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Abstract. Prototyping technology plays an irreplaceable role in the manufacturing 
industry. Rapid prototyping and reverse engineering are two major technologies that 

meet the demands of the development. The existing approaches for directly 
prototyping a physical object involve complex processing steps, including CAD model 
reconstruction from the scanned point data, and/or stereolithography (STL) model 

generation. Such processes require professional knowledge and skills and thus are 
far from automatic processes. This paper introduces a direct 3D printing system that 
enables automatic 3D printing from the scanned point cloud. Neither a CAD model 
nor an STL model is required. In the proposed system, the two-dimensional (2D) 
contours in each printing plane are generated by using the moving least square (MLS) 
method. An improved clustering method was developed to solve the topology 
problem of the multiple contours in each slicing plane. Moreover, a filling algorithm 

was implemented to support fill each contour during the layer-by-layer process. The 
proposed system simplifies the whole workflow by integrating the point-cloud 
projecting process, the printing path generating process, and the 3D printing process. 
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1 INTRODUCTION 

3D printing is well-known for its effectiveness on material and time consumption, manufacturing 
cost, and its ability to produce complex geometry designs for rapid prototyping [12]. Reverse 
engineering technology [8] refers to the process of copying or creating an existing physical object 
or surface in the computer environment, in the case that the CAD model or the engineering drawing 
is not available. These technologies have been widely applied in many fields, such as aerospace, 
medical care research, education, fashion design, architecture, and the food industry. 

In the manufacturing industry, Computer-aided design is playing an increasingly important role. 
For example, when a complicated surface/geometry is involved, the designed surface is first 
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replicated on a clay model, and then the model is rebuilt in the computer. The conventional workflow 
of this process includes several steps, as shown in Figure 1. First, the cloud point data is scanned 
from the surface. Next, the CAD model of the object is reconstructed using professional software. 
Afterwards, the model is converted into a facet model. The facet model is then sliced into layers by 

the slicing software. A G-code file is generated and imported to the 3D printer for manufacturing. 
Most of these processes require professional knowledge and skills.  
 

 
 

Figure 1: The comparison between traditional and proposed prototyping methods. 

 

A sliced model is essential to manufacture the object with 3D printing technology. Currently, a sliced 
model is generated from an STL model, which represents the surface with a triangle mesh. Many 
algorithms have been proposed for the surface reconstruction to represent a more authentic surface 
with less calculation time. However, the topology problem in the complex geometries remains a 
challenge in the study of reconstruction and slicing methods. In addition, both processes of 
reconstructing the facet model and the slicing the model might reduce the accuracy. Since sliced 

models are the final format for printing, directly generating the sliced contours of from cloud point 
data will be a better solution for directly 3D printing. Moreover, to manufacture a solid object, the 
filling pattern and printing routine are also issues needed to be considered.  

In our previous research, an experimental direct rapid prototyping system was developed, which 
automatically prints the object from a scanned point cloud using Moving Least Square (MLS) method 
[20]. This paper presents the development of a direct 3D printing system to automate the process 
to rebuild or duplicate a physical object from cloud point data directly by avoiding the CAD model or 

STL file reconstruction. In the system, the MLS method is used to generate the 2D contours in each 
slicing plane. Data clustering algorithm is improved to handle the 3D datasets and solve the issues 
of multiple contours for each slicing plane. In addition, the filling path is implemented to fill each 
contour to print solid objects. The proposed system integrates the processes of model reconstruction 
from point cloud data, model slicing, printing path generation, and 3D printing. Laborious work and 
processing time can be saved using the proposed system. 

2 LITERATURE REVIEW 

Slicing process in 3D printing involves generation of the contour and the printing pattern for each 
layer. The input model is sliced into layers, and then the printing path for each layer is generated 
and translated as machine G-code for the printer to manufacture the parts [15]. Many studies on 
slicing are based on STL format or a CAD model [13]. However, with the development of 3D scanning 
technology, many researchers are working on recreating or slicing the point cloud models. The point 
cloud data is a big dataset that depicts the position of the point on the surface in a Cartesian system. 

To create the CAD model, specialists select part of the points and recover the surface one region 
after another by using a four-side surface or other feature commands in the modeling software [3]. 
Fabio summarized and introduced the process of recreating the surface from cloud points [6]. The 
Moving least-square (MLS) method has been well implemented in many research studies to 

reconstruct the surface. A series of surface points is calculated from the massive input dataset. Levin 
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[7] named such a point-set surface as the MLS surface. Amenta and Kil [2] further studied this 
method and gave a more explicit definition of the MLS surface with an energy function and vector 
field. Subsequently, local feature size in the formulation was proposed to guarantee the 
reconstruction quality from a non-uniform sampling density [4]. Wu et al. [17] applied the correlation 

concept to determine the neighborhood radius adaptively in the process of curve construction. In 
Yang and Zhang's research [19],[21], curvature calculation and adaptive slicing were implemented 
when generating the 2D contours and determining the layer thickness.  

Another challenge in the reconstruction process is the topology problem. The scanned model 
might have several branches or multiple contours on one layer, which will cause problems, such as 
broken or incomplete results, when generating the contours. One solution is to cluster the input data 
before the reconstruction. K-means, hierarchical clustering, and density-based spatial clustering are 

the three main clustering methods [11],[14],[16].  K-means is considered as an effective approach 

for clustering large data sets. However, the result might change according to the initial center point 
selected and the cluster number defined initially [9]. The hierarchical method reorganizes the input 
data in a tree structure, which forms a hierarchical relationship. This method is mainly applied to a 
categorical database. Density-based spatial clustering [5] can automatically discover clusters of 
arbitrary spatial input. This method performs very well on a large dataset; however, it is sensitive 

to higher dimension space. In Yang et al. [18], the topology problem is solved by finding the critical 
points by using Morse theory and Lagrangian multiplier formulation.  

This research applied the MLS method to reconstruct the surface and generate the slicing 
contours from the point cloud data. The topology problem was solved by improving the Density-
Based Spatial Clustering of Applications with Noise [5] (DBSCAN) method, named as Improved 
DBSCAN, to cluster points in 3-dimention. Filling pattern was also implemented to support solid 
object printing. 

3 METHODS 

The workflow of our system is shown in Figure 2. The processes involving user’s interventions are 
shown in orange, whereas the computational processes shown in green are executed automatically. 
The users are only involved in the first and last step, i.e., inputting the cloud point data and starting 
the printing process. In the algorithm, the calculation loop scans through the input data from the 
bottom to the top, layer by layer. A bounding box with a preset height is applied to each layer. Points 
in the bounding box are divided into groups by the Improved DBSCAN method to solve the multiple 

contours problem. Afterwards, MLS method is applied to generate the contour for each group. The 
system also can print solid parts by filling the contours. The parallel filling pattern method was 
developed and implemented in the system. 

 

 
 

Figure 2: The workflow of the direct 3D printing system. 

3.1 Point Cloud Clustering 

The Improved DBSCAN method was developed for group division. If the input cloud points (including 
x, y, z position and i, j, k, normal information) are not grouped properly, then incomplete or broken 
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contours might occur, such as the situations shown in Figure 3. Such a problem occurs when the 
slicing plane is close to the critical point whose gradient is zero. When reaching to critical points, the 
surface approaches the local extrema or the geometry starts to divide into several branches. To 
solve this problem and to avoid the interference from the mass data, the points in the bounding box 

are divided into groups before generating the contours. 
 

 

Figure 3: The incomplete or broken contours generated without clustering step. 
 

In the system, the Improved DBSCAN method was implemented to realize the clustering process. 
Points are classified regarding to the density of their neighbor area. Four types of points were 

introduced in the Improved DBSCAN, as following:  

A) Core point: the point with high density;  

B) Quasi-critical point: the point with high density but located at or close to the critical point of 
the geometry;  

C) Border point: the point close to or at the border of the geometry and lead to a less density of 
its neighborhood;  

D) Outlier point: the point with low density. 

Core point, border point, and outlier point are originally introduced in classic DBSCAN method. 
A new type of point, Quasi-critical point, was newly introduced in our method. Quasi-critical point 
can help to examine if there is a critical point in the slicing layer. The definition and functions of each 
point type are summarized in Table 1. 𝐸𝑝𝑠 is defined as the maximum radius of the neighborhood  

of a point 𝑝. The neighbor points of 𝑝 are the points 𝑞𝑖 in the bounding box and meet the requirement 

P = {q|dist(p, q) ≤ Eps}. NEps(p) is the number of neighbor point in the neighbor area 𝐸𝑝𝑠. 𝑀𝑖𝑛𝑃𝑡𝑠 is the 

minimum number of points in a neighborhood of the checking point 𝑝. A point 𝑞 is directly density-

reachable from a point 𝑝 regarding the 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠 if 𝑞 belongs to 𝑁𝐸𝑝𝑠(𝑝) and point 𝑝 is a core 

point. A point 𝑞 is density-reachable from a point 𝑝 if there is a chain of points 𝑞1, 𝑞2, …, 𝑞𝑛, 𝑞1 = 𝑝, 

𝑞𝑛 = 𝑞, such that 𝑞𝑖+1 is directly density-reachable from 𝑞𝑖.  

For core point, its neighbor point number is greater than or equal to 𝑀𝑖𝑛𝑃𝑡𝑠. A core point can 

form a new cluster and include all the neighbor points 𝑞𝑖 to the cluster, as well as recursively add 

their neighbors if the neighbor point 𝑞𝑖 is also a core point. A border point is a point whose neighbor 

point number is less than 𝑀𝑖𝑛𝑃𝑡𝑠 but is directly density-reachable from a core point. A border point 

itself is included in the cluster; however, it cannot start a new cluster, and its neighbor points cannot 
be directly added to the current cluster. A quasi-critical point has neighbor points more than 𝑀𝑖𝑛𝑃𝑡𝑠, 
but differs to core point because of the height range of its neighbor points. The definition is explained 
below. A quasi-critical point can neither form a new cluster nor be included in any cluster. A point is 
defined as an outlier point if it is not a core point, a quasi-critical point, or a border point. An outlier 

point can neither start a new cluster nor be included into any cluster. All point types are illustrated 
in an example shown in Fig 3.  

 

 Point type Point condition Start a group Join the 

group 
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A Core point a. 𝑁𝐸𝑝𝑠(𝑝) ≥ MinPts 

b. 𝑍𝐸𝑝𝑠(𝑝) ∩ Bandz_now ≠ ∅ √ √ 

B Quasi-
critical point 

a. NEps(p) ≥ MinPts 

b. ZEps(p) ∩ Bandz_now = ∅ 
× × 

C Border point a. 1 < NEps(p) < MinPts 

b. Density reachable from a core point 
× √ 

D Outlier point a. The rest of the points × × 

 
Table 1: Point types in the Improved DBSCAN method. 

 

As the example in Figure 4, input points in the bounding box are marked as black dot in the blue 
area and shown in z-x coordinates. The points need to be clustered. 𝑍𝑛𝑜𝑤 is the slicing plane and 

𝐵𝑎𝑛𝑑𝑧_𝑛𝑜𝑤 is considered as a band with a tolerance width, where: 

𝑍𝑛𝑜𝑤 − 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ≤ 𝐵𝑎𝑛𝑑𝑧_𝑛𝑜𝑤 ≤ 𝑍𝑛𝑜𝑤 + 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒. 

Neighbor points of a point 𝑝 are found in the neighbor area 𝐸𝑝𝑠 shown with orange dash line in the 

figure. The z-range of neighborhood noted as 𝑍𝐸𝑝𝑠(𝑝) covers from maximum z value to the minimum 

z value of the neighbor points. It is highlighted as an orange area with solid boundary.  

 

 
 

Figure 4: Examples of the core point and the quasi-critical point. 
 

A quasi-critical point, shown as point B in Figure 4, has enough neighbor points (greater than or 
equal to 𝑀𝑖𝑛𝑃𝑡𝑠 ), and also the z-range of its neighborhood does not cross the slicing plane 

band 𝐵𝑎𝑛𝑑𝑧_𝑛𝑜𝑤, i.e., 𝑍𝐸𝑝𝑠(𝑝) ∩ 𝐵𝑎𝑛𝑑𝑧_𝑛𝑜𝑤 = ∅. In contrast, a core point, shown as point A in Figure 4, 

is a point with high density, and the z value range of its neighbor crosses the slicing plane, i.e., 
𝑍𝐸𝑝𝑠(𝑝) ∩ 𝐵𝑎𝑛𝑑𝑧_𝑛𝑜𝑤 ≠ ∅.  

In the Improved DDBSCAN method, all input points will be classified. Figure 4 shows examples 

of all four different types of points defined in the Improved DBSCAN method. In Case A, the point is 

classified as a core point because its neighborhood is intersected with the slicing plane z_now. In 

Case B, a quasi-critical point is defined because there is no intersection between the neighborhood 
z-range and the slicing plane. Case C shows a border point whose neighbor point number is less 
than 𝑀𝑖𝑛𝑃𝑡𝑠. Case D shows an outlier point, which is not directly density-reachable from a core point. 

The pseudocode of the Improved DBSCAN method is shown in Figure 5. Points in the bounding box 
are initially imported to unvisited-list, and the first point in the list will be visited. A visit-list, which 

is a queue, is created when a cluster is formed and becomes an empty queue when all the points 
are visited and no more points are added. A new cluster is formed after the visit-list is empty.  

3.2 Contour Generation Using MLS 

After the points are grouped, one contour will be generated for each cluster. The main idea of 
generating the slicing contour is to calculate the surface point to represent the input point data. This 

section introduces the process to generate the MLS contour. The tracing process is explained in 
Figure 6, where the blue dots are the sample-points 𝑝𝑖; the yellow triangle dots 𝑦 represents a 
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surface point calculated from 𝑝𝑖; the red square dot 𝑥 is the initial guess-point, and 𝑥′ is the next 

guess-point for the following iteration to calculate the next surface point. 
 

 
 

Figure 5: The pseudocode of the Improve DBSCAN method. 
 

 
 

Figure 6: MLS surface representation and the closed contour generation. 
 

For each cluster, the initial guess-point is selected as the point most close to the last surface point 
of previous cluster. Amount of points, here named as sample-points, are found as the points that 

closest to the guess-point 𝑥. In the example, it is defined as the closest 6 points 𝑞𝑖. Blue dots in 

Figure 6(a) are the sample-points found around the guess-point 𝑥.  

A weighing function is applied to these sample-points based on the distribution of them. In this 
system, it is defined by a Gaussian function as Eq. (1).  

𝑤(𝑥, 𝑞𝑖) = 𝑒
−‖ 𝑣⃗ 𝑖 ‖

2

ℎ2  (1) 

where 𝑣 𝑖 = 𝑞𝑖⃗⃗  ⃗ − 𝑥 . ℎ is the scale factor in the weighting function.  

The surface point is found along the moving direction, which is calculated from the normal vector 
of the sample points with Eq. (2), as the vector 𝑛⃗ (𝑥) shown in Figure 6(a). The 𝑛⃗ 𝑝𝑖 is the normal 

vector of the input points or the calculated normal of each input point.  

𝑛⃗ (𝑥) =
∑ 𝑤(𝑥, 𝑞𝑖)𝑝𝑖∈𝑃 × 𝑛⃗ qi

‖∑ 𝑤(𝑥, 𝑞𝑖) × 𝑛⃗ qi𝑝𝑖∈𝑃 ‖
 (2) 
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An energy function was introduced to locate the surface point. An implicit plane, which is 
perpendicular to the moving direction, is introduced. The distance of each sample point to this plane 
contributes to the energy. The total energy is the sum of the distance from each neighbor point to 
the implicit plane, as described by Eq. (3).  

𝑒(𝑦, 𝑛⃗ (𝑥)) = ∑ ((𝑞𝑖 − 𝑦) ⋅ 𝑛⃗ (𝑥))2 ⋅ 𝑤(𝑦, 𝑞𝑖)
𝑞𝑖∈𝑄

 (3) 

where 𝑦 is the potential surface point, also shown by the triangular dot in Figure 6. The surface point 

is found along the moving direction 𝑛⃗ (𝑥); thus, it could be depicted as 𝑦 = 𝑥 − 𝑛⃗ ⋅ 𝑡 , in which, the 𝑡 is 
the moving distance from the guess point to the surface point. The energy equation could be restated 
as a function of 𝑡 given by Eq. (4). 

𝑒(𝑡) = ∑ (((𝑥 + 𝑡 ⋅ 𝑛⃗ (𝑥)) − 𝑞) ⋅ 𝑛⃗ (𝑥))2 ⋅ 𝑤(𝑦, 𝑞𝑖)
𝑞𝑖∈𝑄

 (4) 

The point with the minimum energy is the final surface point used to describe the MLS contour. Also, 
the normal vector of the final surface point is recalculated by using Eq. (2). 

After this, the following guess-point is calculated by adding a step size 𝑙 in the direction tangent 

to the normal 𝑛⃗ (𝑦) of the previous surface point. The calculation is iterated until a closed contour is 

formed. The contour generated, shown as Figure 6(b), is the linear connection of all the surface 
points in sequence. 

4 RESULTS AND DISCUSSION 

The algorithms were implemented using MATLAB. The results of group division, contour generation, 
and filling path are discussed in this section. 

4.1 Point Cloud Group Division 

The input data of the grouping process are the points selected in the bounding box with a certain 

height. The input data are in three-dimensional space and grouped using the Improved DBSCAN 
method. Table 2 shows the results while slicing at different height of the two sample geometries. 
The left column shows the input data, i.e., the points in the bounding box. The right column shows 
the result of group division. In these examples, the neighbor point size is set as 30 points in the 
initial. The points in different groups are shown in different colors, and the quasi-critical points are 
presented as black dots. A closed contour is generated for each group.  

The result of sample (d) are obviously in one group, and the results of sample (c) and (f) are in 

multiple groups. In samples (a), (b) and (e), the slicing plane is close to the critical point. These 
inputs would be considered as one group by the classic DBSCAN method because the points in the 

middle area connect the left and right parts in three-dimension space. However, the Improved 
DBSCAN method can recognize the quasi-critical points and divide the inputs into multiple groups. 
Thus, the MLS contours for each group are generated as desired. 

4.2 Filling Path for Each Layer 

To support solid part printing, a parallel filling pattern [1],[10] was generated inside each contour. 
In addition, to improve the strength of the solid parts in all directions, a 60 degrees difference 
between two adjacent layers was considered. The results are shown in Figure 7. The figures in the 
left three columns present three layers of the printing direction in 2D view, and figures in the right 
two columns are the 3D view and the top view. 

4.3 System Integration and Printing Results 

An interface was designed for the direct 3D printing system and implemented by Matlab as shown 
in Figure 8. The interface had two areas. The left portion of the interface showed two sets of control 
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parameters, input files, the printing status, and command buttons. The right portion of the interface 
had three display areas in which the tracing works were graphically rendered in real-time. Figure 
8(a) shows the results of group division and the surface points generated on the MLS contour. Figure 
8(b) shows the filling pattern and the contour of the slicing layer. 

 

 

 

 

 

a 

 

d 

 
b 

 

e 

 
c 

 

f 

 

 
Table 2: Group division for two samples. 

 

 
 

Figure 7: The printing direction of three adjacent layers. 

 

Five geometries were tested with the direct 3D printing system, as shown in Table 3. The printer 
used in the research work was controlled with open source software named Pronterface 

(www.pronterface.com). The main material used was PLA. The samples were sliced and printed in 

two modes: contour-only or solid-printed with filling. The results showed that the direct 3D printing 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 17(4), 2020, 825-835 

© 2020 CAD Solutions, LLC, http://www.cad-journal.net 
 

833 

system can successfully handle the multiple branch problem, as shown in Table 3. The fluffy body 
and details on the face of the bunny were represented as shown in sample (C). The sample (C) was 
only successfully printed with the filling because the contour-only mode cannot provide enough self-
support. The detailed geometries and small curvature parts were successfully manufactured. 

 

 
(a)                                                                             (b) 

Figure 8: Examples of the displays of interfaces. 

 

 Point Cloud Model Sliced Model Contour-Only Solid-Printed 

A 

    

B 

    

C 

  

_ 

 

 

Table 3: The printed results. 

5 CONCLUSIONS 

In this research work, a direct 3D printing system was implemented to directly manufacture or 
rebuild an existing object by integrating RE and RP process. Neither STL nor a CAD model was 
recreated in this process. The input cloud points were first divided into sections by layers. To solve 

the multiple contours problem on one slicing layer, we developed an Improved DBSCAN algorithm 

to divide the points in the bounding box into groups. The surface points were calculated from the 
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input points cloud data by applying the MLS method. The tracing method was implemented to 
generated closed contours on each slicing layer. Several samples were tested with the direct 3D 
printing system, which were sliced and printed. The direct 3D printing system could well reconstruct 
the object from point cloud data. Moreover, the geometries were successfully manufactured with the 

3D printing system developed in-house.  

The system can be further improved in several aspects. Support structures have not been 
implemented in the current system. Currently, printing with filling pattern is a way to improve the 
support of some of the geometries. With the support structures, more complex geometries can be 
printed with our system. In addition, the optimization of the printing orientation is not available in 
the current system. Therefore, future work will be focused on design of the support structure and 
optimization of printing orientation. 
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