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Abstract. This paper proposes a novel algorithm to generate an obstacle-avoiding 
smooth path that optimizes for three types of constraints namely minimum path 
distance, bending energy or curvature variation energy. In literature, there are 

various proposals to generate smooth path using typical curves such as Bézier and 
clothoid. However, complicated curvature computation of Bézier and limited 
solution provided by clothoid are some of the drawbacks to this problem. The paper 
proposes Log-Aesthetic Curves (LAC) for path smoothing; the generated smooth 
paths of our method are made up of bi-LACs, i.e. curves whose curvature is either 
monotone increase or decrease. This paper also presents few examples of joining 
given circles and lines with LACs to show its flexibility in providing curvature 

continuous solutions. Numerous simulations are demonstrated to highlight the 
superiority of LAC path smoothing technique.  
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1 INTRODUCTION 

Path planning is a process of constructing a desired movement from an initial location into discrete 
motions which satisfy given constraints before reaching to the final position. In practice, there are 
two formulation commonly used in path planning; parametric representation such as Bézier or 
nonlinear representation such as clothoid that generated with Fresnel Integral. Despite cubic 

Bézier or B-spline has been widely used in CAD/CAM practices, it imposes several unwanted 
characteristics, e.g. local curvature extrema and complicated curvature or arc length computation. 

However, natural spirals do not have these problems except for the generation of spiral itself 
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which involves integration. With the advancement of computer technology nowadays, numerical 
integration can be carried out with minimal effort while preserving high precision. Runge-Kutta 
method can be used to generate spirals which greatly reduce computation cost [3]. There are also 
attempts to represent spirals by means of Béziers [14], however these curves lose their degree of 

freedom while satisfying curvature monotonicity to mimic spiral. 

Typical curves that are commonly used to replace polyline path include Dubins path; the 
combination of line segments and circular arcs. It is one of the most popular choices in path 
smoothing [1], but it satisfies only 𝐺1 continuity. Highway design and railway route design has 

somewhat similar design procedure as compared to path planning. The underlying property is to 
satisfy given 𝐺2 data which comprises of position, tangent and curvature at the endpoints. 

Hickerson [7] stated that highway design must avoid sudden changes between curves with 
different curvatures. He proposed using gradual increase or decrease types of curvature which is in 

fact the main feature of spirals. Baass [2] has simplified 𝐺2 highways design into five cases using 

clothoid; (i) line to circle with a single spiral, (ii) circle to circle with a single spiral, (iii) circle to 
circle forming S-curve with a pair of spirals, (iv) circle to circle forming C-curve with a pair of 
spirals, and (v) line to line with a pair of spirals. Figure 1 shows the simple illustration of these five 
cases. 

 

 
 
Figure 1: A simple illustration of the five cases of clothoid templates that was identified by Baass 

[2]. 

 

There have been many attempts to solve these cases using various types of curves such as Bézier 
spiral and Pythagorean Hodograph spirals. However, the 𝐺2 solutions are either limited or no 

feasible solution exist since the proposed method is curve centric. Hence, designers have no option 
on finding optimum path which minimizes path length, bending energy or curvature variation 
energy. 

Assume numerous obstacles exist in a given planar region and a mobile robot represented as a 
point has to traverse along a path avoiding those obstacles. It is rather straightforward to draw a 
guiding polyline path avoiding obstacles to reach to the final destination. The polyline path is then 
replaced with smooth curves; a process known as path smoothing [9]. Hence, the solution of the 
fifth case stated by Baass comes in handy where we construct 𝐺2 curves from given polylines. 

In this paper, we propose Log-aesthetic Curves (LACs) as an alternative for path smoothing 
due to its monotonic curvature property, hence free from local curvature extrema [10]. According 

to Levien and Séquin [8], LAC is a promising curve for industrial and CAD applications due to its 
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self-affinity property. This elegant feature has made it attractive for applications in various 
aesthetic related fields such as automobile design [12], shape completion in archeology [4] and 
architecture design [13]. 

Let 𝑆 be a LAC space representing spirals with 3 shape variables, 𝛼, 𝑐1, 𝑐1 [5, 11]. Various family 

of spirals can be generated by giving specific 𝛼 values, 𝑆 =  {𝑠𝛼  | 𝛼 ∈ 𝑅}. A collection of natural 

spirals 𝑠𝑁  ⊂  𝑆 is obtained when 𝛼 =  {−1, 0, 1, 2} where the spiral families are {clothoid, Neilsen’s 

spiral, Logarithmic spiral, circle involute}. The rest two free variables can be utilized for satisfying 
design constraints. In 2006, an algorithm to fit LACs to a set of 𝐺1 Hermite data was proposed in 

[16]. Later, Miura et al. developed an algorithm to implement tri-LACs to solve 𝐺2 Hermite 

interpolation problem [12].      

The following part of this paper is organized as follows. Section 2 introduces the fundamental 
equations of a single and bi-LAC segments to solve five cases stated by Baass [2]. It is evident 

that LACs are capable to provide multiple solutions as compared to clothoid as shown in Section 3. 
Section 4 proposes a four-step algorithm on constructing an obstacle-avoiding path that are 
optimized based on three types of constraints; shortest distance, minimum bending energy or 
minimum curvature variation energy. Numerous simulation results are presented in Section 5 to 
show the validity of the proposed algorithm. Finally, we conclude this paper with a plan of future 
works in Section 6.   

2 ANALYTICAL FORMULAS AND PARAMETERS 

This section presents the important equations of a single and bi-LACs segment. The equations are 
intrinsically simple and the derivation will be based on the fundamental equation that was coined 
by Miura [10]. For the sake of simplicity, we assume that the curvature of LACs 𝜅 ≥ 0 and its shape 

parameter 𝛼 ≠ 0,1. (2.1) below is the curvature function 𝜅(�̃�) of a single LACs segment: 

𝜅(�̃�) =
(𝑐0�̃�+𝑐1)−

1
𝛼

𝐿
 ,     0 ≤ �̃� ≤ 1                                  (2.1) 

where �̃� represents arc length, 𝐿 be the total length of curve, and 𝑐0, 𝑐1 are constants.  

By using the definition of 𝜃′(�̃�) = 𝜅(�̃�), one can obtain the tangential angle function of the curve 

as shown in (2.2). 

𝜃(�̃�) =
𝛼

(𝛼−1)𝑐0
(𝑐0�̃� + 𝑐1)

𝛼−1

𝛼 + 𝑐2 ,     0 ≤ �̃� ≤ 1                                                 (2.2) 

(2.2) is then used to define parametric expressions for LACs coordinates as shown in (2.3) below.  

{𝑥𝑠(�̃�), 𝑦𝑠(�̃�)} = {𝑥0 + 𝐿 ∫ cos 𝜃(�̃�)𝑑�̃�
1

0
, 𝑦0 + 𝐿 ∫ sin 𝜃(�̃�)𝑑�̃�

1

0
}                                   (2.3) 

It is notable that the curvature of LACs is either monotonically increasing or decreasing. Therefore, 
in the case of joining two lines segments where the initial and final curvatures are both 0, we 
require at least two pieces of LACs segments to ensure a smooth transition between them. The 
curvature function 𝜅(�̃�), tangent angle 𝜃(�̃�) and parametric expression of a bi-LACs segment are 

shown in (2.4), (2.5) and (2.6), respectively.  

𝜅(�̃�) = {

(𝑐10�̃�+𝑐11)−
1
𝛼

𝐿
 ,     0 ≤ �̃� ≤ 𝑠 

(𝑐20�̃�+𝑐21)−
1
𝛼

𝐿
 ,     𝑠 < �̃� ≤ 1

                                                             (2.4) 

𝜃(�̃�) = {

𝛼

(𝛼−1)𝑐10
(𝑐10�̃� + 𝑐11)

𝛼−1

𝛼 + 𝑐12 ,     0 ≤ �̃� ≤ 𝑠 

𝛼

(𝛼−1)𝑐20
(𝑐20�̃� + 𝑐21)

𝛼−1

𝛼 + 𝑐22 ,     𝑠 < �̃� ≤ 1
                                     (2.5) 
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{𝑥𝑏(�̃�), 𝑦𝑏(�̃�)} = {𝑥0 + 𝐿 (∫ cos 𝜃(�̃�)𝑑�̃� + ∫ cos 𝜃(�̃�)𝑑�̃�
1

𝑠

𝑠

0
) , 𝑦0 + 𝐿 (∫ sin 𝜃(�̃�)𝑑�̃�

𝑠

0
+ ∫ sin 𝜃(�̃�)𝑑�̃�

1

𝑠
)}        (2.6) 

A curve is 𝐺2 continuous if and only if it satisfies given positional, tangent as well as curvature at 

the endpoints. Bi-LAC is introduced in this paper so that we have enough shape parameters to 
satisfy 𝐺2 conditions. The following part introduces the conditions at the endpoints of a bi-LAC 

segments once we substitute different �̃� values to (2.4), (2.5) and (2.6).  

• When �̃� = 0: 

𝜅0 =
(𝑐11)−

1
𝛼

𝐿
                                                                                       (2.7) 

𝜃0 =
𝛼

(𝛼−1)𝑐10
(𝑐11)

𝛼−1

𝛼 + 𝑐12                                                                (2.8) 

• When �̃� = 𝑠: 
(𝑐10𝑠 + 𝑐11) = (𝑐20𝑠 + 𝑐21)                                                               (2.9) 

𝛼

(𝛼−1)𝑐10
(𝑐10𝑠 + 𝑐11)

𝛼−1

𝛼 + 𝑐12 =
𝛼

(𝛼−1)𝑐20
(𝑐20𝑠 + 𝑐21)

𝛼−1

𝛼 + 𝑐22              (2.10) 

• When �̃� = 1: 

𝜅1 =
(𝑐20+𝑐21)−

1
𝛼

𝐿
                                                                              (2.11) 

𝜃1 =
𝛼

(𝛼−1)𝑐20
(𝑐21)

𝛼−1

𝛼 + 𝑐22                                                              (2.12) 

𝑋 = 𝑥0 + 𝐿 (∫ cos 𝜃(�̃�)𝑑�̃� + ∫ cos 𝜃(�̃�)𝑑�̃�
1

𝑠

𝑠

0
)                                        (2.13) 

𝑌 = 𝑦0 + 𝐿 (∫ sin 𝜃(�̃�)𝑑�̃�
𝑠

0
+ ∫ sin 𝜃(�̃�)𝑑�̃�

1

𝑠
)                                         (2.14) 

The unknowns: {𝑠, 𝐿, 𝑐𝑖𝑗 , where 𝑖 = 1,2 and 𝑗 = 0,1,2} can be determined from (2.7) to (2.14) once we 

impose the given 𝐺2 Hermite data to the equations above. 

3 JOINING LACS TO CIRCLES AND LINES 

This section shows some numerical examples of joining given circles and lines with a single and bi-
LACs segment. Based on the examples, we found that LACs are more flexible in providing 
curvature continuous solutions. There are five cases of transition taken into consideration [5]:   

i. Line to circle with a single LACs 

ii. Circle to circle with a single LACs 
iii. Circle to circle forming S-curve with a bi-LACs 
iv. Circle to circle forming C-curve with a bi-LACs 
v. Line to line with a bi-LACs 

The following sections shows the geometric setup of each case and the condition for the 

existence of a 𝐺2 LACs solution. 

3.1 Line to Circle with a Single LACs Segment 

Setting: Assume that a line is given on the x-axis and the centre of a given circle is located in the 
first quadrant. Let R be the radius of the circle and the distance of the line to the centre of the 
circle denoted as T. 

Condition: Note that the curvature of a line is 0. Therefore, the value of the shape parameter 𝛼 in 

this case must be 𝛼 < 0. 

• When 𝛼 = −1: 

The solution of clothoid can always be obtained when 𝑇 > 𝑅. The parameter value of T and R in 

Figure 2(a) is 1.10147 and 0.8, respectively. 

• When α ⟶ −∞: 
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The solution can be obtained when 𝑇 = 𝑅 as LAC tends to become circle when 𝛼 ⟶ −∞. The 

parameter value of T and R in Figure 2(b) is 0.8. Figure 3 illustrates the curvature profile of 
Figure 2(b) where it shows the curvature of LAC changes monotonically. To note, there is no 
solution could be found when 𝑇 < 𝑅 as it is geometrically improper. 

 

 
 
Figure 2: Line to circle with a single LACs segment. The black curve is the LACs segment: (a)  
𝛼 = −1, and (b) 𝛼 = −10000. 

 

 
 

Figure 3: The curvature profile of Figure 1(b) in two view versions: (a) General version, and (b) 
Zoom in version. 

 

3.1.1 Dubins path 

Dubins path is composed of line segments and circular arcs. The drawback of this approach is that 
there is a curvature discontinuity at the transition point between circular arc and line. Figure 4(a) 
shows the CLC type of Dubins path that satisfies only 𝐺1 continuity. In Figure 4(b), we replace the 

circular arcs with LAC segments and found that it retains the shape as well as length of the original 
path. Moreover, it provides 𝐺2 continuity at the transition point. 

 

3.2 Circle to Circle with a Single LACs Segment 

Setting: Given two circles such that their corresponding centres are located in the first quadrant 

and the distance between the centres is denoted as D. Let the radius of the larger circle be 𝑅0 and 

the smaller circle be 𝑅1. 
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Figure 4: The CLC type of transition using two types of curves: (a) Circular arc, and (b) LACs 

segment. 
 

Condition:  
• When 𝛼 = −1: 

The solution of clothoid can always be obtained when 𝑅0 − 𝑅1 > 𝐷. The parameter value of 𝑅0, 

𝑅1 and D in Figure 5(a) is 0.8, 0.7 and 0.09, respectively. 

• When α ⟶ ±∞: 

The solution can be obtained when 𝑅0 − 𝑅1 = 𝐷 as LAC tend to mimic circle when 𝛼 ⟶ ±∞. The 

parameter value of 𝑅0, 𝑅1 and D in Figure 5(b) and (c) is 0.8, 0.7 and 0.1, respectively. To 

note, there is no solution could be found when 𝑅0 − 𝑅1 < 𝐷 as it is geometrically improper. 

 

 
 

Figure 5: Circle to circle with a single LAC segment. The black curve is the LAC segment: (a) 𝛼 =
−1, (b) 𝛼 = 10000, and (c) 𝛼 = −10000. 

 

3.3 Circle to Circle Forming an S-curve with a bi-LACs Segment 

Setting: Given two circles of radii 𝑅0 and 𝑅1. Let the centre of the circle of radius 𝑅0 be located in 

the third quadrant whereas the centre of the circle of radius 𝑅1 locates in the first quadrant. The 

parameter D represents distance between the centres of the circles. Let the curve segments join at 
the origin where both of its tangent and curvature are equally zero. 
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Condition:  
• When 𝛼 = −1: 

The solution of clothoid can always be obtained when 𝑅0 + 𝑅1 < 𝐷. The parameter value of 𝑅0, 

𝑅1 and D in Figure 6(a) is 0.8, 0.8 and 3.1994, respectively. 

• When α ⟶ −∞: 

The solution can be obtained when 𝑅0 + 𝑅1 = 𝐷. The parameter value of 𝑅0, 𝑅1 and D in Figure 

6(b) is 0.8, 0.8 and 1.6, respectively. To note, there is no solution could be found when 𝑅0 +
𝑅1 > 𝐷 as it is geometrically improper. 

  

 
 

Figure 6: Circle to circle forming an S-curve with a bi-LAC segment. The black curve is the LACs 

segment: (a) 𝛼 = −1, −1, and (b) 𝛼 = −10000, −10000. 

3.4 Circle to Circle Forming a C-curve with a bi-LAC Segment 

Setting: Given two circles of radii 𝑅0 and 𝑅1. Let the centre of the circle of radius 𝑅0 be located in 

the second quadrant whereas the centre of the circle of radius 𝑅1 locates in the first quadrant. The 

parameter D represents distance between the centres of the circles. Let the curve segments join at 
the origin where both of its tangent and curvature are equally zero. 

Condition: As stated below. 
• When 𝛼 = −1: 

The solution of clothoid can always be obtained when |𝑅0 − 𝑅1| < 𝐷. The parameter value of 𝑅0, 

𝑅1 and D in Figure 7(a) is 0.7, 0.8 and 2.17952, respectively. 

• When α ⟶ −∞: 

The solution can be obtained when |𝑅0 − 𝑅1| = 𝐷 as shown in Figure 7(b) and |𝑅0 − 𝑅1| > 𝐷 as 

presented in Figure 7(c). The parameter value of 𝐷 in Figure 7(b) is 0.1 whereas in Figure 

7(c), it has value 0.09292. The parameter value of 𝑅0 and 𝑅1 in both figures is 0.7 and 0.8, 

respectively. 
  

3.5 Line to Line with a bi-LACs Segment 

Setting: Given two lines connected at the end. Without loss of generality, one of the line segments 
is parallel to the x-axis and another one is located in the positive y-axis region. Let 𝑑1 and 𝑑2 be 

the length of the corresponding line segments. 
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Figure 7: Circle to circle forming a C-curve with a bi-LAC segment. The black curve is the LAC 
segment: (a) 𝛼 = −1, −1, (b) 𝛼 = −10000, −10000, and (c) 𝛼 = −30, −10000. 

 

Condition: The solution of clothoid can always be obtained [15]. However, Figure 8 shows that bi-
LAC has extra flexibility in providing transition curve with 𝐺2 continuity. The line length for the case 

below, 𝑑1 and 𝑑2 is 1. 

 

 
 
Figure 8: Line to line with a bi-LAC segment where 𝑑1 = 𝑑2. The LACs segment from top to down: 

𝛼 = −100, −5, −1 and −1/2. 

 

3.5.1 Symmetric and asymmetric case 

Line to line transitions can be categorized into two cases; symmetric and asymmetric. Figure 9 

illustrates the comparison result of a simple example of symmetric and asymmetric case with 
straight line, circular arc and multiple LAC solutions. Table 1 and Table 2 show the 𝛼 value, curve 

length 𝐿, bending energy 𝐸 and curvature variation energy 𝑉 of each curve solution. Based on the 

numerical result, we can deduce the relation of 𝛼 and its curve length and energy. This information 

will be useful to the proposed algorithm below. 

 

4 THE PROPOSED ALGORITHM 

This section presents an algorithm that generates a smooth obstacle-avoiding path with LACs. 
Assume that an optimal polyline path is given in a planar region that contains some obstacles. To 
note, the guiding polyline path can be obtained by using any path planning techniques that is 
available in literature such as visibility graph or medial axis algorithms. Since LACs provide many 

feasible paths, an optimal path can be chosen based on three metrics denoted as 𝑀∗ below: 
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Figure 9: A simple line to line transition with straight line (dashed magenta), circular arc (solid 
cyan) and multiple 𝛼 solutions. Two cases are: (a) Symmetric case, and (b) Asymmetric case. 

 

Curve / 𝜶 𝑳 𝑬 𝑽 

Straight line 7.071 0 0 

Circular arc 7.854 0.3142 0 

-0.1 9.523 1.4929 660 

-0.5 8.729 0.5088 13.567 

-1 8.399 0.3917 4.7001 

-2 8.164 0.34 17.535 

-8 7.94 0.3146 616.241 

-800 7.854 0.3141 938.373 

 
Table 1: The metric values of each solution in Figure 9(a). 

 

Curve / 𝜶 𝑳 𝑬 𝑽 

Straight line 8.602 0 0 

-0.1 11.421 1.2448 575.363 
-0.3 10.783 0.5604 36.83 
-0.5 10.437 0.4255 13.196 
-1 10 0.329 5.968 

-1.5 9.778 0.3004 10.061 
-1.9 9.657 0.29 180.88 

 
Table 2: The metric values of each solution in Figure 9(b). 

 

𝑀∗ = {

𝐿 ,                     𝐿: 𝐴𝑟𝑐 𝐿𝑒𝑛𝑔𝑡ℎ 
1

𝐿
× ∫ 𝜅(�̃�)21

0
𝑑�̃� ,     𝐸: 𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦

1

𝐿
× ∫ 𝜅′(�̃�)21

0
𝑑�̃� ,     𝑉: 𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑒𝑟𝑔𝑦

                                      (4.1)  

The shape parameter 𝛼 is modified to obtain a curvature continuous collision free path satisfying 

the chosen metric. The proposed path smoothing algorithm is generally divided into four steps: 
i. Identifying shape of the polyline and partitioning it into C-shaped sections 

ii. Identifying variable values that satisfy 𝐺2 conditions 
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iii. Smoothing polyline with default 𝛼 (initialization) 

iv. Optimizing shape parameter 𝛼 based on chosen metric 𝑀∗  

Path Smoothing Algorithm below describes the steps of using LACs for generating a collision 
free path that satisfies given 𝐺2 Hermite data. The flowchart of this algorithm is presented in Figure 

10.  

Path Smoothing Algorithm  

Remark: Polyline path, 𝐺2 Hermite data, initial value of LAC, positive step size and tolerance are 

given. Let 𝑀∗ be the chosen metric by user. An optimal smooth collision free path that 

satisfies the given 𝐺2 Hermite data is generated and its 𝛼 value is identified. 

Input : Polyline path, {𝑥0, 𝑦0, 𝑋, 𝑌, 𝜃0, 𝜃1, 𝜅0, 𝜅1}, 𝛼𝑖𝑛𝑡, ℎ and 𝑇𝑜𝑙. 
Output : An optimal smooth collision free path satisfying given 𝐺2 Hermite data and its   

               𝛼 value 𝛼𝑜𝑝𝑡. 

 

Begin 
Step 1 Identify shape of the given polyline path by using (𝑃𝑖 − 𝑃𝑖−1) × (𝑃𝑖+1 − 𝑃𝑖).  
 Partition polyline path into C-shaped sections (if necessary). 
Step 2 Impose 𝐺2 constraints into (2.7) – (2.14) and solve for unknown variables 𝑐𝑖𝑗. 

Step 3 Set default 𝛼 ← 𝛼𝑖𝑛𝑡. 

 If 𝑀∗ = 𝑉 

set 𝛼𝑖𝑛𝑡 ← −1 

else 

     set 𝛼𝑖𝑛𝑡 ← −5 

Step 4 Check: 
 If 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 

set 𝑠 ← 0.5 

else 
calculate 𝑠 by bisection method 

Step 5 Test:   
 If 𝛼 = 𝑛𝑜 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

proceed to next step 
Step 6 Check: 

  If 𝑛 = 2 

       add straight line to polyline path and repeat Step 2-5 or 
       modify 𝛼 with 𝛼 ← 𝛼 ± ℎ and repeat Step 4-5 (optional) 

 

  else 
        further partition polyline path into two and repeat Step 2-5 or 
        modify 𝛼 with 𝛼 ← 𝛼 ± ℎ and repeat Step 4-5 (optional) 

else 

calculate 𝑀∗ and render the path using (2.6) 

Step 7  Identify path feasibility using collision detection method based on point-region 
intersection. 

 If 𝛼 ≠ 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑠 
proceed to next step 

else 
 calculate distance threshold 𝜀 and shoulder point 𝑠𝑝 (collision detection method   

                            based on distance threshold) and proceed to next step 

Step 8 Check: 

 If 𝛼 ≠ 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑠 and 𝑀∗ = 𝑉 
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        𝛼𝑜𝑝𝑡 ← 𝛼; STOP 

 else if 𝛼 ≠ 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑠 

      do Step 9 and Step 10 
       Step 9        Update 𝛼 with 𝛼𝑛𝑒𝑤 ← 𝛼 − ℎ and repeat Step 4-7 

       Step 10        Check: 
         If 𝛼𝑛𝑒𝑤 ≠ 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑠 

   do Step 9 and Step 10 until ∇𝑀∗ < 𝑇𝑜𝑙 
𝛼𝑜𝑝𝑡 ← 𝛼𝑛𝑒𝑤; STOP 

           else if 𝛼𝑛𝑒𝑤 = 𝑛𝑜 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

reduce ℎ ← ℎ/2 and repeat Step 9 and Step 10 

           else 
      𝛼𝑜𝑝𝑡 ← 𝛼; STOP 

 else 
      update 𝛼 with 𝛼𝑛𝑒𝑤 ← 𝛼 ± ℎ until ∇𝑠𝑝 > 𝜀 
      repeat Step 10 

End 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 
 
 
 
 
 

Start 

Input: polyline path, 𝐺2 Hermite data {𝑥0, 𝑦0, 𝑋, 𝑌, 𝜃0, 𝜃1, 𝜅0, 𝜅1}, initial  

           value of LACs 𝛼𝑖𝑛𝑡, positive step size ℎ, tolerance 𝑇𝑜𝑙 

- Identify shape of polyline path using 
(𝑃𝑖 − 𝑃𝑖−1) × (𝑃𝑖+1 − 𝑃𝑖) 

- Partition polyline path into C-shaped 
section(s) 

Impose 𝐺2 constraints into (2.7) - (2.14) and solve for unknowns 𝑐𝑖𝑗 

𝑀∗ = 𝑉? 

section = symmetric ? Set 𝑠 ⟵ 0.5 Calculate 𝑠 by bisection 

method 

𝛼 = no solution ? 

𝑛 = 2?  

Partition treated section 
into two 

Calculate 𝑀∗ and render 

path using (2.6) 

𝛼 = collides ? 

Set 𝛼𝑖𝑛𝑡 ⟵ −1 Set 𝛼𝑖𝑛𝑡 ⟵ −5 

Modify 𝛼 with 
𝛼 ⟵ 𝛼 ± ℎ 

T F 

T F 

T F 

T 

F 
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Figure 10: The flowchart of the path smoothing algorithm. 

4.1 Description of the Path Smoothing Algorithm 

The following part gives the detail explanation on each step of the path smoothing algorithm. 

4.1.1 Identifying shape of the polyline path and partitioning it into C-shaped sections 

A given guiding polyline path is defined to be a C-shape if the cross products of its vertices are all 

positives or all negatives. The formula of the cross product is shown below: 
(𝑃𝑖 − 𝑃𝑖−1) × (𝑃𝑖+1 − 𝑃𝑖),         𝑖 = 1,2, … , 𝑛 − 1                                                               (4.2)  

Add straight 
line to 

polyline 
path 

𝑀∗ = 𝑉? 

Calculate 𝜀 and 𝑠𝑝  

𝛼𝑜𝑝𝑡 ⟵ 𝛼 

End 

T F 

T 

F 

𝛼 ≠ collides ? 

Update 𝛼 with 
𝛼𝑛𝑒𝑤 ⟵ 𝛼 − ℎ 

 

Update 𝛼 with 
𝛼𝑛𝑒𝑤 ⟵ 𝛼 ± ℎ 

 

𝛼𝑛𝑒𝑤 ≠ collides? 

 
∇𝑀∗ < 𝑇𝑜𝑙?  

 

𝛼𝑜𝑝𝑡 ⟵ 𝛼𝑛𝑒𝑤 

𝛼𝑜𝑝𝑡 ⟵ 𝛼 

T F 

∇𝑠𝑝 > 𝜀?  

End 

α𝑛𝑒𝑤= no solution ? 

End 

ℎ ⟵ ℎ/2 

F T 

T F 

F 

T T 

F 
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Once the shape is identified, we partition the polyline into few C-shaped sections as proposed in 
[9]. It is noticeable that joining two quadratic Bézier curves with continuous tangent direction at 
the joint point can form an S-curve. Hence, the partition method treats three adjacent lines at a 
time. If the three adjacent line segments form an S shape, we will add a new interpolating point to 

the midpoint of the second line segment. Figure 11 depicts an example of partitioning a polyline 
path into three C-shaped sections. 

 

 
 

Figure 11: Partition the given polyline path into three C-shaped sections. 
 

4.1.2 Identifying variable values that satisfy 𝐺2 conditions 

Note that the C-shaped sections after partition process are treated separately. We impose the 
given 𝐺2 constraints to (2.7) - (2.12) and solve for the unknown variables 𝑐𝑖𝑗 where 𝑖 = 1,2 and 𝑗 =

0,1,2. The remaining unknowns 𝑠 and 𝐿 are determined from (2.13) – (2.14) by bisection method. 

The parameter 𝑠 indicates the arc length of the first segment of a spiral path. Figure 12 and Figure 

13 illustrate an example of symmetric and asymmetric C-shaped section with two lines (𝑛 = 2). For 

symmetric cases, we set the value of 𝑠 = 0.5; while in asymmetric cases, we may calculate 𝑠 using 

bisection method. 
 

 
 

Figure 12: An example of symmetric C-shaped segment with 𝑛 = 2. The red points indicate the 

joint point of a pair of spirals. Configuration represents: (a) Geometric setup, and (b) Spiral paths 
with various 𝛼 values. 
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Figure 13: An example of asymmetric C-shaped segments with 𝑛 = 2. The red points indicate the 

joint point of a pair of spirals. Configuration represents: (a) Geometric setup, and (b) Spiral paths 
with various 𝛼 values. 

 

4.1.3 Initializing a smooth path with default 𝛼 

We construct a smooth reference path with a default 𝛼 value. If users desire to obtain a smooth 

path which minimizes curvature variation energy 𝑉, the default 𝛼 is set to be 𝛼 = −1. Otherwise, it 

is set as 𝛼 = −5. There are three conditions we may encounter: 

a) No solution 
The solution of clothoid may not always exist. In case there is no solution, polyline path is 
either further partitioned into two parts or we modify the 𝛼 value with user defined step 

size ℎ. Note that for section with 𝑛 = 2, straight line can be added to the longer leg of 

polyline so that asymmetric case is transformed to become symmetric case. Further 
partition method is carried out based on the number of the line segments 𝑛 of the treated 

section and 𝑛 > 2 must be hold. If 𝑛 is odd, a new point is added to the midpoint of the 

middle line segment. Otherwise, it will be added to the midpoint of the middle line segment 

that is longer. Figure 14 shows an example of further partition a C-shaped section into two 
parts.  
 

 
Figure 14: An example of further partition a C-shaped section into two parts in two conditions: (a) 

When 𝑛 is odd, and (b) When 𝑛 is even. 
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b) Solution with obstacle avoidance 
Based on the numerical results in Table 1 and Table 2, it is noticeable that 𝛼 = −1 gives 

path with minimal curvature variation energy 𝑉. Therefore, in the case of minimizing 𝑉, the 

optimal 𝛼 path with its value is obtained straightaway and we end the process. For the 

other two cases of minimizing 𝐿 and 𝐸, two additional spiral solutions are required for 

comparison. Without loss of generality, we modify 𝛼 with recommended step size ℎ = 0.1 

and iteratively carrying out this process in the direction of minimizing 𝑀∗. The 𝛼 value will 

be updated iteratively until ∇𝑀∗ < 𝑇𝑜𝑙. If the updated 𝛼 (𝛼𝑛𝑒𝑤) has no solution, we reduce 

the step size ℎ by ℎ/2 and repeat the iterative process. 

 
c) Solution with obstacle collision 

We modify 𝛼 value with recommended step size ℎ = 0.1 iteratively until ∇𝑠𝑝 > 𝜀. There are 

two approaches to detect collision which are based on distance threshold and point region 
intersection. Once we obtain a feasible spiral solution, we required another solution 𝛼𝑛𝑒𝑤 for 

comparison. 𝑀∗ value of each spiral solution is calculated and compare with one another. If 

𝛼𝑖𝑛𝑡 has minimum 𝑀∗, then it is the optimal path. Otherwise, we modify 𝛼 iteratively until 

stopping criteria is met. 

Collision Detection Algorithm based on Distance Threshold 

Remark: Endpoints, obstacle vertices, initial spiral path, new spiral path. 
Input : 𝑃0, 𝑃𝑛, 𝑣1, … , 𝑣𝑛, 𝛼, 𝛼𝑛𝑒𝑤. 

Output : Feasible or infeasible smooth path. 

 

Begin 

Step 1 Determine intersection points 𝑊1, 𝑊2 and represent line that joins them in standard 

form 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0. 

Step 2 Calculate distance threshold 𝜀 as illustrated in Figure 15 by using formula 
|𝐴𝑥+𝐵𝑦+𝐶|

√𝐴2+𝐵2
. 

Step 3 Calculate distance of all points on the spiral path from 𝑃0, 𝑃𝑛
̅̅ ̅̅ ̅̅ ̅ and identify 𝑠𝑝 

(maximum distance) of 𝛼 path. 

Step 4 Identify 𝑠𝑝𝑛𝑒𝑤 of 𝛼𝑛𝑒𝑤 path. 

Step 5 Check:   
 If |𝑠𝑝𝑛𝑒𝑤 − 𝑠𝑝 > 𝜀| 

𝛼𝑛𝑒𝑤 path is feasible 

else 
𝛼𝑛𝑒𝑤 path is infeasible 

End 

 

 
 

Figure 15: Collision detection method based on distance threshold 𝜀. 
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Collision Detection Algorithm based on Point-Region Intersection 

Remark: Endpoints, obstacle vertices, initial spiral path, new spiral path. 
Input : 𝑃0, 𝑃𝑛, 𝑣1, … , 𝑣𝑛, 𝛼, 𝛼𝑛𝑒𝑤. 

Output : Feasible or infeasible smooth path. 

 

Begin 
Step 1 Identify min and max of the x and y-coordinate of obstacle (infeasible region) as 

shown in Figure 16. 
Step 2 Calculate all points 𝑥𝑖 , 𝑦𝑖 along the 𝛼 path, where 𝑖 = 1, … , 𝑛. 

Step 3 Check:   
 If 𝑥𝑖 , 𝑦𝑖 ∈ 𝐼𝑅 

𝛼 path is infeasible 

else 
α path is feasible 

Step 4 Repeat Step 2 – Step 3 for 𝛼𝑛𝑒𝑤 path. 

End 
 

 

 
 

Figure 16: Collision detection method based on point-region intersection. 

 

5 NUMERICAL EXAMPLES 

This section presents few numerical examples implementing the proposed path smoothing 
algorithm. The implementation was performed using Wolfram Mathematica Version 9.0 on a 2.4 
GHz Core i5-450M with 2 GB RAM and GeForce 310M. Figure 17 and Table 3 demonstrates the 

comparison between the proposed algorithm and two conventional methods used for path 
smoothing using cubic Bézier [9] and clothoid [15]. As shown in Figure 17, the initial Bézier and 
clothoid path are obviously infeasible, and thus a suitable parameter value is needed to be 
searched. Due to the curvature complexity of Bézier curve, its path energy is significantly greater 
than the clothoid and LACs path. It is easy for a clothoid path to avoid obstacle by appending 
straight line at both ends of the polyline path or adopt piecewise-clothoid curve as proposed in [6]. 

However this increases the path length. The proposed method generates a satisfactory LACs path 
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with minimal path length or energy, though its computation time is slightly higher than the other 
two methods due to the shoulder point detection process. Most of the conventional techniques of 
path smoothing focus on generating a collision free path alone, whereas the proposed algorithm 
aims to generate a collision free path with optimized path length or energy with a low 

computational cost. Table 3 demonstrates the computation time of each feasible path presented in 
Figure 17.  

Figure 18 shows the result of smoothing a polyline path with clothoid using the same data 
points shown by Meek and Walton [15].  The numerical result of this example is demonstrated in 
Table 4. It is evident that LACs produce shorter path as compared to clothoid. Example 3 shown in 
Figure 19 consists of polyline path partitioned into four C-shaped sections whereas Example 4 has 
five C-shaped sections, as depicted in Figure 20. Note that the spiral paths are generated using bi-

LACs with various 𝛼 values for each section with a desirable optimal path. The numerical results of 

Figure 19 and Figure 20 are demonstrated in Table 5 and Table 6, respectively. The examples 
clearly indicate that clothoid may fail to satisfy given polyline path where it collides with given 
obstacles. Furthermore, the solution of clothoid is rather limited or restricted.  

 With bi-LACs, user has the option to choose their desired metric to smooth the given polyline 
path. The experimental results show that an obstacle-avoiding smooth path with minimal path 
length and bending energy can be obtained when 𝛼 → −∞. Moreover, we found that 𝛼 = −1 is the 

optimal spiral to produce smooth path with minimal curvature variation energy. However, it does 
not guarantee obstacle avoidance. Thus, user may vary the paths by either appending straight line 
at the polyline path or fine-tuning 𝛼 values to obtain other feasible obstacle-avoiding path with 

minimal curvature variation energy. The user insist on using clothoid, hence one may adopt 
piecewise-clothoid curve as proposed in [6] . 

 

 
 

Figure 17: Comparison between cubic Bézier path (dashed gray), clothoid path (dashed brown) 
and optimal LACs path (solid black) with 𝛼 = −0.4  using minimal path length as the metric. 

 

Curve  
 

Average Computation Time 
[s] 

Metrics 

Obstacle 

Avoidance 

Parameters 

Calculation 

L E V 

Bézier  0.2 1.53 3.31 0.255 30.96 
Clothoid 0.11 2 3.324 0.383 4.60 

LACs 0.3 2 3.30 0.175 7.28 

 
Table 3: Numerical results of Figure 17 and computation time of each path. 
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Figure 18: Example 2 of an optimal LACs path with minimal path length. Clothoid path is 
presented for comparison. 

 

Curve 
(Colour) 

𝜶 Metrics 

Seg 1 Seg 2 Seg 3 Seg 4 L E V 

LACs 
(Black) 

-1.6 -3.8 -4.7 -0.7 6.8499 6.0862 1.61
× 106 

Clothoid 
(Brown) 

-1 -1 -1 -1 7.1395 7.2703 94.684 

 
Table 4: Numerical results of Figure 18. 

 
 

Figure 19: Example 3 of an optimal LAC paths with minimal path: (a) length 𝐿, (b) bending energy 

𝐸, (c) curvature variation energy 𝑉, and (d) multiple paths. 

 

𝑭𝒊𝒈 𝜶 Metrics 

Seg 1 Seg 2 Seg 3 Seg 4 L E V 

19(a) -0.4034 -1.106 -0.8 -0.6 10.4399 3.7069 14159.79 
19(b) -0.4034 -1.106 -0.8 -0.6 10.4399 3.7069 14159.79 

19(c) -0.4034 -1 -1 -1 10.6197 4.5796 122.28 

 
Table 5: Numerical results of Figure 19. 

6 CONCLUSION AND FUTURE WORK 

An alternative yet simple algorithm is proposed to show the flexibility of LACs in smoothing the 
given polyline path with three types of metrics minimization. Furthermore, two collision detection 

algorithms also presented to improve the efficiency of finding the feasible smooth path. Future 
works include investigating path smoothing problem in uncertain environment by taking into 
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account additional constraints such as minimum or maximum curvature constraint and turning 
angle limitation. We may extend the current algorithm to yield LAC spline with 𝐺3 continuity in 

which designer could edit the curvature profile of LACs directly by simply inserting extra control 
points or by expanding the obstacle boundaries and adding knot at the obstacle point.    

 

 
 

Figure 20: Example 4 of an optimal LAC paths with minimal path: (a) length 𝐿, (b) bending energy 

𝐸, (c) curvature variation energy 𝑉, and (d) multiple paths. 

 

𝑭𝒊𝒈 𝜶 Metrics 

Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 L E V 

20(a) -0.4111 -1.5 -1.0355 -0.8 -3.826 42.6281 4.1962 198371.5 
20(b) -0.4111 -1.5 -1.0355 -0.8 -3.826 42.6281 4.1962 198371.5 

20(c) -0.4111 -1 -1 -1 -1 45.7398 4.6792 71.04 

 

Table 6: Numerical results of Figure 20. 
 

7 CONCLUSION AND FUTURE WORK 

An alternative yet simple algorithm is proposed to show the flexibility of LACs in smoothing the 
given polyline path with three types of metrics minimization. Furthermore, two collision detection 
algorithms also presented to improve the efficiency of finding the feasible smooth path. Future 
works include investigating path smoothing problem in uncertain environment by taking into 
account additional constraints such as minimum or maximum curvature constraint and turning 

angle limitation. We may extend the current algorithm to yield LAC spline with 𝐺3 continuity in 

which designer could edit the curvature profile of LACs directly by simply inserting extra control 
points or by expanding the obstacle boundaries and adding knot at the obstacle point.    
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