
825

Computer-Aided Design & Applications, 17(4), 2020, 825-835

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

Direct 3D Printing System: from Point Cloud to Additive

Manufacturing

Tianyun Yuan1 , Xiaobo Peng2 , Dongdong Zhang3 and Lin Li4

1Prairie View A&M University, tyuan@student.pvamu.edu

2Prairie View A&M University, xipeng@pvamu.edu
3peterzdd_2002@hotmail.com

4Prairie View A&M University, lilin@pvamu.edu

Corresponding author: Xiaobo Peng, xipeng@pvamu.edu

Abstract. Prototyping technology plays an irreplaceable role in the manufacturing
industry. Rapid prototyping and reverse engineering are two major technologies that

meet the demands of the development. The existing approaches for directly
prototyping a physical object involve complex processing steps, including CAD model
reconstruction from the scanned point data, and/or stereolithography (STL) model

generation. Such processes require professional knowledge and skills and thus are
far from automatic processes. This paper introduces a direct 3D printing system that
enables automatic 3D printing from the scanned point cloud. Neither a CAD model
nor an STL model is required. In the proposed system, the two-dimensional (2D)
contours in each printing plane are generated by using the moving least square (MLS)
method. An improved clustering method was developed to solve the topology
problem of the multiple contours in each slicing plane. Moreover, a filling algorithm

was implemented to support fill each contour during the layer-by-layer process. The
proposed system simplifies the whole workflow by integrating the point-cloud
projecting process, the printing path generating process, and the 3D printing process.

Keywords: 3D printing, MLS method, DBSCAN, direct manufacturing.
DOI: https://doi.org/10.14733/cadaps.2020.825-835

1 INTRODUCTION

3D printing is well-known for its effectiveness on material and time consumption, manufacturing
cost, and its ability to produce complex geometry designs for rapid prototyping [12]. Reverse
engineering technology [8] refers to the process of copying or creating an existing physical object
or surface in the computer environment, in the case that the CAD model or the engineering drawing
is not available. These technologies have been widely applied in many fields, such as aerospace,
medical care research, education, fashion design, architecture, and the food industry.

In the manufacturing industry, Computer-aided design is playing an increasingly important role.
For example, when a complicated surface/geometry is involved, the designed surface is first

http://www.cad-journal.net/
file:///G:/Peng/Document/JournalPaper/CAD'19/Full%20Paper/tyuan@student.pvamu.edu
mailto:xipeng@pvamu.edu
mailto:peterzdd_2002@hotmail.com
mailto:lilin@pvamu.edu
mailto:xipeng@pvamu.edu
http://orcid.org/0000-0001-6846-6550
http://orcid.org/0000-0002-0498-7194
http://orcid.org/0000-0001-9471-1628
http://orcid.org/0000-0002-9652-8111

Computer-Aided Design & Applications, 17(4), 2020, 825-835

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

826

replicated on a clay model, and then the model is rebuilt in the computer. The conventional workflow
of this process includes several steps, as shown in Figure 1. First, the cloud point data is scanned
from the surface. Next, the CAD model of the object is reconstructed using professional software.
Afterwards, the model is converted into a facet model. The facet model is then sliced into layers by

the slicing software. A G-code file is generated and imported to the 3D printer for manufacturing.
Most of these processes require professional knowledge and skills.

Figure 1: The comparison between traditional and proposed prototyping methods.

A sliced model is essential to manufacture the object with 3D printing technology. Currently, a sliced
model is generated from an STL model, which represents the surface with a triangle mesh. Many
algorithms have been proposed for the surface reconstruction to represent a more authentic surface
with less calculation time. However, the topology problem in the complex geometries remains a
challenge in the study of reconstruction and slicing methods. In addition, both processes of
reconstructing the facet model and the slicing the model might reduce the accuracy. Since sliced

models are the final format for printing, directly generating the sliced contours of from cloud point
data will be a better solution for directly 3D printing. Moreover, to manufacture a solid object, the
filling pattern and printing routine are also issues needed to be considered.

In our previous research, an experimental direct rapid prototyping system was developed, which
automatically prints the object from a scanned point cloud using Moving Least Square (MLS) method
[20]. This paper presents the development of a direct 3D printing system to automate the process
to rebuild or duplicate a physical object from cloud point data directly by avoiding the CAD model or

STL file reconstruction. In the system, the MLS method is used to generate the 2D contours in each
slicing plane. Data clustering algorithm is improved to handle the 3D datasets and solve the issues
of multiple contours for each slicing plane. In addition, the filling path is implemented to fill each
contour to print solid objects. The proposed system integrates the processes of model reconstruction
from point cloud data, model slicing, printing path generation, and 3D printing. Laborious work and
processing time can be saved using the proposed system.

2 LITERATURE REVIEW

Slicing process in 3D printing involves generation of the contour and the printing pattern for each
layer. The input model is sliced into layers, and then the printing path for each layer is generated
and translated as machine G-code for the printer to manufacture the parts [15]. Many studies on
slicing are based on STL format or a CAD model [13]. However, with the development of 3D scanning
technology, many researchers are working on recreating or slicing the point cloud models. The point
cloud data is a big dataset that depicts the position of the point on the surface in a Cartesian system.

To create the CAD model, specialists select part of the points and recover the surface one region
after another by using a four-side surface or other feature commands in the modeling software [3].
Fabio summarized and introduced the process of recreating the surface from cloud points [6]. The
Moving least-square (MLS) method has been well implemented in many research studies to

reconstruct the surface. A series of surface points is calculated from the massive input dataset. Levin

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(4), 2020, 825-835

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

827

[7] named such a point-set surface as the MLS surface. Amenta and Kil [2] further studied this
method and gave a more explicit definition of the MLS surface with an energy function and vector
field. Subsequently, local feature size in the formulation was proposed to guarantee the
reconstruction quality from a non-uniform sampling density [4]. Wu et al. [17] applied the correlation

concept to determine the neighborhood radius adaptively in the process of curve construction. In
Yang and Zhang's research [19],[21], curvature calculation and adaptive slicing were implemented
when generating the 2D contours and determining the layer thickness.

Another challenge in the reconstruction process is the topology problem. The scanned model
might have several branches or multiple contours on one layer, which will cause problems, such as
broken or incomplete results, when generating the contours. One solution is to cluster the input data
before the reconstruction. K-means, hierarchical clustering, and density-based spatial clustering are

the three main clustering methods [11],[14],[16]. K-means is considered as an effective approach

for clustering large data sets. However, the result might change according to the initial center point
selected and the cluster number defined initially [9]. The hierarchical method reorganizes the input
data in a tree structure, which forms a hierarchical relationship. This method is mainly applied to a
categorical database. Density-based spatial clustering [5] can automatically discover clusters of
arbitrary spatial input. This method performs very well on a large dataset; however, it is sensitive

to higher dimension space. In Yang et al. [18], the topology problem is solved by finding the critical
points by using Morse theory and Lagrangian multiplier formulation.

This research applied the MLS method to reconstruct the surface and generate the slicing
contours from the point cloud data. The topology problem was solved by improving the Density-
Based Spatial Clustering of Applications with Noise [5] (DBSCAN) method, named as Improved
DBSCAN, to cluster points in 3-dimention. Filling pattern was also implemented to support solid
object printing.

3 METHODS

The workflow of our system is shown in Figure 2. The processes involving user’s interventions are
shown in orange, whereas the computational processes shown in green are executed automatically.
The users are only involved in the first and last step, i.e., inputting the cloud point data and starting
the printing process. In the algorithm, the calculation loop scans through the input data from the
bottom to the top, layer by layer. A bounding box with a preset height is applied to each layer. Points
in the bounding box are divided into groups by the Improved DBSCAN method to solve the multiple

contours problem. Afterwards, MLS method is applied to generate the contour for each group. The
system also can print solid parts by filling the contours. The parallel filling pattern method was
developed and implemented in the system.

Figure 2: The workflow of the direct 3D printing system.

3.1 Point Cloud Clustering

The Improved DBSCAN method was developed for group division. If the input cloud points (including
x, y, z position and i, j, k, normal information) are not grouped properly, then incomplete or broken

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(4), 2020, 825-835

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

828

contours might occur, such as the situations shown in Figure 3. Such a problem occurs when the
slicing plane is close to the critical point whose gradient is zero. When reaching to critical points, the
surface approaches the local extrema or the geometry starts to divide into several branches. To
solve this problem and to avoid the interference from the mass data, the points in the bounding box

are divided into groups before generating the contours.

Figure 3: The incomplete or broken contours generated without clustering step.

In the system, the Improved DBSCAN method was implemented to realize the clustering process.
Points are classified regarding to the density of their neighbor area. Four types of points were

introduced in the Improved DBSCAN, as following:

A) Core point: the point with high density;

B) Quasi-critical point: the point with high density but located at or close to the critical point of
the geometry;

C) Border point: the point close to or at the border of the geometry and lead to a less density of
its neighborhood;

D) Outlier point: the point with low density.

Core point, border point, and outlier point are originally introduced in classic DBSCAN method.
A new type of point, Quasi-critical point, was newly introduced in our method. Quasi-critical point
can help to examine if there is a critical point in the slicing layer. The definition and functions of each
point type are summarized in Table 1. 𝐸𝑝𝑠 is defined as the maximum radius of the neighborhood

of a point 𝑝. The neighbor points of 𝑝 are the points 𝑞𝑖 in the bounding box and meet the requirement

P = {q|dist(p, q) ≤ Eps}. NEps(p) is the number of neighbor point in the neighbor area 𝐸𝑝𝑠. 𝑀𝑖𝑛𝑃𝑡𝑠 is the

minimum number of points in a neighborhood of the checking point 𝑝. A point 𝑞 is directly density-

reachable from a point 𝑝 regarding the 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠 if 𝑞 belongs to 𝑁𝐸𝑝𝑠(𝑝) and point 𝑝 is a core

point. A point 𝑞 is density-reachable from a point 𝑝 if there is a chain of points 𝑞1, 𝑞2, …, 𝑞𝑛, 𝑞1 = 𝑝,

𝑞𝑛 = 𝑞, such that 𝑞𝑖+1 is directly density-reachable from 𝑞𝑖.

For core point, its neighbor point number is greater than or equal to 𝑀𝑖𝑛𝑃𝑡𝑠. A core point can

form a new cluster and include all the neighbor points 𝑞𝑖 to the cluster, as well as recursively add

their neighbors if the neighbor point 𝑞𝑖 is also a core point. A border point is a point whose neighbor

point number is less than 𝑀𝑖𝑛𝑃𝑡𝑠 but is directly density-reachable from a core point. A border point

itself is included in the cluster; however, it cannot start a new cluster, and its neighbor points cannot
be directly added to the current cluster. A quasi-critical point has neighbor points more than 𝑀𝑖𝑛𝑃𝑡𝑠,
but differs to core point because of the height range of its neighbor points. The definition is explained
below. A quasi-critical point can neither form a new cluster nor be included in any cluster. A point is
defined as an outlier point if it is not a core point, a quasi-critical point, or a border point. An outlier

point can neither start a new cluster nor be included into any cluster. All point types are illustrated
in an example shown in Fig 3.

 Point type Point condition Start a group Join the

group

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(4), 2020, 825-835

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

829

A Core point a. 𝑁𝐸𝑝𝑠(𝑝) ≥ MinPts

b. 𝑍𝐸𝑝𝑠(𝑝) ∩ Bandz_now ≠ ∅ √ √

B Quasi-
critical point

a. NEps(p) ≥ MinPts

b. ZEps(p) ∩ Bandz_now = ∅
× ×

C Border point a. 1 < NEps(p) < MinPts

b. Density reachable from a core point
× √

D Outlier point a. The rest of the points × ×

Table 1: Point types in the Improved DBSCAN method.

As the example in Figure 4, input points in the bounding box are marked as black dot in the blue
area and shown in z-x coordinates. The points need to be clustered. 𝑍𝑛𝑜𝑤 is the slicing plane and

𝐵𝑎𝑛𝑑𝑧_𝑛𝑜𝑤 is considered as a band with a tolerance width, where:

𝑍𝑛𝑜𝑤 − 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ≤ 𝐵𝑎𝑛𝑑𝑧_𝑛𝑜𝑤 ≤ 𝑍𝑛𝑜𝑤 + 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒.

Neighbor points of a point 𝑝 are found in the neighbor area 𝐸𝑝𝑠 shown with orange dash line in the

figure. The z-range of neighborhood noted as 𝑍𝐸𝑝𝑠(𝑝) covers from maximum z value to the minimum

z value of the neighbor points. It is highlighted as an orange area with solid boundary.

Figure 4: Examples of the core point and the quasi-critical point.

A quasi-critical point, shown as point B in Figure 4, has enough neighbor points (greater than or
equal to 𝑀𝑖𝑛𝑃𝑡𝑠), and also the z-range of its neighborhood does not cross the slicing plane

band 𝐵𝑎𝑛𝑑𝑧_𝑛𝑜𝑤, i.e., 𝑍𝐸𝑝𝑠(𝑝) ∩ 𝐵𝑎𝑛𝑑𝑧_𝑛𝑜𝑤 = ∅. In contrast, a core point, shown as point A in Figure 4,

is a point with high density, and the z value range of its neighbor crosses the slicing plane, i.e.,
𝑍𝐸𝑝𝑠(𝑝) ∩ 𝐵𝑎𝑛𝑑𝑧_𝑛𝑜𝑤 ≠ ∅.

In the Improved DDBSCAN method, all input points will be classified. Figure 4 shows examples

of all four different types of points defined in the Improved DBSCAN method. In Case A, the point is

classified as a core point because its neighborhood is intersected with the slicing plane z_now. In

Case B, a quasi-critical point is defined because there is no intersection between the neighborhood
z-range and the slicing plane. Case C shows a border point whose neighbor point number is less
than 𝑀𝑖𝑛𝑃𝑡𝑠. Case D shows an outlier point, which is not directly density-reachable from a core point.

The pseudocode of the Improved DBSCAN method is shown in Figure 5. Points in the bounding box
are initially imported to unvisited-list, and the first point in the list will be visited. A visit-list, which

is a queue, is created when a cluster is formed and becomes an empty queue when all the points
are visited and no more points are added. A new cluster is formed after the visit-list is empty.

3.2 Contour Generation Using MLS

After the points are grouped, one contour will be generated for each cluster. The main idea of
generating the slicing contour is to calculate the surface point to represent the input point data. This

section introduces the process to generate the MLS contour. The tracing process is explained in
Figure 6, where the blue dots are the sample-points 𝑝𝑖; the yellow triangle dots 𝑦 represents a

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(4), 2020, 825-835

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

830

surface point calculated from 𝑝𝑖; the red square dot 𝑥 is the initial guess-point, and 𝑥′ is the next

guess-point for the following iteration to calculate the next surface point.

Figure 5: The pseudocode of the Improve DBSCAN method.

Figure 6: MLS surface representation and the closed contour generation.

For each cluster, the initial guess-point is selected as the point most close to the last surface point
of previous cluster. Amount of points, here named as sample-points, are found as the points that

closest to the guess-point 𝑥. In the example, it is defined as the closest 6 points 𝑞𝑖. Blue dots in

Figure 6(a) are the sample-points found around the guess-point 𝑥.

A weighing function is applied to these sample-points based on the distribution of them. In this
system, it is defined by a Gaussian function as Eq. (1).

𝑤(𝑥, 𝑞𝑖) = 𝑒
−‖ 𝑣⃗ 𝑖 ‖

2

ℎ2 (1)

where 𝑣 𝑖 = 𝑞𝑖⃗⃗ ⃗ − 𝑥 . ℎ is the scale factor in the weighting function.

The surface point is found along the moving direction, which is calculated from the normal vector
of the sample points with Eq. (2), as the vector 𝑛⃗ (𝑥) shown in Figure 6(a). The 𝑛⃗ 𝑝𝑖 is the normal

vector of the input points or the calculated normal of each input point.

𝑛⃗ (𝑥) =
∑ 𝑤(𝑥, 𝑞𝑖)𝑝𝑖∈𝑃 × 𝑛⃗ qi

‖∑ 𝑤(𝑥, 𝑞𝑖) × 𝑛⃗ qi𝑝𝑖∈𝑃 ‖
 (2)

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(4), 2020, 825-835

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

831

An energy function was introduced to locate the surface point. An implicit plane, which is
perpendicular to the moving direction, is introduced. The distance of each sample point to this plane
contributes to the energy. The total energy is the sum of the distance from each neighbor point to
the implicit plane, as described by Eq. (3).

𝑒(𝑦, 𝑛⃗ (𝑥)) = ∑ ((𝑞𝑖 − 𝑦) ⋅ 𝑛⃗ (𝑥))2 ⋅ 𝑤(𝑦, 𝑞𝑖)
𝑞𝑖∈𝑄

 (3)

where 𝑦 is the potential surface point, also shown by the triangular dot in Figure 6. The surface point

is found along the moving direction 𝑛⃗ (𝑥); thus, it could be depicted as 𝑦 = 𝑥 − 𝑛⃗ ⋅ 𝑡 , in which, the 𝑡 is
the moving distance from the guess point to the surface point. The energy equation could be restated
as a function of 𝑡 given by Eq. (4).

𝑒(𝑡) = ∑ (((𝑥 + 𝑡 ⋅ 𝑛⃗ (𝑥)) − 𝑞) ⋅ 𝑛⃗ (𝑥))2 ⋅ 𝑤(𝑦, 𝑞𝑖)
𝑞𝑖∈𝑄

 (4)

The point with the minimum energy is the final surface point used to describe the MLS contour. Also,
the normal vector of the final surface point is recalculated by using Eq. (2).

After this, the following guess-point is calculated by adding a step size 𝑙 in the direction tangent

to the normal 𝑛⃗ (𝑦) of the previous surface point. The calculation is iterated until a closed contour is

formed. The contour generated, shown as Figure 6(b), is the linear connection of all the surface
points in sequence.

4 RESULTS AND DISCUSSION

The algorithms were implemented using MATLAB. The results of group division, contour generation,
and filling path are discussed in this section.

4.1 Point Cloud Group Division

The input data of the grouping process are the points selected in the bounding box with a certain

height. The input data are in three-dimensional space and grouped using the Improved DBSCAN
method. Table 2 shows the results while slicing at different height of the two sample geometries.
The left column shows the input data, i.e., the points in the bounding box. The right column shows
the result of group division. In these examples, the neighbor point size is set as 30 points in the
initial. The points in different groups are shown in different colors, and the quasi-critical points are
presented as black dots. A closed contour is generated for each group.

The result of sample (d) are obviously in one group, and the results of sample (c) and (f) are in

multiple groups. In samples (a), (b) and (e), the slicing plane is close to the critical point. These
inputs would be considered as one group by the classic DBSCAN method because the points in the

middle area connect the left and right parts in three-dimension space. However, the Improved
DBSCAN method can recognize the quasi-critical points and divide the inputs into multiple groups.
Thus, the MLS contours for each group are generated as desired.

4.2 Filling Path for Each Layer

To support solid part printing, a parallel filling pattern [1],[10] was generated inside each contour.
In addition, to improve the strength of the solid parts in all directions, a 60 degrees difference
between two adjacent layers was considered. The results are shown in Figure 7. The figures in the
left three columns present three layers of the printing direction in 2D view, and figures in the right
two columns are the 3D view and the top view.

4.3 System Integration and Printing Results

An interface was designed for the direct 3D printing system and implemented by Matlab as shown
in Figure 8. The interface had two areas. The left portion of the interface showed two sets of control

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(4), 2020, 825-835

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

832

parameters, input files, the printing status, and command buttons. The right portion of the interface
had three display areas in which the tracing works were graphically rendered in real-time. Figure
8(a) shows the results of group division and the surface points generated on the MLS contour. Figure
8(b) shows the filling pattern and the contour of the slicing layer.

a

d

b

e

c

f

Table 2: Group division for two samples.

Figure 7: The printing direction of three adjacent layers.

Five geometries were tested with the direct 3D printing system, as shown in Table 3. The printer
used in the research work was controlled with open source software named Pronterface

(www.pronterface.com). The main material used was PLA. The samples were sliced and printed in

two modes: contour-only or solid-printed with filling. The results showed that the direct 3D printing

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(4), 2020, 825-835

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

833

system can successfully handle the multiple branch problem, as shown in Table 3. The fluffy body
and details on the face of the bunny were represented as shown in sample (C). The sample (C) was
only successfully printed with the filling because the contour-only mode cannot provide enough self-
support. The detailed geometries and small curvature parts were successfully manufactured.

(a) (b)

Figure 8: Examples of the displays of interfaces.

 Point Cloud Model Sliced Model Contour-Only Solid-Printed

A

B

C

_

Table 3: The printed results.

5 CONCLUSIONS

In this research work, a direct 3D printing system was implemented to directly manufacture or
rebuild an existing object by integrating RE and RP process. Neither STL nor a CAD model was
recreated in this process. The input cloud points were first divided into sections by layers. To solve

the multiple contours problem on one slicing layer, we developed an Improved DBSCAN algorithm

to divide the points in the bounding box into groups. The surface points were calculated from the

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(4), 2020, 825-835

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

834

input points cloud data by applying the MLS method. The tracing method was implemented to
generated closed contours on each slicing layer. Several samples were tested with the direct 3D
printing system, which were sliced and printed. The direct 3D printing system could well reconstruct
the object from point cloud data. Moreover, the geometries were successfully manufactured with the

3D printing system developed in-house.

The system can be further improved in several aspects. Support structures have not been
implemented in the current system. Currently, printing with filling pattern is a way to improve the
support of some of the geometries. With the support structures, more complex geometries can be
printed with our system. In addition, the optimization of the printing orientation is not available in
the current system. Therefore, future work will be focused on design of the support structure and
optimization of printing orientation.

Tianyun Yuan, http://orcid.org/0000-0001-6846-6550
Xiaobo Peng, http://ordcid.org/0000-0002-0498-7194
Dongdong Zhang, http://orcid.org/0000-0001-9471-1628
Lin Li, http://ordcid.org/ 0000-0002-9652-8111

REFERENCES

[1] Ahsan, A. N.; Habib, M. A.; Khoda, B.: Resource based process planning for additive
manufacturing, Computer-Aided Design, 69, 2015, 112-125.
http://doi.org/10.1016/j.cad.2015.03.006

[2] Amenta, N.; Kil, Y.-J.: Defining point-set surfaces, ACM Transactions on Graphics, 23(3), 2004,
26-270. http://doi.org/10.1145/1015706.1015713

[3] Chua, C.-K.; Leong, K.-F.; Lim, C.-S.: Rapid Prototyping: Principles and Applications, World

Scientific Publishing Co Inc, Singapore, 2010.

[4] Dey, T. K.; Sun, J.: An adaptive MLS surface for reconstruction with guarantees, Symposium
on Geometry processing, Vienna, Austria, 2005, 43-52.

[5] Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X.: A density-based algorithm for discovering clusters
in large spatial databases with noise, Proceedings of 2nd International Conference on
Knowledge Discovery and Data Mining, 96(34), Portland, Oregon, 1996, 226-231.

[6] Fabio, R.: From point cloud to surface: the modeling and visualization problem, International
Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(5)/W10,

2001, http://doi.org/10.3929/ethz-a-004655782
[7] Levin, D.: Mesh-independent surface interpolation, Geometric modeling for scientific

visualization, Springer, Berlin, Heidelberg, 2004, 37-49. http://doi.org/10.1007/978-3-662-
07443-5_3

[8] Liu, G.; Wong, Y.-S.; Zhang, Y.; Loh, H.-T.: Error-based segmentation of cloud data for direct

rapid prototyping, Computer-Aided Design, 35(7), 2003, 633-645.

http://doi.org/10.1016/S0010-4485(02)00087-8
[9] Jain, A.-K.: Data clustering: 50 years beyond K-means, Pattern Recognition Letters, 31(8),

2010, 651-666. http://doi.org/10.1016/j.patrec.2009.09.011
[10] Jin, Y.-A.; He, Y.; Xue, G.-H.; Fu, J.-Z.: A parallel-based path generation method for fused

deposition modeling, The International Journal of Advanced Manufacturing Technology, 77(5-
8), 2015, 927-937. http://doi.org/10.1007/s00170-014-6530-z

[11] Joshi, A.; Kaur, R.: A review: comparative study of various clustering techniques in data

mining, International Journal of Advanced Research in Computer Science and Software
Engineering, 3(3), 2013.

[12] Manyika, J.; Chui, M.; Bughin, J.; Dobbs, R.; Bisson, P.; Marrs, A.: Disruptive technologies:
Advances that will transform life, business, and the global economy, McKinsey Global Institute,
Washington, D.C., 2013.

http://www.cad-journal.net/
http://orcid.org/0000-0001-6846-6550
http://ordcid.org/0000-0002-0498-7194
http://orcid.org/0000-0001-9471-1628
http://ordcid.org/%200000-0002-9652-8111
http://doi.org/10.1016/j.cad.2015.03.006
http://doi.org/10.1145/1015706.1015713
http://doi.org/10.3929/ethz-a-004655782
http://doi.org/10.1007/978-3-662-07443-5_3
http://doi.org/10.1007/978-3-662-07443-5_3
http://doi.org/10.1016/S0010-4485(02)00087-8
http://doi.org/10.1016/j.patrec.2009.09.011
http://doi.org/10.1007/s00170-014-6530-z

Computer-Aided Design & Applications, 17(4), 2020, 825-835

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

835

[13] Pulak, M. P.; Reddy, N. V.; Dhande, S.-G.: Slicing procedures in layered manufacturing: a
review, Rapid Prototyping Journal, 9(5), 2003, 274-288.
http://doi.org/10.1108/13552540310502185

[14] Scikit-learn, Comparing different clustering algorithms on toy datasets, accessed May 1, 2017,

http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html.
[15] Venuvinod, P.-K.; Ma, W.: Rapid Prototyping: Laser-based and other Technologies, Springer

Science and Business Media, New York, 2013.
[16] Verma, M.; Srivastava, M.; Chack, N.; Diswar, A.-K.; Gupta, N.: A comparative study of various

clustering algorithms in data mining, International Journal of Engineering Research and
Applications (IJERA), 2(3), 2012, 1379-1384.

[17] Wu, Y.-F.; Wong, Y.-S.; Loh, H.-T.; Zhang, Y.-F.: Modelling cloud data using an adaptive slicing

approach, Computer-Aided Design, 36(3), 2004, 231-240. http://doi.org/10.1016/S0010-

4485(03)00097-6
[18] Yang, P.; Li, K.; Qian, X.: Topologically enhanced slicing of MLS surfaces, Journal of Computing

and Information Science in Engineering, 11(3), 2011. http://doi.org/10.1115/1.3615683
[19] Yang, P.; Qian, X.: Adaptive slicing of moving least squares surfaces: toward direct

manufacturing of point set surfaces, Journal of Computing and Information Science in

Engineering, 8(3), 2008. http://doi.org/10.1115/1.2955481
[20] Yuan, T.; Peng, X; Zhang, D: Direct rapid prototyping from point cloud data without surface

reconstruction, Computer-Aided Design and Applications, 15(3), 2018, 390-398.
https://doi.org/10.1080/16864360.2017.1397889

[21] Zhang, D.; Yang, P.; Qian, X.: Adaptive NC path generation from massive point data with
bounded error, Journal of Manufacturing Science & Engineering, 131(1), 2009.
http://doi.org/10.1115/1.3010710

http://www.cad-journal.net/
http://doi.org/10.1108/13552540310502185
http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
http://doi.org/10.1016/S0010-4485(03)00097-6
http://doi.org/10.1016/S0010-4485(03)00097-6
http://doi.org/10.1115/1.3615683
http://doi.org/10.1115/1.2955481
https://doi.org/10.1080/16864360.2017.1397889
http://doi.org/10.1115/1.3010710

