting a grid point 

with a distance greater than r with another point at a distance less than r. After detecting such 

edges, a marching cubes method (or similar) can be used to determine the polygonal offset 
surface. A similar idea was used in [22], wherein several filtering methods were developed for 
reducing the computation cost of the distance field.  

Li and McMains discussed a voxelized Minkowski sum computation with culling techniques [9, 
10]. Their method first generates possible surface elements of the Minkowski sum shape of two 
objects. The voxels corresponding to the Minkowski sum shape are then selected according to the 

surface elements. The offsetting method proposed by Wang and Manocha uses LDIs to record the 
object shape and temporal result of the offset computation [21, 23]. Zhao et al. developed a 
compact LDI (CLDI) approach, which offers improved data storage technology to reduce the 
amount of memory required [24]. These works also use the parallel processing capability of GPUs 
to accelerate the computation.  

The Minkowski sum computation with the use of discrete shape representation can be 

considered as a sampling operation of the surface points according to the spatial cell structure. To 

obtain the accurate result, the cell structure with a sufficiently small grid size, that is a grid of a 
sufficiently large resolution is necessary, which inevitably results in a large memory usage in the 
model representation. In the cutter path computation, an accuracy of 0.001 mm is required in the 
result path, and therefore, an ultra-high-resolution grid—for example, a resolution greater than 
20,000—becomes necessary in the Minkowski sum computation. In the current implementation 
methods comprising the use of the distance field, voxels, LDI, CLDI or triple-dexels, it is difficult to 

realize a model representation comprising the use of such a high-resolution grid.  

3 STEP 1: MINKOWSKI SUM COMPUTATION 

We consider the contour-type cutter path computation for a milling process with a ball-end, flat-
end, or radius-end cutter in the vertical spindle axis direction. The input data of the algorithm 

consists of a polyhedral model of a mold part, the shape data of a cutter (tool radius R and corner 
radius r in Figure 2), and a list of z coordinates specifying the height information of the reference 
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point of the cutter (see Figure 2) in the contour-type path generation. The majority of commercial 
CAD systems provide a function for outputting the model data as a group of triangular polygons, 
such as in the STL format. STL models are prepared such that the shape difference between the 
original model with the curved surface and the mesh model obtained by the tessellation is less 

than a predefined small value . 

 
Figure 2: Cutter shape definitions. 

 
Figure 3: Contour-type cutter path computation process. 

 

Our algorithm computes a Minkowski sum shape of the mold model and the cutter model in the 
inverted orientation (Figure 3(a)). The obtained shape is sliced by horizontal planes positioned at 
the heights specified in the given list (Figure 3(b)). The boundary curves of the cross-sectional 
figures correspond to the contour-type cutter path. In this section, the Minkowski sum 
computation algorithm is explained. To represent the Minkowski sum shape in the ultra-high-

resolution discrete format within a limited memory capacity of an ordinary PC, a two-directional 

dexel model is introduced. The use of the parallel processing capability of the GPU for accelerating 
the computation is also explained. 

3.1 Two-Directional Dexel Model 

In the original dexel model, a 3D object is represented by a series of vertical segments (dexels) 
defined at each grid point in a regular square grid in the xy-plane [20]. Each segment corresponds 
to an overlapping range between the vertical ray that originates from each grid point and the 
object. In this method, near-vertical surfaces inevitably have staircase errors. A triple-dexel model 
was proposed to overcome this non-uniformity of the representation accuracy. In this 
representation, the 3D shape is not only defined by the z-axis-aligned (vertical) dexels, but also 
the x-axis-aligned dexels based on a grid in the yz-plane and y-axis-aligned dexels based on a grid 

in the zx-plane (Figure 4(a)) [1].  

In the contour-type path computation, the Minkowski sum shape is sliced by a horizontal plane 
at a specific height. The boundary curves of the cross-sectional figure correspond to the path at 
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the height. To properly represent the section figures in the horizontal planes at the specific 
heights, we modify the grid definitions of the triple-dexel model. The Horizontal lines of the grids 
in the yz- and zx-planes are arranged such that their z-coordinates become equal to the height 
specifications for the contour-type path. As the z-axis-aligned dexels do not contribute to the 

cross-sectional figures in the horizontal plane, they are eliminated from the representation (Figure 
4(b)). The elimination of the z-axis-aligned dexels and definition of horizontal lines of the grids 
only for specific heights facilitates a significant reduction in the amount of memory required for 
representing the model. 

 

 

Figure 4: Triple-dexel model (a) and x-axis-aligned dexels and y-axis-aligned dexels for 
representing sectional figures (b). 

 

Figure 5: Two-directional dexel model for representing a cross-sectional figure in a slicing plane. 

 

The cross-sectional figures in each slicing plane are represented by x-axis-aligned dexels and y-

axis-aligned dexels. We call this representation method a two-directional dexel model. The two-
directional dexel model is equivalent to a 2D figure representation method comprising the use of a 
regular square mesh. Let us consider a two-directional dexel model with a resolution m in the x-
axis direction and n in the y-axis direction (Figure 5). In the two-directional dexel model, the 
amount of memory required for recording figures in the mesh is proportional to m + n, which is 
much smaller than mn and is necessary for recording the figures in the ordinally square mesh. m 

(or n) can be larger than 20,000 in our current implementation. In the following explanation, we 
use the notation [m, n] for describing the resolutions of the two-directional dexel model. 
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Using the hierarchical cell structure such as Quadtree [16], a similar memory reduction is 
realizable in the 2D shape representation. However, this representation method is not suitable for 
representing the shape with a dynamic modification—for example, the Minkowski sum operation—
because frequent reconstruction of the hierarchical structure is necessary. The memory required 

for a 2D shape representation can be reduced by recording only the cells on the object’s boundary. 
In this method, the internal and external parts of the object are indistinguishable, which makes it 
difficult to obtain the Boolean union shape in the Minkowski sum computation. 

3.2 Minkowski Sum Computation for Two-Directional Dexel Model 

Our Minkowski sum computation algorithm is a modification of our offset computation algorithm 
using the triple-dexel model [8]. Let us consider the Minkowski sum computation of a polyhedral 
object and an inverted flat-end cutter of radius R and length l. We assume that l is sufficiently 

large (larger than the height of the target mold part). This processing can be decomposed into the 
computation of the Minkowski sum of individual triangular polygons constituting the object and the 
inverted cutter (see Figures 6 (b) and (c)). The Boolean union of the Minkowski sum shapes for all 
the polygons becomes the Minkowski sum shape of the target object as shown in Figure 6(d).  

 

 

Figure 6: Computation process of Minkowski sum shape of a polyhedral object and an inverted 
flat-end cutter.  

 

 

Figure 7: Surface elements for organizing the Minkowski sum shape of a triangle and an inverted 

flat-end cutter of radius R and length l. 
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The Minkowski sum of a single triangle and the inverted flat-end cutter is a composition of the 
following three types of surface elements (see Figure 7). 

⚫ For each vertex v of the triangle, the inverted flat-end cutter is placed such that the 
reference point of the cutter and v are coincident.  

⚫ For each edge e, ruled surfaces generated by sweeping the inverted cutter along e are 
placed. Let us consider a vector u from one end point of e to the other end point. Using 
the vector u, the surface of the inverted flat-end cutter can be classified to a region with a 
normal vector facing u and the other region with a normal vector perpendicular to u or 
facing the direction opposite to u. We can obtain the ruled surfaces by linearly sweeping 
the border curves between these two regions along e. They are a slant cylinder connecting 
two end points of e, another slant cylinder locating l lower than the first slant cylinder, and 

two vertical parallelograms connecting two slant cylinders. 

⚫ Two triangles that are obtained by shifting the original triangle f by a vector s and its 
opposite vector –s, where s is given by projecting the normal vector n of the triangle to 
the horizontal plane, and then adjusting its length such that it is equal to R. The latter 
triangle is further moved in the negative z-axis direction by l. 

For each x-axis-aligned line or y-axis-aligned line of the square mesh in a slicing plane, the 

intersection points between the line and all the surface elements mentioned above are calculated. 
Since the Minkowski sum of a triangle and an inverted flat-end cutter has a convex shape, the 
points at both ends of the point sequence on the line correspond to the boundary of the 
overlapping range between the Minkowski sum shape and the line. This range is replaced to a 
dexel on the line. This operation is iterated for all the grid lines in the slicing plane, and a two-
directional dexel model representing a cross-sectional figure of the Minkowski sum shape for a 
single triangle is obtained. The Boolean union of the cross-sectional figures for all the triangles of 

the mold CAD model corresponds to the cross-sectional figure of the Minkowski sum shape of the 

entire mold model and the inverted flat-end cutter. This computation is iterated for all the slicing 
planes. As a result, the Minkowski sum shape for the mold model is obtained as a stack of two-
directional dexel models.  

3.3 Parallel Minkowski Sum Computation Using GPU 

In the computation process mentioned above, a number of intersection point calculations and 
Boolean union computations of dexels on the same line are executed. These computations on a 
line are independent of those on other lines. Thus, the intersection point calculation and the dexel-
wise Boolean union computation can be performed in a parallel manner. To implement a parallel 
computation software, the compute unified device architecture (CUDA) is used [4]. Current GPUs 
are designed to have thousands of streaming processors (SP) on a single chip. Using CUDA, 

programmers can utilize a GPU as a general-purpose parallel processor in which each SP executes 
a unit computation (or thread).  

As a preparation, the surface polygons of the input model are classified into small groups 
according to their proximity. Let us consider n polygons forming the model surface. An AABB (axis-
aligned bounding box) [14] that tightly confines the polygons is defined by measuring the 
coordinate ranges of the polygons in the x-, y-, and z-directions. A root AABB is defined such that 
it holds all the polygons of the model. The polygons in the AABB are sorted in the x-, y-, or z-

directions and subdivided into two groups with n/2 polygons according to the sorting result. For 
each polygon group, a smaller AABB is formed and registered as a descendant of the original 
AABB. The process of defining descendant AABBs is iterated until the number of polygons in a 
group becomes less than or equal to a predetermined number nmax, and a binary AABB tree is 
obtained. nmax is set as 32 in our current implementation.  
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Figure 8: Expansion of an AABB for holding Minkowski sum shape of polygons within. 

 

Figure 9: Slicing planes intersecting an expanded AABB (a) and x-axis-aligned lines on a slicing 

plane intersecting the AABB (b). 

 

Each leaf AABB of the AABB tree is the basic processing unit of our parallel Minkowski sum 
computation. Let us consider the Minkowski sum computation for all polygons in a single leaf AABB 
with an inverted flat-end cutter of radius R and length l (Figure 8(a)). To hold the “expanded” 
polygons after the Minkowski sum computation, the AABB is horizontally expanded by R. The box 

is further stretched in the −z direction by l. These operations are achieved by shifting four vertical 
rectangles of the AABB in the outward directions by R and then shifting the bottom side rectangle 
by l in the downward direction as shown in Figure 8(b).  

The horizontal slicing planes intersecting the expanded AABB are checked. In Figure 9(a), four 
slicing planes are detected as the planes intersecting the box. For each slicing plane intersecting 
the box, the x-axis-aligned lines of the square mesh in the plane intersecting the expanded AABB 
are selected (see Figure 9(b)). For each selected line, a single CUDA thread is invoked for 

computing the overlapping ranges between the line and the Minkowski sum shapes of the triangles 
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in the box. In this computation, the algorithm explained in section 3.2 is used. After computing the 
overlapping ranges in the line, the ranges corresponding to their Boolean union are computed by 
the same thread. The dexel information in the same line is updated based on the computation 
result. After the processing for the x-axis-aligned lines, the same computation is executed for the 

y-axis-aligned lines of the square mesh intersecting the expanded AABB.  

 

 

Figure 10: Selection of AABBi and AABBk for avoiding conflicts in the parallel dexel updating 

operation.  

 

To further utilize the parallel processing capability of GPUs, the Minkowski sum computation for a 
single leaf AABB is extended to parallel computations with multiple AABBs. In this case, we need a 
mechanism to prevent the occurrence of conflicts in the dexel-wise Boolean operation. Let us 
consider the Minkowski sum computations for polygons in AABBi and AABBj being simultaneously 

invoked. If the expanded boxes of AABBi and AABBj have intersections in their projections to the 

yz-plane as shown in Figure 10, a CUDA thread for AABBi and another thread for AABBj may 
simultaneously try to update the dexels on the same x-axis-aligned line (line l in Figure 10). To 
prevent the occurrence of such conflicts, multiple AABBs must be selected such that the 
projections of their expanded shapes do not intersect. For example, AABBi and AABBk are selected 
for the box arrangement shown in Figure 10. We used the conflict resolution algorithm originally 
developed for our offset computation algorithm. The readers may refer to our previous paper [8] 

for details. 

3.4 Minkowski Sum Computation for Ball-End Cutter 

The Ball-end cutter shape can be considered as a composition of a vertical cylinder and a sphere 
as shown in Figure 2. The Minkowski sum computation of a polyhedral CAD model and an inverted 
ball-end cutter of radius r can thus be realized by a Boolean union computation of the following 

two 3D objects: 

⚫ A Minkowski sum shape of the CAD model and an inverted flat-end cutter of radius R (= r), 

⚫ Another Minkowski sum shape of the same model and a sphere of radius r. 

Minkowski sum shape of a triangle and a sphere is equivalent to a composition of three 
spheres, three cylinders, and a thick plate (slab) placed on the triangle as follows: 

⚫ Three spheres of radius r placed on three vertices of the triangle. 

⚫ Three open cylinders of radius r placed along each edge e of the triangle, with the center 
axis of the cylinders coinciding with the edges. 

⚫ A slab with the area of the triangle and thickness 2r placed on the triangle with the center 
plane of the slab coinciding with the triangle. 

The two-directional dexel model of the Minkowski sum shape of the mold CAD model and the 

sphere can be obtained using a method that is similar to the Minkowski sum computation for the 
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inverted flat-end cutter. The result shape is then combined to the Minkowski sum shape for a flat-
end cutter of radius R. The Minkowski sum computation for a radius-end cutter is discussed later.  

4 STEP 2: CONTOUR-TYPE PATH COMPUTATION 

4.1 Path Tracing Procedure 

The contour-type cutter path is obtained by tracing the boundary of the cross-sectional figure in 
the two-directional dexel representation. Let us consider the grid lines defining the x-axis-aligned 
dexels and y-axis-aligned dexels in a slicing plane. These lines organize a regular square mesh in 
the plane. The two-directional dexel model is mapped on the square mesh. Each grid point of the 

mesh is then marked IN or OUT according to the following rule: 

⚫ If a grid point is within the range of an x-axis-aligned dexel or y-axis-aligned dexel, then 
the grid point is marked IN because it is located within the cross-sectional figure.  

⚫ Otherwise, it is located outside of the figure and is marked OUT.  

After marking all the grid points, each square cell in the mesh is classified to four types 
according to the pattern of marks at its four corner points (Figure 11(a)). Directed short segments 
are inserted in the cell such that they connect two dexel points in the same cell (short red arrows 

in the figure). The segments are traced and the boundary curve around the cross-sectional figure 
is obtained as a contour-type path (Figure 11(b)). 

 

Figure 11: Boundary curve tracing method. 

 

In our boundary curve tracing method, two points in the same cell are connected by a single 

segment; therefore, the sharp corners in the boundary curve cannot be reproduced appropriately. 
To improve the reproducibility of the sharp corners, we modify the segment insertion method in 
the cell. Before connecting two points p0 and p1 in a cell, the tangent vectors t0 and t1 at the 

points are checked. The segment insertion method is changed according to the angle  organized 
by t0 and t1 as follows: 

⚫ If  is larger than 0 and smaller than 1, consider a tangent line l0 passing p0 and another 
tangent line l1 passing p1, and compute their intersection point p. Two segments p0p and 
pp1 are inserted in the cell. p corresponds to a sharp corner. 

⚫ Otherwise, p0 and p1 are connected by a single segment. 

In our current implementation, we assign 5 degrees to 0 and 170 degrees to 1. To properly 
compute the tangent vector at the point in the cell, we modify the Minkowski sum computation 
software such that the normal vector at the dexel’s end point is computed and recorded in the 
two-directional dexel model construction process. Because our model uses an ultra-high-resolution 

grid in the computation, the cell size is sufficiently small. This simple segment insertion method 
can thus be used to reproduce the boundary curve accurately. 
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4.2 Resolution of Contradictory Dexel Arrangements 

In the two-directional dexel model, the x-axis-aligned dexels and y-axis-aligned dexels are 

independently defined, and therefore, they may comprise a contradictory arrangement. Figure 12 
illustrates a case. Two dexels near a grid point g of a cell are in a contradictory arrangement in 
this figure. Point g is contained within an x-axis-aligned dexel; however, it is located outside a y-
axis-aligned dexel (see Figure 12(a)). The numerical errors at the intersection point computation 
can cause such contradictory dexel arrangement. In our grid point classification rule, g is judged 
as an internal point because the x-axis-aligned dexel contains this point within. Let us consider 

that all the other grid points of the cell are recognized as OUT. In this IN–OUT arrangement, our 
algorithm inserts a directed path segment, as shown in Figure 12(b). Since no dexel point is 
generated on the y-axis-aligned edge in the cell adjacent to g, one coordinate of the segment 
cannot be determined as shown in the figure. To solve this problem, our algorithm inserts a virtual 

point in the cell as an end point of the segment (see Figure 12(c)).  

 

Figure 12: Contradictory arrangement of two dexels (a) and generation of a cutter path segment 
by inserting a virtual point (b, c). 

 

 

Figure 13: Virtual point insertion procedure. 

 

Figure 13 illustrates two cases wherein the virtual point is necessary. In Figure 13(a), a grid point 
g has a contradictory arrangement of the dexels because it is contained within an x-axis-aligned 

dexel but it not within a y-axis-aligned dexel. Such a contradiction occurs when the surface of the 
Minkowski sum shape passes very close to a grid point, and therefore, the virtual point should be 
generated somewhere on the y-axis-aligned cell edge and sufficiently close to the grid point g. 
Figure 13(b) shows another contradictory arrangement wherein a grid point g is not within the x-
axis-aligned dexel. In this case, the virtual point should be inserted on the x-axis-aligned cell edge 
as shown in the figure. 

4.3 Cutter Path Generation for Radius-End Cutter 

The shape of a radius-end cutter of radius R and corner radius r is equivalent to a Minkowski sum 

shape of a cylinder of radius R–r and a small sphere of radius r. The Minkowski sum shape of a 
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polyhedral mold model and an inverted radius-end cutter can thus be obtained in the following two 
step process. 

Step 1.1: The Minkowski sum shape of the mold model and a sphere of radius r are computed. The 
result shape is named M. 

Step 1.2: The Minkowski sum shape of M and an inverted cylinder of radius R–r are computed. 
Since the model M obtained in the first step is already in the two-directional dexel representation, 
we need a Minkowski sum computation algorithm for a model in that representation.  

Instead of developing a new algorithm, we computed the contour-type path using the model M 
just after step 1.1, and then computed the final cutter path for the radius-end cutter by 
horizontally expanding the path by R–r. To realize the expansion, we take into consideration a 
vertical cylinder of radius R–r moving along the cutter path. As the cutter path is a series of 

horizontal line segments, the swept volume of the moving cylinder is a Boolean union shape of 

vertical cylinders of radius R–r placed at the end points of the segments and rectangular boxes of 
width 2R–2r placed along the segments as shown in Figure 14. 

 
Figure 14: Placement of vertical cylinders of radius R–r and rectangular boxes of width 2R–2r 

along the cutter path segments. 
 
After the placements of the cylinders and rectangular boxes, their union shape is obtained in the 
two-directional dexel representation using a similar method for computing the Minkowski sum 
shape as explained in section 3. The final contour-type cutter path for milling the object with a 
radius-end cutter is obtained by tracing the boundary of the cross-sectional figure in the two-
directional dexel representation. 

 

5 COMPUTATIONAL EXPERIMENTS  

We implemented a contour-type cutter path computation software using VisualStudio 2010 and 
CUDA 7.5, and we conducted several computational experiments with the software. A 64-bit PC 
with an Intel Core i7 Processor (2.8 GHz), 32-GB memory is used in the experiments. This PC is 
connected to an external GPU box with an nVIDIA GeForce RTX-2060 graphics card (6-GB graphics 

memory) installed.  

Figure 15 shows the cutter path computation results for a simple polyhedral model with 1,618 
polygons. (a) is a cutter path for a ball-end cutter of 4 mm radius (R = r = 4 mm). (b) and (c) are 
cutter paths for a flat-end cutter of 4 mm radius (R = 4 mm, r = 0 mm), and for a radius-end 
cutter of 4 mm radius and 1 mm corner radius (R = 4 mm, r = 1 mm), respectively. This model 

has a size of 60 x 54 x 43 mm. The contour-type path is computed for 250 slicing planes. In the 
computation, a two-directional dexel model of [25,000, 22,500] resolution is used.  
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Figure 15: Contour-type cutter path computation results for a polyhedral solid model. (a) Path for 
a ball-end cutter of 4 mm radius, (b) path for a flat-end cutter of 4 mm radius, and (c) path for a 

radius-end cutter of 4 mm radius and 1 mm corner radius. 

 

Table 1 shows the necessary computation time for obtaining the path. As shown in the table, the 
Minkowski sum computation (Step 1) for a ball-end cutter and flat-end cutter was achieved in a 

few seconds owing to the parallel processing capability of the GPU. A time that was 250 times 
longer was necessary for the tracing operation of the cutter path in the sling planes (Step 2). As 
the cutter path tracing operation is executed in our Minkowski sum computation process for the 
radius-end cutter, the necessary computation time for Step 1 for the radius-end cutter is almost 
the same as the total time of Steps 1 and 2 for the ball-end or flat-end cutter, as shown in the 
table. 
 

 
Table 1: Necessary computation time for obtaining the cutter paths given in Figure 15. 

 
We applied the system to three polyhedral models of cavity and core of molds for injection molding 
as shown in Figure 16. We used a ball-end cutter of radius 10 mm (R = r = 10 mm), a flat-end 
cutter of radius 10 mm (R = 10 mm, and r = 0 mm), and a radius-end cutter of radius 10 mm and 
corner radius 2 mm (R = 10 mm and r = 2 mm) in the cutter path computation. Figure 16 
illustrates the obtained paths for the ball-end cutter. The Cavity0 model (Figure 16(a)) has a size 

of 2529 x 1154 x 893 mm with 844,180 polygons. The Cavity1 model (Figure 16(b)) has a size of 

2060 x 960 x 500 mm with 361,642 polygons, and the Core model (Figure 16(c)) has a size of 
1550 x 950 x 350 mm with 250,494 polygons. In the contour-type path computation for Cavity0, 
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the [25,000, 11,409] resolution two-directional dexel models are generated in the slicing planes. 
The [25,000, 11,650] resolution two-directional dexel model and [25,000, 15,322] resolution two-
directional dexel model are used for Cavity1 and Core model, respectively.  
 

 
Figure 16: Contour-type cutter path computation results for cavity and core models. 

 
Tables 2, 3, and 4 show the necessary computation time for obtaining the cutter path for these 

three models. The computation time in the tables shows a similar tendency to the data shown in 
Table 1. In the cutter path computation for the ball-end cutter or flat-end cutter, the Minkowski 
sum computation (Step 1) is achieved in a short time (less than a minute) for any model. In 
contrast, a much longer computation time (52 times more time for Cavity1) is necessary in the 
cutter path tracing operation (Step 2).  

 

 
Table 2: Necessary computation time for obtaining the cutter path for the Cavity0 model. 

 

 
Table 3: Necessary computation time for obtaining the cutter path for Cavity1 model. 

 
We investigated the relationship between the number of slicing planes and the computation time. 

The experiments were performed using the Cavity0 model. We applied the software for computing 
the cutter path for a ball-end cutter of 10 mm radius. In the computation, a [25,000, 11,409] 
resolution two-directional dexel model is used. The number of slicing planes was set as 250, 500, 

and 750 in the experiments. The necessary computation time is listed in Table 5. The obtained 
cutter paths for 500 slicing planes and for 750 slicing planes are illustrated in Figure 17. The 
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necessary computation time for Steps 1 and 2 increases in proportion to the number of slicing 
planes, as can be observed from the values shown in Table 5 and their graphs (Figure 18). The 
graph in Figure 18 also shows that the cutter path tracing process (Step 2) dominates the majority 
of the processing time in our cutter path computation software. 

 

 
Table 4: Necessary computation time for obtaining the cutter path for Core model. 

 

In our computation method, the resolution [m, n] of the two-directional dexel model in the slicing 
plane is a critical factor for the performance of the software. Using a model with a higher resolution, 
a more accurate path computation becomes possible; however, the time and cost for the 
computation also increase. We executed experiments to investigate the relationship between the 
model resolution and necessary computation time. Table 6 shows the necessary computation time 
when the resolution [m, n] of the two-directional dexel model varies. In the experiments, the 

Cavity0 model was used. The computation time was measured in the contour-type path 
computation for a ball-end cutter of 10 mm radius. The number of slicing planes was set as 250.  

Figure 19 shows a graph representing the relationship between the model resolution m and the 
necessary computation time for Steps 1 and 2. The computation time for Step 1 is proportional to 
the model resolution. Our software can compute the Minkowski sum shape for a two-directional 
dexel model of [45,000, 20,536] resolution in 250 slicing planes in 70 s. In contrast, the time for 

the path tracing operation in Step 2 increases rapidly as m increases, and it becomes 1,800 s for 

the model at the same resolution. The two-directional dexel model in a slicing plane is equivalent to 
a square cell structure in the plane. The computation time for Step 2 is analyzed, and it is found to 
be proportional to the number of cells (= m x n) in the plane. As can be observed from this 
computation result, an improvement in the processing algorithm of Step 2 is critical for the 
practical application of this technology. 
 

 
Figure 17: Contour-type cutter path for 500 slicing planes (a) and 750 slicing planes (b).  
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Table 5: Necessary computation time for obtaining the cutter path for the Cavity0 model for 
different numbers of slicing planes. Ball-end cutter of 10 mm radius and two-directional dexel 
model with a [25,000, 11,409] resolution are used in the computation. 

 

 
Figure 18: A graph of the necessary computation time for obtaining the cutter path for the Cavity0 
model for different numbers of slicing planes.  
 

 

Table 6: Necessary computation time for obtaining the cutter path for the Cavity0 model when the 
resolution of the two-directional dexel models varies from [20,000, 9,127] to [45,000, 20,536]. 

6 CONCLUSIONS 

In this paper, we propose a novel algorithm for computing a contour-type cutter path for a mold 

CAD model in the polyhedral representation. Our algorithm uses a Minkowski sum shape of the 
mold model and a cutter model in the inverted orientation. To realize the robust Minkowski sum 
computation, a grid-based shape representation called a two-directional dexel model is used. A 
two-directional dexel model is geometrically equivalent to a 2D shape representation method using 
a regular square mesh. It can represent the 2D object with much a smaller amount of memory 
than a regular square-mesh-based method. Using this advantage, we realized two-directional 

dexel models based on an ultra-high-resolution (resolution higher than 20,000) grid. A contour-

type cutter path computation software was implemented to demonstrate the performance of the 
algorithm. In our current implementation, the Minkowski sum computation can be completed in a 
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very short time even for an ultra-high-resolution dexel model. The contour-type cutter path is 
obtained by tracing the boundary of the two-directional dexel model. The necessary time for the 
path tracing operation is proportional to the square of the resolution of the dexel model. An 
improvement in the path tracing algorithm is critical for the practical application of this technology. 

The use of the parallel processing capability of a GPU and a CPU with multiple cores will be 
examined in future studies for reducing the processing time in the path tracing. 

 

Figure 19: Necessary computation time for obtaining the cutter path for the Cavity0 model when 

the resolution of the two-directional dexel models varies. 
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