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Abstract. Finite element mesh generation (FE meshing) from three-dimensional 
(3D) computer-aided design (CAD) models is generally the most critical process in 

the finite element analysis pipeline. In the FE meshing, several manufacturers strictly 
prescribe the meshing patterns for specific classes of free-form features such as 
“boss” or “rib” features on CAD models and, thus, establish company-specific FE 

meshing rules of where and how many node points of elements should be placed 
over and inside a form feature, to ensure the analysis accuracy. However, these 
features are currently recognized and extracted manually by experienced engineers. 
Therefore, it is crucial for manufacturers to develop software where features such as 
bosses or ribs with complex free-form surfaces can be extracted from CAD models 
and categorized based on prescribed meshing rules, where an FE mesh for the 
feature region can be automatically generated in accordance with the rules in order 

to realize a high-quality and reliable finite element analysis (FEA) pipeline. To this 
end, an algorithm of the free-form feature classification for FE meshing of a triangular 
surface mesh generated from a CAD model is proposed in this paper, which utilizes 

3D shape descriptors, Bag-of-Features, and machine learning techniques. By using 
the triangular mesh and machine learning, the classification algorithm enables a 
uniform and expandable feature. Moreover, it employs shape descriptors of a point 

feature histogram as a local surface descriptor and a thickness histogram as a global 
volumetric descriptor. A combination of both descriptors yielded more excellent 
classification performance accuracy (92%) and recalls (95%–98%) than a single 
descriptor. Additionally, the classification performance is almost not affected by the 
key point sampling density and visual word length. 
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1 INTRODUCTION 

In recent times, finite element analysis (FEA) has enabled the manufacturing of efficient and reliable 
product designs. Finite element mesh generation (FE meshing) from three-dimensional (3D) 
computer-aided design (CAD) models is generally the most critical process in the FEA pipeline; 

therefore, fully automated meshing that can guarantee analysis accuracy is highly required to 
streamline the pipeline. 

Several manufacturers strictly recommend FE meshing patterns for specific classes of free-form 
features on CAD models shown in Figure 1 (a) and, thus, established company-specific FE meshing 
rules of where and how many node points of elements should be placed over and inside a form 
feature, to ensure analysis accuracy. Meshing rules for “boss” or “rib” features, as illustrated in 

Figure 2, are often specially specified, as these play critical roles in securing strength for a part or 

transmitting forces between parts. As such, in Figure 1 (b), when an FE mesh is to be generated for 
a cylindrical boss feature, the node points of elements must be placed concentrically around a medial 
axis of the boss at an angle interval of 15 degrees. In the case of the rib feature shown in Figure 1 
(c), the node points must be arranged along a ridge curve on top of the rib at a maximum interval 
of 3.0 mm. Therefore, it is crucial for manufacturers to develop software where features such as 

bosses or ribs with complex free-form surfaces can be extracted from CAD models and categorized 
under classes based on prescribed meshing rules such that an FE mesh for the feature region can 
be generated automatically in accordance with the rules to realize a high-quality and reliable FEA 
pipeline. 

Although some feature recognition methods for FE meshing have been studied recently (see, 
e.g., [6], [17], [24]), these methods cannot be directly applied to the situation considered in this 
study for the following reasons. 

First, the feature geometries discussed in previous studies (for example, in [6], [17], and [24]) 
are 2.5-dimensional, consisted only of simple planes and cylinders, and are bounded by sharply 
concave loops on a B-rep CAD model. In this study, however, based on Figure 1, a feature (i.e., 
boss and rib) that requires recognition is designed as a part of a cast or forged component’s surface 
whose geometry is generally defined by 3D free-form surfaces. In addition, the feature is usually 
bounded by smooth free-form filet surfaces that are comparatively not discernible as the ones 
mentioned earlier. Therefore, conventional methods will not work efficiently for those free-form 

features. 

Second, feature classes for FE meshing are usually defined subjectively based on the knowledge 
of skilled FEA engineers, and they often differ from one company to another. On the contrary, the 
recognition algorithms considered in previous studies, for example in [6], [17], and [24], are 

(b)  Boss feature meshing rule (c)  Rib feature meshing rule

FE meshCAD model CAD model FE mesh

Ridge curve

Medial axis

Ridge curve

Boss 
features 

Rib 
features 

(a)  Free-form features 

for FE-meshing

Figure 1:   Free-form features and examples of FE meshing rules for the features. 
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designed for the elaborate procedural search of loops on a B-rep CAD model and coded in an ad hoc 
manner to fit the recognition of specific feature classes. Consequently, these algorithms are not 

easily expanded when a new feature class is added or a current feature class is to be modified. 

 Third, most previous studies assume that an input B-rep CAD model does not have any 
topological or geometric defect. However, it is well-known that the data quality of CAD models may 
degrade due to loss of information during the translation process and that some quality issues on 
the B-rep data (e.g., small cracks between faces) may be inducted. Therefore, a recognition 
algorithm relying mainly on the topological and geometrical search on the B-rep CAD model is more 
likely to fail. 

To address the issues mentioned above, we propose, in this paper, an algorithm of the free-

form feature classification for feature-based FE meshing, which, as shown in Figure 2, we regard to 
consist of three steps: feature extraction from the CAD model, feature classification, and feature-
compliant mesh generation. In this paper, we focus only on feature classification. In principle, the 
proposed algorithm accepts a dense and nearly-uniform triangular mesh of a free-form feature 
generated from a B-rep CAD model by using a preprocessor of a commercial FEA software. Moreover, 
it identifies feature class labels, such as boss and rib, of the input mesh model via 3D shape 

descriptors, bag-of-features (BoF), and machine learning. 

The advantages of the proposed algorithm are summarized as follows: 

• It combines local and global shape descriptors, and the local shape descriptor is based on 
the local mean curvatures on a triangular mesh, which allows one to encode both the local 
and global features’ geometry as a single multi-dimensional vector—even when a feature 
has complex free-form shapes bounded by smooth filet surfaces. Moreover, the BoF 

technique facilitates the application of the local shape descriptor representation to the 
machine learning scheme, and the control of the computational complexity of the 

classification process by limiting the number of visual words; thereby, addressing the first 
problem mentioned earlier. 

• It employs machine learning, which makes the design of the feature classification algorithm 
uniform and portable regardless of the classes. As such, the algorithm can be easily 
expanded by the addition of newly labeled training feature samples; thereby, addressing the 
second problem. 

• Instead of B-rep representation, it uses free-form features based on shape descriptors only 
defined at the vertices on a dense triangular mesh, and the descriptor evaluation is not 
directly affected by the topological defects on the B-rep CAD models; thus, avoiding unstable 
feature extraction and classification processes caused by product data quality issues, which 
solves the third problem. Of course, the conformal surface triangulation from B-rep CAD 

models is still a quite challenging task (e.g., [19],[32]); therefore, non-conformal mesh 

Figure 2:   Overall feature-based FE meshing process and the scope of this paper. 
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topology sometimes might be included in our input dense triangular mesh. However, since 
we apply the uniform and sparse sampling strategy to the vertices for generating key points 
for the descriptors and they do not rely on the conformity of the mesh topology, our feature 
classification process is less affected by the non-conformal surface triangulation issue. 

2 RELATED WORK 

The feature classification method considered in this paper relates to two common topics in geometric 
modeling research interest: 3D feature recognition and 3D shape retrieval. We discuss their outlines 
and drawbacks based on free-form feature classification for FE meshing in Subsections 2.1 and 2.2. 

2.1 Feature Recognition 

Over the past 20 years, a great deal of research has been published on the feature recognition 
method from CAD models, especially for machining feature extraction. An outline of the method is 
well-discussed in [12]. There are several extraction approaches, such as the graph-based approach 
[9]. Also, as an extraction approach, a machine learning approach based on the traditional neural 
network has been introduced in machining feature extraction from CAD models (see, e.g., 
[18],[25],[26],[28], and [36]). Recently, Zhang et al. [41] proposed a machining feature recognition 

based on the novel and sophisticated 3D convolutional neural network. The method presented in 
[41] learns the distribution of various manufacturing feature shapes across public 3D model data 
sets and can recognize particular types of manufacturing features from low-level geometric data 
such as voxels. Moreover, their recognition algorithm based on the 3D convolutional neural network 
enables significant improvements over the state-of-the-art manufacturing feature detection 
techniques. 

However, as in other previous studies, the feature geometries considered in [41] are basically 

2.5-dimensional, consisted only of simple planes and cylinders, and are bounded by sharply concave 
loops on a B-rep CAD model. In our study, however, a feature to be recognized (i.e., boss and rib) 
is basically designed as a part of a cast or forged component’s surface whose geometry is generally 
defined by 3D free-form surfaces. Moreover, the feature is usually bounded by smooth free-form 
filet surfaces that are comparatively not discernible as the ones considered in other studies. 
Therefore, it is doubtful whether the previous methods would work well or not for the free-form 

features. 

On the other hand, several automatic recognition methods of free-form machining features from 
CAD models have also been studied (see, e.g., [7], [10], and [37]). For example, Sunil et al. [37] 
proposed a free-form machining feature recognition method based on a hybrid region segmentation 
algorithm that works on the triangulated STL mesh model generated from a B-rep CAD model. In 
their algorithm, a variety of protrusion and depression features such as bends, beads, and dimples 

on a sheet metal parts can be extracted based on the curvature properties of the triangulated model. 

Nevertheless, they validate their algorithm only using a few examples of sheet metal parts with 
simple shapes, and the boundaries of the feature they extracted are more easily-discernible than 
the ones obtained in this paper. Moreover, their feature recognition algorithm based on region 
identification and region merging is specifically coded in an ad hoc manner to fit specified feature 
classes to be recognized. Therefore, the recognition algorithm is not easily expanded when a new 
feature class is added; thus, it lacks portability. Recently, Cai et al. [7] proposed a free-form 
machining feature recognition algorithm similar to that considered in [37], and their feature 

segmentation algorithm is not only based on the curvature properties of a free-form surface but also 
its manufacturability. However, the authors only validated their algorithm using only one simple-
shaped workpiece; besides, similar technical issues as in [37] also remain when the algorithm is 
applied to the free-form feature recognition for FE meshing. 

Some feature recognition methods originally aimed for FE meshing have also been studied (see, 

e.g., [6], [17], and [24]). Lai et al. [17] proposed a method that recognizes rib features from a B-

rep CAD model by finding specific topological and geometrical patterns of virtual loops around these 
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features and then decomposes them into regions that can be meshed with hexahedral or prismatic 
FE meshes. Further, Lu et al. [24] introduced a feature-based hexahedral meshing method, which 
decomposes a B-rep CAD model into a set of hex meshable volumes by extracting protrusion features 
bounded by concave zones through the identification of three loop types in a CAD model to serve as 

feature boundaries. Moreover, Boussuge et al. [6] presented a method for recognizing protrusion 
features on a CAD model whose shape can be partitioned into plate and shell elements. However, 
the feature geometries considered in these studies are also 2.5-dimensional, consisting only simple 
planes and cylinders, and bounded by sharply concave loops on a B-rep CAD model. Therefore, the 
methods presented in these studies, also, cannot be applied to the free-form feature recognition for 
finite element meshing. 

2.2 Shape Retrieval and Shape Descriptor 

When a free-form feature has been extracted from a CAD model, the feature classification process 
into specific types (boss or rib) can be regarded as a kind of mesh classification problem, which often 
appears in content-based 3D shape retrieval. Recently, many researchers have investigated specific 
problems in content-based 3D shape retrieval. Also, an extensive amount of literature can be found 

in the related fields. Detailed reviews of these shape retrieval techniques are presented in [38] and 
[16]. The international competitions on the large-scale 3D shape retrieval are held periodically, 
where the performance of retrieval algorithms are evaluated and updated [31]. 

These studies provide solutions to the problem of quantifying the similarity between two 
geometries and classifying the geometry into semantically-reasonable classes based on the similarity 
measures. Shape descriptor approach has been recognized as one of the methods for providing 
solutions to this problem. Shape descriptor refers to a description method that utilizes a numeric 

descriptor (also known as a feature vector) of a given shape to characterize the shape uniquely [16]. 
This method has been studied widely in recent times. For example, Osada et al. [27] introduced 

shape distributions as a descriptor for content-based 3D shape retrieval and found that the histogram 
of distances between two randomly chosen points on the mesh surface yields a robust shape 
descriptor. Furthermore, Ankerst et al. [2], Ip et al. [15], and Wohlkinger et al. [40] proposed 
histogram-based shape descriptors that are similar to that presented in [27]. Unfortunately, most 

of these descriptors only deal with the classification of whole shapes that have relatively clear 
differences and do not contain free-form surfaces required in finite element meshing. Hence, they 
do not classify features such as bosses and ribs whose shape differences are not so obvious. 

Recently, more sophisticated shape descriptors for feature recognition have been proposed. For 
example, Sun et al. [34] introduced a multi-scale spectral shape descriptor called heat kernel 
signature (HKS) based on the heat diffusion process and demonstrated its effectiveness for multi-
scale shape matching. Further, Aubry et al. [4] proposed the wave kernel signature (WKS) for 

characterizing points on a 3D shape and applied it to non-rigid registration between deformable 
objects. Machine learning based shape descriptors have also been introduced. For example, Litman 

et al. [22] proposed a machine learning scheme for a generic family of spectral shape descriptors 
that generalized the HKS and WKS and applied the scheme to non-rigid registration between 
deformable objects. Sun et al. [35] develop descriptors for non-isometric registration by embedding 
the spectral shape descriptors into a different metric space, and a deep neural network to find such 
an embedding. While these descriptor studies based on the spectral shape descriptors have the 

potential to solve the free-form feature classification problem, most of them focus mainly on the 
shape correspondence or non-rigid registration between deformable objects and do not apply the 
descriptor to the feature extraction or classification problems. 

Recently, applications of spectral shape descriptors in feature recognition were considered. For 
example, Harik et al. [13] utilize a multi-scale persistent heat signature to recognize traditional 
mechanical features; while Shi et al. [33] employ an HKS for a feature-based manufacturability 

analysis in additive manufacturing. However, the feature geometries treated in these two studies 

mainly consist of simple planes and cylinders and are bounded by sharply concave loops. 
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As a part of the efforts on 3D shape retrieval, algorithms for part-in-whole retrieval are also proposed 
in some researches (see, e.g., [11], [20], and [30]), where a part of the whole shape can be inputted 
as a query, and part-in-whole matching is performed. The part-in-whole retrieval algorithm has the 
potential to solve the free-form feature extraction problem for FE meshing directly. Furthermore, a 

sampling strategy for 3D part-in-whole retrieval algorithm using depth image rendering, SIFT 
features, and BoF, has also been studied [39]. However, these studies only deal with the 
classification of models whose shapes have relatively clear differences. Moreover, they cannot 
explicitly indicate which portions on a whole object are partially matched with the query shape. 

3 FEATURE CLASSIFICATION METHOD FOR FE MESHING 

3.1 Overview 

The feature classification process proposed in this study accepts a triangular mesh model of the free-
form feature as an input. We assumed that this input triangular mesh is the dense mesh shown in 
Figure 4(a), and its vertex density is relatively high. This dense triangular mesh is different from a 
CAD mesh, which is very sparse and mostly consists of highly non-uniform triangles. Robust 
algorithms for conformal triangulation from B-rep model have been gradually improved (see, e.g., 

[19] and [32]), and they can be used to generate the input triangular meshes in this study. However, 
alternatively, we utilized a preprocessor of a commercial FEA software (Altair HyperMesh [14]) to 
automatically generate the dense triangular mesh directly from a B-rep model. So, far, using the 
preprocessor, the conformal dense triangular meshes available for our feature classification can be 
obtained. Since the goal of this research is to accomplish a feature-compliant finite element mesh 
generation, the use of a commercial FEA software for preparing the input triangular mesh does not 
pose any problem in this study. 

During classification, we identify one of the feature class labels that has been trained by 
supervised learning, in which a different FE meshing rule is prespecified. Currently, three feature 
classes (i.e., “rib,” “boss,” and “others”) can be discriminated where several manufacturers often 
define company-specific FE meshing rules. Nevertheless, we can easily extend the feature classes 
to be distinguished by simply adding class labels for the training samples. 

Figure 3 provides an overview of the proposed feature classification process; consisting mainly 

of learning and identification phases. In the learning phase, a large collection of labeled triangular 
mesh models of manually labeled free-form features class is provided as an input. Next, for each 
triangular mesh, two shape descriptors are computed at key points uniformly sampled on the mesh, 
namely, point feature histogram (PFH) [29] as a local shape descriptor, and thickness histogram 
(TH) [23] as a global volumetric descriptor. 

Afterward, based on the BoF concept [5], a “codebook” is constructed via k-means clustering, 
from a set of the PFHs included in all labeled triangular meshes. Then, a BoF feature vector is 

evaluated for every labeled triangular mesh based on the codebook; whereas the TH descriptor is 
represented as a TH feature vector using all key points on the mesh. Both BoF and TH feature vectors 
form a combined feature vector that encodes the local surface and global volumetric geometry of a 
free-form feature included in the labeled triangular mesh input for learning. Finally, a set of the 
combined feature vectors is stored in a database for use in the identification phase. 

A similar procedure is followed in the identification phase. Initially, PFH and TH descriptors are 
evaluated at every key point on a triangular mesh of an input free-form feature, and then a combined 

feature vector is calculated. Afterward, the distances between the feature vector of the input feature 
and the ones stored in the database are evaluated. Finally, the class of the input feature is 
determined using the k-nearest neighbor (k-NN) algorithm. Details of the classification algorithm 
are described in the subsequent sections. 

As described in Subsection 2.2, there has been considerable research on 3D shape descriptors 

(see, e.g., [38] and [16]). The reasons why we chose the PFH and TH as shape descriptors in our 

feature classification are as follows. Firstly, the PFH descriptor can well encode the local curvature 
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distributions around the key points on a free-form feature and is more sensitive to the curvature 
changes in the feature geometry than distance-based global descriptors such as shape distributions 
[27]. Secondly, since the PFH descriptor encodes the curvature distributions using a relatively large-
dimensional (375-dimensional) vector, it can provide more local curvature information of the free-

form surface than other descriptors. Thirdly, for the feature recognition process, the PFH descriptor, 
which encodes the local surface geometry on a mesh surface, is more suited than the global shape 
descriptor because we can simply evaluate the PFHs both at the key points on a free-form feature 
and those in the whole geometry of the model, and directly evaluate the similarity of the descriptor 
values between them. Lastly, as remarked in [1], the hybrid descriptor approach where both the 
local (PFH) and global shape descriptors (TH) are used at the same time generally outperforms—in 
terms of the recognition accuracy—their counterpart approaches that use only the local descriptor 

or global descriptor. However, the quantitative comparison of our proposed hybrid descriptor 

approach with other shape descriptors in terms of the classification accuracy will be considered in a 
future study. 

Since we applied the uniform and sparse sampling strategy to the vertices for evaluating the 
descriptors, and they do not rely on the conformity of the mesh topology; our feature classification 
process is less affected by the non-conformal triangulation issue. 

3.2 Local Shape Descriptor using Point Feature Histogram (PFH) 

First, for a labeled triangular mesh   (∈ 𝐼 , a set of key points   = {𝒑 
𝑗
} are sampled from the vertices 

on  , where 𝐼 denotes a set of labeled triangular meshes for learning. The PFH [29] is then evaluated 

as a local shape descriptor 𝒒 
𝑗(∈    𝑗 ∈ 𝐽   at every key point 𝒑 

𝑗
(∈    , where    is a set of local shape 

descriptors for a mesh   and 𝐽  is a set of descriptor indices for a mesh  . We assumed that an initial 

triangular mesh is almost uniformly triangulated, and its vertex density is relatively high (for 

example, the average edge length is less than 1 mm as shown in Figure 4(a)). 

As described in [20], excellent classification results are achieved by sampling the key points on 
a mesh as uniformly as possible. Herein, we adopt the k-means clustering as the sampling method 
of the key points because the method is easy to implement and it can easily partition the set of 

mesh vertices into the specified number of uniformly distributed clusters. However, if we randomly 
select   𝑖

 vertices on the mesh (see, Figure 4(b)) as initial cluster centers of the k-means clustering, 

the resultant key points do not necessarily distribute uniformly on the mesh. To avoid this, we first 
perform the k-means++ clustering [3] for the mesh vertices to obtain more uniformly distributed 
  𝑖

 initial cluster centers (see, Figure 4(c)) than those randomly selected, and then apply the k-

means clustering to the cluster centers. Finally, we took the   𝑖
 vertices on the mesh   of each point 

closest to a cluster centroid for adoption into a set of key points   = {𝒑 
𝑗
} (see, Figure 4(d)). 

Since our initial triangular mesh is dense and almost uniformly triangulated, a cluster centroid 

obtained from k-means clustering is usually placed at a position very close to a mesh vertex such 
that the distance between the centroid and the vertex is negligible. Therefore, we can select the 
closest vertex as a key point location. This selection of the mesh vertex as a key point also 

Figure 4:   Key point sampling process on the dense mesh. 
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(c)  Initial vertices by 

k-means++ clustering

(d)  Final keypoints after 
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streamlines the local neighbor search and descriptor evaluation processes. Therefore, in our dense 

mesh setting, the use of k-means clustering so far works effectively and does not pose any problem 
in this study. However, to obtain non-uniform and sampling on the mesh for the key point selection, 
such as non-uniform or curvature-sensitive sampling, we introduced a more flexible and 
sophisticated method. In this case, Poisson-Disk sampling method on mesh domain (as utilized in 
[8] and [21]) will provide more impressive results than the k-means clustering; nevertheless, we 

shall consider this in a future study. 

Next, at a key point 𝒑 
𝑗
  PFH is calculated as a local shape descriptor. The PFH encodes local 

geometric properties by generalizing the mean curvature around 𝒑 
𝑗
 by using a multi-dimensional 

vector. In the process, a set of connected local neighborhood vertices 𝑉(𝒑 
𝑗
  ) centered at a key point 

𝒑 
𝑗
 is extracted on the mesh lying at a distance   from 𝒑 

𝑗
. If a non-conformal triangulation happens 

around the key point in the input triangular mesh, it is difficult to find the connected local 
neighborhood vertices by relying on the mesh topology only. However, in this case, we can switch 

the neighborhood search to a distance-based one. Then, for all pairs of vertices (𝒑𝑠 𝒑   included in 

𝑉(𝒑 
𝑗
  ) ∪ {𝒑 

𝑗
}, the three angles 𝛼𝑠  𝜑𝑠  and 𝜃𝑠  shown in Figure. 5 are obtained using equations (3.1) 

and (3.2) below: 

𝛼𝑠 = cos− (𝒗 ∙ 𝒏  ; 𝜑𝑠 = cos− {𝒖 ∙ (𝒑 − 𝒑𝑠 /𝑑};  𝜃𝑠 = tan− {(𝒘 ∙ 𝒏  /(𝒖 ∙ 𝒏  };  (3.1) 

𝒖 = 𝒏𝑠; 𝒗 = 𝒖 × (𝒑 − 𝒑𝑠 /‖𝒑𝑠 − 𝒑 ‖; 𝒘 = 𝒖 × 𝒗,    (3.2) 

where 𝒏𝑠 and 𝒏  are outward-directed unit normal vectors on the mesh at 𝒑𝑠 and 𝒑   respectively. 

Based on the values of 𝛼𝑠  𝜑𝑠   and 𝜃𝑠 , a vote is conducted for a corresponding bin in their 

quantized intervals. By summing up the votes for all pairs of vertices, we obtain a histogram of the 

votes, and the normalized histogram finally gives the PFH descriptor at 𝒑 
𝑗
. If we, respectively, 

partition the intervals of 𝛼𝑠  𝜑𝑠   and 𝜃𝑠  into      , and    bins, the histogram will consist of      (=

         bins, which can be represented by a     -dimensional vector 𝒒 
𝑗
. In this study, we select 

  = 5   = 5  and   =  5  based on a preliminary experiment; therefore, herein, the PFH is 

represented by a 375-dimensional vector 𝒒 
𝑗
∈ 𝑅375 . The descriptor is based on the relationship 

between the points in the k-neighborhood and their estimated surface normals; making the PFH 
rotation and translation invariant. 

3.3 Feature Vector Evaluation using Bag-of-Features (BoF) 

Bag-of-features (BoF) is a machine learning classification scheme that has been extensively used in 
image classification [5]. The idea behind BoF is to represent an image as a set of features consisting 
of a key point and a descriptor. The features are quantized to construct a limited number of visual 
words (codes) into a codebook. Afterward, each feature of the image is assigned to its nearest code, 
and the image is represented as a frequency histogram of the codes. From the histogram, the image 

𝒏 

𝒑 

𝒖

𝒗

𝒘

𝒑𝑠

𝒏𝑠 = 𝒖

𝒘 = 𝒖 ×𝒗

𝒗 = (𝒑 −𝒑𝑠 × 𝒖

𝒑 − 𝒑𝑠 
𝜃

𝛼

𝑑

Figure 5:   Point feature histogram (PFH) [29]. 
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can be categorized under the closest code. BoF enables a compact representation of the features for 

the classification and rapidity of search. 

We applied BoF to the 3D free-form feature classification represented by a triangular mesh model. 

First, we performed k-means clustering for the set of PFH descriptors for all key points on the labeled 

triangular mesh {𝒒 
𝑗
}
 ∈𝐼

𝑗∈𝐽𝑖
 under a specified number of visual words  𝑤, and obtain  𝑤 centroids of the 

clusters (visual words) as 𝒄𝑘  (∈ 𝑅375 𝑘 ∈ [   𝑤] . Then, the set of centroids 𝛤 = {𝒄𝑘}𝑘∈[   𝑤] configures a 

codebook. 

Subsequently, for all descriptors at all key points {𝒒 
𝑗
}
𝑗∈𝐽𝑖

 on a triangular mesh  , we identify 

which visual word 𝒄𝑘  each descriptor 𝒒 
𝑗
 is closest to, and the appearance frequency of each 

word  𝒄𝑘 (𝑘 ∈ [   𝑤]  in the codebook is represented as a histogram. Finally, the histogram is 

normalized to give a multi-dimensional BoF feature vector     = [𝑏   
  𝑏   

  …  𝑏   
 𝑤 ]（𝑏 

𝑙 ∈ [   ]  ∈ 𝐼  

representation that encodes the local surface geometry of the free-form feature represented by the 

mesh  . 

Figure 6 provides examples describing the assignment of different visual words to PFH 
descriptors at key points in the case of  𝑤 = 10. As shown in the figure, different words are loosely 

assigned to different local regions in a feature exhibiting similar geometries (planar or cylindrical 

regions). 

3.4 Global Shape Descriptor using Thickness Histogram (TH) 

While the BoF feature vector encodes and summarizes the geometry of a free-form feature, the PFH 
only encodes local surface geometries around a key point. Therefore, the BoF feature vector does 

not necessarily represent the global volumetric properties of free-form features. 

To make up for the lack of volumetric properties of a feature, we considered a thickness 
histogram (TH) [23]. The TH descriptor encodes the statistical thickness distribution of an object as 

Figure 6: Visual words assignment to PFH descriptors on features  (same-colored points 

indicate the same visual word assigned). 

Figure 7:   Thickness histogram (TH) [23].  
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a histogram. When constructing the TH (see, Figure. 7), we selected a pair of different key points 

𝒑 
  and 𝒑 

  on a triangular mesh   and evaluated a weight 𝑊   using the equation (3.3): 

𝑊   =
(𝒕𝑎𝑏∙𝒏𝑖

𝑎 (𝒕𝑎𝑏∙𝒏𝑖
𝑏)

𝑑𝑎𝑏
2                                                                               (3.3) 

where 𝒕   =(𝒑 
 − 𝒑 

 )/‖𝒑 
 − 𝒑 

 ‖, 𝒏 
  and 𝒏 

  are the outward-directed unit normal vectors on the mesh 

at 𝒑 
  and 𝒑 

   respectively, and 𝑑  = ‖𝒑 
 − 𝒑 

 ‖. Weight 𝑊   is voted for one of the     bins, each of 

which corresponds to a quantized interval for 𝑑  . We performed this vote for all pairs of key points 

on a mesh   and obtained a histogram of votes for 𝑑  . By normalizing the cumulative frequency of 

the histogram to 1, we obtain a multi-dimensional TH feature vector     = [𝑏   
  𝑏   

  …  𝑏   
   ] for the 

mesh  . 

Finally, we combined the BoF feature vector      with the TH feature vector      to construct a 

combined feature vector   = [      |       ]  which encodes both the local surface and the global 

volumetric geometry of a free-form feature represented by the mesh  . We utilized a set of combined 

feature vectors for all labeled triangular meshes {  } ∈𝐼 for learning and class identification. 

3.5 Feature Class Identification 

As described earlier, the identification phase follows the same procedure as in the learning case. 
Here the PFH and TH descriptors are evaluated at a set of key points on a triangular mesh   of an 

input free-form feature, and their combined feature vector    is calculated. Next, the distance 

between the feature vectors    and    stored in the database is determined over {  } ∈𝐼. Finally, the 

   classes for which    feature vectors closest to    in {  } ∈𝐼 belong are identified through the k-

NN algorithm, and the feature class of a triangular mesh   is determined by a majority vote of the 

   classes. 

4 FEATURE CLASSIFICATION EXPERIMENT 

4.1 Dataset and Parameters 

As there was no publicly available data set of 3D free-form features, we prepared the labeled samples 
of boss and rib features. Under the direction of an FEA professional working at an engineering 
company, we then picked up a set of faces representing boss, rib, and the other classes of features 
from 30 solid models of forged automotive parts via a CAD system, CATIA-V5. Figure 8 shows a list 
of the 75 bosses, 87 ribs, and 23 other classes of features we collected. The longitudinal size of the 
features ranges roughly from 30 mm to 120 mm. Afterward, we constructed the dense triangular 

meshes of the samples using a FEM preprocessor (Altair HyperMesh [14]) and assigned a true feature 
class label for each mesh based on the direction of the professional. These labeled triangular meshes 

were used for the learning. 

In the learning phase, for all mesh   included in a set of labeled triangular meshes 𝐼 (|𝐼| =  85 , a 

set of key points   = {𝒑 
𝑗
} was first sampled, and a combined feature vector   = [      |       ] was 

then evaluated based on the procedures described in Subsections 3.3 and 3.4. As we conducted 10-
fold cross-validation for the classification experiment, first we partitioned a set of labeled triangular 
meshes 𝐼 into ten disjoint subsets 𝐼  𝐼  ⋯  𝐼 0  each of which includes bosses, ribs, and other classes 

nearly uniformly. Then, we performed training on all but one of the subsets (9 subsets) to construct 
the database from their combined feature vectors. After that, in the identification phase, we 

estimated the class of features included in the subset that was not used for training, and evaluate 
the correctness of the class by comparing it with the mesh label. This process is repeated ten times 
with a different subset reserved for identification and excluded from training each time. We obtained 
the overall classification performance by computing the average of the accuracy metrics of each 
time. 
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Further, we compared the differences in feature classification performance of BoF, TH, and combined 
feature vectors. As the result slightly depended on the number of the visual words  𝑤, we performed 

the classification at different  𝑤 settings and selected  𝑤 =     which yielded the best result. Table 1 

summarizes the final parameter settings for the descriptor calculation; hence, their optimum settings 
are determined experimentally.  

4.2 Classification Results 

Table 2 summarizes the confusion matrices, recalls, and accuracies of the classification. Using either 
the BoF or TH feature vector only, we achieved 89% or 84% accuracy in the classification, 
respectively. The accuracy increased to 92% with the combined feature vector, while the recall of 
“boss” and “rib” features further reached 95% and 98% accuracy, respectively. Based on this, PFH 
and TH proved to complement each other, and their combination, rather than standing alone, yielded 
excellent classification performance of geometries of the features.  

Figure 8:   Labeled free-form feature examples.  

Rib

(87)

Boss

(75)

Others

(23)

Parameter  𝑤           𝑏 , 𝑏 𝑏      

Meaning
Number of 

visual words

Number of 

key points 

per one 

feature

Number of 

vertices on 

the mesh

Local 

neighbor 

radius in 

PFH 

calculation

Dimension 

size of PFH

Number of 

bins for 

𝛼 and 𝜑
in PFH

Number of 

bins for 𝜃 
in PFH

Dimension 

size of TH

Number of 

the nearest 

neighbors 

used in 

class 

identification

Value 10 /100 - 2.5[mm] 375 5 15 50 3

Table 1:   Parameter settings for the classification.  
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Nevertheless, as shown in Figure 9, a small number of misclassifications were observed, especially 
with a boss feature without any hole improperly categorized as a rib, or with a rib whose thickness 
distribution is non-uniform incorrectly classified as a boss. For the former, the geometry of the boss 
without a hole (see, Figure 9(b’)) closely resembled a rib (see, Figure 9(b)) if its thickness is close 
to that of a rib. Additionally, in the training set, there were a much lesser number of bosses with a 
hole than those without. For the latter, curvatures around the ridge of the rib (see, Figure 9(a’)) 

closely resembled the curvature of the outer cylindrical regions of the boss (see, Figure 9 (a)), and 
the horizontal thickness of the rib was very close to most of the sampled bosses. Therefore, in both 
cases, PFH and TH failed to differentiate. The solution to these specified misclassification instances 

is open for future study. 

PFH
Predicted Class

Recall
Boss Rib Others

True

Class

Boss 70 5 0 0.93

Rib 2 83 2 0.95

Others 4 6 13 0.57

Accuracy 0.89

TH
Predicted Class

Recall
Boss Rib Others

True

Class

Boss 61 11 3 0.81

Rib 4 83 0 0.95

Others 6 4 13 0.57

Accuracy 0.84

PFH+TH
Predicted Class

Recall
Boss Rib Others

True

Class

Boss 71 4 0 0.95

Rib 1 85 1 0.98

Others 4 4 15 0.65

Accuracy 0.92

(a)  BoF feature vector (b)  TH feature vector

(c)  Combined feature vector

Table 2:   Classification performances using BoF, Th, and combined feature vectors. 

Predicted Class

Boss Rib

Boss

RibTr
u

e
 C

la
ss

(a’)

(a)

(b’)

(b)

Figure 9:  Examples of correctly and wrongly classified features: (a’) Wrongly classified rib,  
(a) Boss feature nearest to (a’) in the k-NN algorithm in the feature class identification,  

(b’) Wrongly classified boss, (b) Rib feature nearest to (b’) in the k-NN algorithm.   
The boss without a hole (b’) closely resembled the rib (b). 
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Table 3 summarizes the processing time for the learning and identification phase. In its present form, 
the algorithm spends the majority of time performing the key point sampling and PFH calculation. 
Thus, there is still a need to improve the efficiency of the proposed classification algorithm by 
introducing parallel processing strategies for the key point sampling and local neighbor vertex search 
in the descriptor calculation. Moreover, introducing a faster version of the PFH (FPFH) [29] will also 
improve the PFH calculation process. 

4.3 Impact of Key Point Sampling Density and Visual Word Length 

In the feature classification algorithm proposed in this study, the selection of the key point 
sampling density and visual word length  𝑤 is critical to the performances. In the experiment 

discussed in Subsection 4.2, they were selected such that an optimum result is obtained in the other 

preliminary experiments. However, it is desirable for the algorithm to be relatively insensitive to 
these settings. 

Therefore, we investigated in detail how the classification performance is affected by the change 
of the key point sampling density and visual word length used in the BoF feature. Figure 10 shows 
how the accuracies of the classification change as the visual word length  𝑤 runs from 2 to 15, and 

the key point sampling density decreases tenfold. The size of the features ranges from 30 mm to 
120 mm. We only evaluated the change in classification accuracy only by using the BoF feature 
vector based on the PFH descriptor because the TH feature vector is not affected by the visual word 
length. 

 As shown in Figure 10, it was found that the classification performance did not drastically drop; 
besides, the value was kept over 80% unchanged even when the key point sampling density 
decreased tenfold. Also, it was found that the key points were very sparsely populated on the feature 
surfaces at the lowest density. On the other hand, the accuracy gradually increased to about 89% 

until the visual word length reached 10; however, it was nearly saturated after that point. From this 
investigation, our proposed feature classification performance based on the BoF feature vector is 
less sensitive to the key point sampling density and visual word length. 

5 CONCLUSIONS 

In this paper, we presented an algorithm of the free-form feature classification for FE meshing of a 
triangular mesh, which utilizes 3D shape descriptors, BoF, and machine learning techniques. By 
using the triangular mesh and machine learning, the classification algorithm enables a uniform and 
expandable feature. Moreover, it employs shape descriptors of a PFH as a local surface descriptor 
and a TH as a global volumetric descriptor. A combination of both descriptors exhibited more efficient 

classification performance accuracy (92%) and recalls (95%–98%) than a single descriptor. Through 
an experiment, the effectiveness of the proposed free-form feature classification algorithm was 

confirmed. Besides, the classification performance is almost not affected by the key point sampling 
density and visual word length. 

Keypoint sampling  10s / model

PFH Calculation  20s / model

TH Calculation  1s / model

Codebook Construction  20s

BF Feature Vector Evaluation 0.1s / model

Keypoint sampling  10s

PFH Calculation  20s

TH Calculation  1s 

BF Feature Vector Evaluation 0.1s 

Feature Class Identification 50ms

Total / model  31s

(a)  Learning Phase (b)  Identification Phase (per model)

Table 3:   Processing time in the learning and identification phase (CPU: Core-i9-9700). 
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In future studies, we will expand the approach to free-form feature extraction from a CAD model, 
which can be regarded as a part-in-whole retrieval problem (e.g., see, [11], [20], [30], and [39]). 
We will also improve the efficiency of the classification by introducing the parallel processing 
strategies and/or by a faster version of the PFH (FPFH) [29] and will evaluate our classification 

performances more objectively based on a comparison of our hybrid shape descriptors (PFH+TH) 
with other local and global shaped descriptors. Further, we will introduce a more efficient and flexible 

key point sampling strategy on the mesh, such as Poisson-Disk sampling (see, [8] and [21]). 
Moreover, we hope to develop a feature-based FE mesh generation framework from the feature 
extraction and classification results that conform to company-specific FE meshing rules. 
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Figure 10: Feature classification accuracies with the change of key point sampling density and 
visual word length, and examples of key point distributions on a feature surface at different 
sampling densities. 

# of 

visual 

words

Key point sampling density [×  .         o nts/   ] Average

accuracy

Std. 

Deviation1 2 3 4 5 6 7 8 9 10

2 0.51 0.55 0.52 0.49 0.44 0.51 0.51 0.47 0.48 0.47 0.50 0.03

3 0.65 0.66 0.69 0.58 0.71 0.7 0.55 0.55 0.72 0.74 0.66 0.07

4 0.72 0.71 0.7 0.73 0.7 0.71 0.74 0.71 0.68 0.7 0.71 0.02

5 0.8 0.75 0.78 0.78 0.75 0.76 0.74 0.76 0.81 0.7 0.76 0.03

6 0.79 0.75 0.77 0.82 0.78 0.81 0.81 0.81 0.83 0.8 0.80 0.02

7 0.82 0.8 0.77 0.84 0.77 0.83 0.87 0.8 0.8 0.83 0.81 0.03

8 0.83 0.75 0.84 0.82 0.84 0.78 0.82 0.88 0.83 0.81 0.82 0.03

9 0.85 0.84 0.83 0.77 0.87 0.87 0.88 0.88 0.85 0.83 0.85 0.03

10 0.87 0.85 0.87 0.92 0.85 0.88 0.85 0.82 0.84 0.83 0.86 0.03

11 0.84 0.87 0.83 0.88 0.83 0.89 0.88 0.9 0.88 0.87 0.87 0.02

12 0.86 0.87 0.85 0.89 0.88 0.87 0.9 0.9 0.88 0.89 0.88 0.02

13 0.82 0.89 0.88 0.9 0.88 0.89 0.89 0.88 0.89 0.9 0.88 0.02

14 0.85 0.89 0.88 0.89 0.89 0.88 0.91 0.9 0.88 0.89 0.89 0.01

15 0.85 0.88 0.85 0.87 0.87 0.89 0.9 0.9 0.89 0.88 0.88 0.02

Key point 

distributions
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