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Abstract. The seminal works of Tilove and Requicha first introduced the use of 
general topology concepts in solid modeling. However, their works are brute-force 

approach from mathematicians’ perspective and are not easy to be comprehended 
by engineering trained personnels. This paper reviewed the point set topological 

approach using operational formulation and provided an alternate method to check 
the correctness of regularized set operations that was difficult to be formulated or 
ignored in various research work or literature study of geometric modeling. The 
results simply provide an alternate approach that easier to check the correctness for 
future research and development in geometric modeling. Essential topological 

concepts are described and visualized in easy to understand directed graphs. These 
facilitate subtle differentiation of key concepts to be recognized. In particular, some 
results are restated in a more mathematically correct version. Examples to use the 
prefix unary operators are demonstrated in solid modeling properties derivations and 
proofs as well as engineering applications. 
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1 INTRODUCTION 

The seminal works of Tilove and Requicha [9],[14],[15] first introduced the use of general topology 
concepts in solid modeling. However, their works are brute-force approach from mathematicians’ 

perspective and are not easy to be comprehended by engineering trained personnels. This paper 
reviewed the point set topological approach using operational formulation. Essential topological 
concepts are described and visualized in easy to understand directed graphs. These facilitate subtle 
differentiation of key concepts to be recognized. In particular, some results are restated in a more 
mathematically correct version. Examples to use the prefix unary operators are demonstrated in 
solid modeling properties derivations and proofs as well as engineering applications. 

This paper is motivated by confusion in the use of mathematical terms like boundedness, 

boundary, interior, open set, exterior, complement, closed set, closure, regular set, etc. Hasse 
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diagrams are drawn by mathematicians to study different topologies. Instead, directed graph using 
elementary operators of closure and complement are drawn to show their inter-relationship in the 

Euclidean three-dimensional space (𝔼3 is a special metric space formed from Cartesian product ℝ3 
with Euclid’s postulates [12] and inheriting all general topology properties.) In mathematics, regular, 

regular open and regular closed are similar but different concepts. The latter is the more correct 
term for Tilove and Requicha’s works. Regular closed set also suffers the limitation that it can be 
bounded or unbounded. In solid modeling, valid solid is only a subset of compact (closed and 
bounded) set. However, no mathematical definition for valid solid can be found.  

In order to maneuver properties in solid modeling, interior operator is more convenient. The 
operation approach is useful to derive the inclusion properties of dangling or pendant boundary and 
“open” boundary situations in traditional set intersection and difference respectively. Mathematically, 

arbitrary set in Euclidean three-dimensional space can be open, closed, clopen, and neither open 

nor closed, as well as with or without irregular boundary. Other than “open” and dangling (also called 
pendant) boundary, detached boundary and isolated points are also possible in general topology. As 
a result, regular closed set is verified to be necessary in constructive solid geometry representation. 
Many properties are also found to be more correctly stated as subset inclusion identities rather than 
equalities. 

1.1 Constructive Solid Geometry (CSG) 

Nowadays, with the aids of advanced computer-aided design (CAD) modelling tools, various 
applications such as advanced engineering product design and analysis, virtual reality (VR) and 
augmented reality (AR) visualizations or 3D printing of complicated physical components in different 
disciplines are rapidly developed and implemented [5],[13]. In 3D model representation, solid 

modelling is normally employed and provide methods to overcome the limitations of wireframe and 
surface modelling [2],[8],[11]. The wire frame and surface modelling approaches have limited 

engineering applications due to insufficient of topological description and incompleteness in the 
geometric information. The use of solid modelling method can allow designers to create precise solid 
models with the aid of Finite Element Analysis (FEA) under a simulated environment.  

Accurate 3D complex models or assemblies can be designed and created by solid modelling. 

Besides, solid modelling can be employed to assess and evaluate the performances such as size, 
dimension, shape, functionality, or material utilization of complex products or assemblies during 
preliminary conceptual design stage. To implement the slicing of CAD models, Huang et al. [6] 
present a robust and efficient approach to directly slicing implicit solids with the proofs for the 
correctness. The proposed technique allows good distortion error control on the generated contours. 
Correct objects can be implemented and fabricated by rapid prototyping.  

 CSG approach [1], [17] is one of the most popular solid representation methods with, user-

friendly, accuracy, and validity. Nowadays, various CAD modeling tools uses CSG approach for 

product design and visualization, e.g. TinkerCAD [16]. A CSG model assumed that physical objected 
can be represented as a combination of simpler solid primitives. The primitives are cube, cylinder, 
cone, sphere, torus, etc. Instances of such primitive shapes are created. A complete solid model or 
assembly is created by combining these objects by Boolean Operations – union, difference, 
intersection. Boolean operations [10] are better modelling technique in 3D modelling systems that 
CSG allow users to create and modify models with convenient and easy editing capability among 

various representation schemes. 

2 MATHEMATICAL PRELIMINARIES 

This section highlights mathematical concepts essential to solid modeling. In 1922 Kuratowski 
reported in his breakthrough paper a maximum of fourteen distinct sets by alternate application of 
complement and closure to any set [3-4],[7].  
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2.1 Definitions 

The complement of arbitrary set A, denoted cA, is simply points does not belong to A.  In other 

words, if 𝕌 is the universal set, then cA= 𝕌-A. Closure can be defined in many ways.  Relevant to 

solid modeling, the closure of A, denoted kA, is the disjoint union of the set of all isolated points of 
A and the set of all limit points of A. p ∈ A is an isolated point of A, if and only if there exists an open 

neighborhood of p which does not contain any other points of A.  A point p ∈ 𝕌 is a limit point (also 

called accumulation point or cluster point) of A if every open neighborhood of p contains another 

distinct point q ≠ p such that q ∈ A. 

A point which has an open ball completely contained in A is an interior point of A. From these 
come three important definitions. The interior of a set A is the complement of the closure of the 
complement of A, iA=ckcA. The exterior of a set A is the complement of the closure of A, eA=ckA. 

The boundary (also called frontier) of a set A is the intersection of its closure and the closure of its 

complement, e.g. Equation (2.1): 
 

    ∂A=kA∩kcA (2.1) 

 

Obviously, ∂A=∂cA can be expressed as below Eqn. (2.2): 
 

 ∂cA=kcA∩kccA (2.2) 

 

To the layman, the boundary is considered as the set without its interior, i.e. A-iA. Confusion arises 
as shown in Equation (2.3) below is not equaled to ∂A but only its subset. 
 

 A-iA=A∩ciA=A∩kcA (2.3) 

 

Figure 1 below shows an arbitrary set which is neither open nor closed, and with isolated points 
belonging to A and cA. Note that limit points can be interior points or boundary points. Isolated 
points are boundary points. Also, ∂A or ∂cA includes all boundary limit points and isolated points 
common to both A and cA. 

 

It should also be noted that kA includes boundary limit points of cA and irregular boundary points of 
cA are absorbed into limit points of A.  Clarification is needed as sets can be open, closed, clopen (a 
portmanteau of closed-open), and neither open nor closed. A set is closed iff it contains all of its 
boundary points, i.e. A=kA. A set is open iff it contains all of its interior points, i.e. A=iA. 

In topology, a clopen set in a topological space is a set which is both open and closed.  In the 
Euclidean three-dimensional space of solid modeling, the only two clopen sets are the universal set 
𝕌 = 𝔼3 and the empty set, e.g. Equation (2.4) and Equation (2.5):  
 
 𝑘𝔼3 = 𝑖𝔼3 = 𝔼3 (2.4) 

 
 k∅= 𝑖 ∅=∅. (2.5) 

 

Instead of Hasse diagram, the inter-relationships of Kuratowski’s 14 sets are explicitly depicted as 

directed graphs. The legends are:  prefix unary operators: c (complement), k (closure), i (interior), 
e (exterior), ∂ (boundary). Sets boxed in solid line are closed, in dashed line are open, and unboxed 
are undecided. Directed lines refer to mappings of respective operations. Fourteen distinct sets plus 
boundary created by closure and complement operators for arbitrary set are shown by Figure 2. 
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(a) isolated, limit, interior, and boundary points of A and cA 

                           

(b) ∂A=∂cA     (c) kcA 
 

Figure 1: Differentiation of points of A and cA. 

 

Figure 2: Fourteen distinct sets plus boundary created by closure and complement operators for 

arbitrary set.  

 

 

 

 

Figure 1. Fourteen distinct sets plus boundary created by closure and complement operators 

for arbitrary set. 
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The subset-superset relationship for arbitrary set is illustrated by Figure 3 below: 

 

 

Figure 3: Subset-superset relationship for arbitrary set. 

 

Chapman and Stalnaker proved that Kuratowski’s 14 sets can be grouped into 7 pairs (for A and cA) 

using closure and interior operations [3],[4] and their relationship is illustrated by Figure 4: 
 

 
 

Figure 4: Seven distinct sets created by closure and interior operators for arbitrary set (and its 

complement). 

 

From Kuratowski’s expansive and shrinking relationships [7] of subset containment between an 
arbitrary set with its closure and interior respectively, e.g. Equation (2.6): 
 

 𝑖𝐴 ⊆ 𝐴 ⊆ 𝑘𝐴 (2.6) 
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Further relations can be found for other sets of Chapman and Stalnaker as Equation (2.7):   
 

  (2.7) 

The above is equivalent to, e.g. Equations (2.8) and (2.9): 
 

 𝑖𝐴 ⊆ 𝑖𝑘𝑖𝐴 ⊆ 𝑖𝑘𝐴 ⊆ 𝑘𝑖𝑘𝐴 ⊆ 𝑘𝐴 (2.8) 

 

 𝑖𝐴 ⊆ 𝑖𝑘𝑖𝐴 ⊆ 𝑘𝑖𝑎𝐴 ⊆ 𝑘𝑖𝑘𝐴 ⊆ 𝑘𝐴 (2.9) 

 

It should be noted that, for general arbitrary set, there is no explicit relationship between Equations 
(2.10), (2.11), and (2.12): 
 

 𝐴 & 𝑘𝑖𝐴 (2.10) 

 

 

 𝐴 & 𝑖𝑘𝐴 (2.11) 

 
 

 𝑖𝑘𝐴 & 𝑘𝑖𝐴 (2.12) 

For special situations, 

⚫ a set is called regular closed if it is equal to the closure of the interior of itself, i.e. 𝐴 = 𝑘𝑖𝐴. 
⚫ a set is called regular open if it is equal to the interior of the closure of itself, i.e. 𝐴 = 𝑖𝑘𝐴. 
 

In addition, boundedness is a different concept.  All the fourteen sets can be bounded or 

unbounded depending on the metrics and the universal set defining the metric space.  The boundary 
is always bounded.  

In solid modeling, the topology 𝕌 = 𝔼3 being used is connected as according definition, the only 

clopen set is the universal set and the empty set. Sets obtained by different combinations of closure 
and interior operations for special sets is shown in Table 1 below: 
 

 𝐴 = 𝑖𝐴 𝐴 = 𝑖𝑘𝑖𝐴 𝐴 = 𝑖𝑘𝐴 𝐴 = 𝑘𝑖𝐴 𝐴 = 𝑘𝑖𝑘𝐴 𝐴 = 𝑘𝐴 
𝑖𝐴 = 𝑖𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝐴 𝑖𝑘𝐴 
𝑖𝑘𝑖𝐴 = 𝑖𝑘𝑖𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝐴 𝑖𝑘𝐴 
𝑖𝑘𝐴 = 𝑖𝑘𝑖𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝐴 𝑖𝑘𝐴 
𝑘𝑖𝐴 = 𝑘𝑖𝐴 𝑘𝑖𝐴 𝑘𝑖𝑘𝐴 𝑘𝑖𝐴 𝑘𝑖𝑘𝐴 𝑘𝑖𝑘𝐴 
𝑘𝑖𝑘𝐴 = 𝑘𝑖𝐴 𝑘𝑖𝐴 𝑘𝑖𝑘𝐴 𝑘𝑖𝐴 𝑘𝑖𝑘𝐴 𝑘𝑖𝑘𝐴 
𝑘𝐴 = 𝑘𝑖𝐴 𝑘𝑖𝐴 𝑘𝑖𝑘𝐴 𝑘𝑖𝐴 𝑘𝑖𝑘𝐴 𝑘𝐴 

 
Table 1: Sets obtained by different combinations of closure and interior operators for special sets. 
 

Besides, shaded boxes indicate idempotent properties is listed in Table 2. 
 

 𝑐 𝑘 𝑖 𝜕 𝑒 
𝑐 1 𝑐𝑘 = 𝑒 𝑐𝑖 = 𝑘𝑐 𝑐𝜕 = 𝑒𝜕 𝑐𝑒 = 𝑘 

𝑖𝐴 ⊆ 𝑖𝑘𝑖𝐴 ⊆
𝑘𝑖𝐴
𝑖𝑘𝐴
⊆ 𝑘𝑖𝑘𝐴 ⊆ 𝑘𝐴 
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𝑘 𝑘𝑐 = 𝑐𝑖 𝑘𝑘 = 𝑘 𝑘𝑖 𝑘𝜕 = 𝜕 𝑘𝑒 = 𝑘𝑐𝑘 = 𝑘𝑖𝑐 
𝑖 𝑖𝑐 = 𝑒 𝑖𝑘 𝑖𝑖 = 𝑖 𝑖𝜕 𝑖𝑒 = 𝑒 
𝜕 𝜕𝑐 = 𝜕 𝜕𝑘 = 𝜕𝑒 𝜕𝑖 𝜕𝜕 ⊆ 𝜕 𝜕𝑒 = 𝜕𝑘 
𝑒 𝑒𝑐 = 𝑖 𝑒𝑘 = 𝑒 𝑒𝑖 = 𝑐𝑘𝑖 = 𝑖𝑘𝑐 𝑒𝜕 = 𝑐𝜕 𝑒𝑒 = 𝑖𝑘 

 
Table 2: Equivalent operators obtained from different combinations of the five main operators. 

 
Double complement follows involution law, e.g. Equations (2.13) and (2.14) 
 

 𝜕𝜕𝜕 = 𝜕 (2.13) 

 

 𝜕𝜕𝐴 = 𝜕𝐴 ⇔ 𝐴 = 𝑘𝐴 𝑜𝑟 𝐴 = 𝑖𝐴 (2.14) 

 

2.2 Properties of Regularized Set Operations 

In mathematics and computer science, regularization is the term used to describe the technique of 
modification in order to solve an ill-posed problem. In solid modeling, regularization is used to rectify 
irregular boundaries resulted after ordinary set operations. To be more precise, the regularized set 

operations are affected by interior and then closure operations after ordinary set union, intersection, 
difference, and complement. Rather than illustrating with meagre examples diagrammatically as 
found in the literature, the following proofs try to verify algebraically the applicability of the 
regularized set operations in general. To prove, e.g. Equations (2.15), (2.16) and (2.17): 
 

 𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) = 𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2 (2.15) 

 

 𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) ⊆ 𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2 (2.16) 

 

 𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) ≠  𝑘𝑖𝐴1 − 𝑘𝑖𝐴2 (2.17) 

 

Proof of Equation (2.15). Finite union of regular closed sets is regular closed e.g. Equation (2.18), 
 

  (2.18) 
 
But, e.g. Equation (2.19) 
 

            (2.19) 
Hence, e.g. Equation (2.20) 

 

 𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) = 𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2  ∎ (2.20) 

 
 

Proof of Equation (2.16): Intersection of regular closed sets is not necessarily regular closed. 

For arbitrary sets 𝐴1 & 𝐴2 e.g. Equation (2.21), 

 

 𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) = 𝑘(𝑖𝑘𝑖𝐴1 ∩ 𝑖𝑘𝑖𝐴2) ⊆ 𝑘𝑖𝑘𝑖𝐴1 ∩ 𝑘𝑖𝑘𝑖𝐴2 = 𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2  ∎ (2.21) 

 

Comparing interiors, e.g. Equations (2.22), (2.23), and (2.24):  
 

𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) ⊇ 𝑘(𝑖𝑘𝑖𝐴1 ∪ 𝑖𝑘𝑖𝐴2) = 𝑘𝑖𝑘𝑖𝐴1 ∪ 𝑘𝑖𝑘𝑖𝐴2 = 𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2 

𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) ⊆ 𝑘(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) = 𝑘𝑘𝑖𝐴1 ∪ 𝑘𝑘𝑖𝐴2 = 𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2 
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 𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) ⊆ 𝑖𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) (2.22) 

 

 𝑖𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) = 𝑖𝑘(𝑖𝑘𝑖𝐴1 ∩ 𝑖𝑘𝑖𝐴2) ⊆ 𝑖(𝑘𝑖𝑘𝑖𝐴1 ∩ 𝑘𝑖𝑘𝑖𝐴2) = 𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) (2.23) 

 

 ∴ 𝑖𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) = 𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2)  ∎ (2.24) 

Ordinary and regularized intersection has the same interior. 

 
Comparing boundaries, e.g. Equations (2.25), (2.26), and (2.27): 
 

  (2.25) 
 

𝜕𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) = 𝑘𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) ∩ 𝑘𝑐𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) = 𝑘(𝑖𝑘𝑖𝐴1 ∩ 𝑖𝑘𝑖𝐴2) ∩
𝑘𝑐𝑘(𝑖𝑘𝑖𝐴1 ∩ 𝑖𝑘𝑖𝐴2) ⊆ 𝑘𝑖𝑘𝑖𝐴1 ∩ 𝑘𝑖𝑘𝑖𝐴2 ∩ 𝑘𝑐(𝑘𝑖𝑘𝑖𝐴1 ∩ 𝑘𝑖𝑘𝑖𝐴2) = 𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2 ∩

𝑘𝑐(𝑘𝑖𝐴 ∩ 𝑘𝑖𝐴2)    (2.26) 
 

 ∴ 𝜕𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) ⊆ (𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) − 𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2)  ∎    (2.27) 

In other words, extra (isolated, detached, dangling or pendant) boundary exists in general and post 
intersection regular closed operation is needed. 
 

Proof of Equation (2.17): 

(i) From Figure 5 below, 𝑘𝑖𝐴1 − 𝑘𝑖𝐴2  and 𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2)  are different (in 𝔼3 ) in 

general. 
In addition, Equation (2.28) is neither closed nor open! 

 𝑘𝑖𝐴1 − 𝑘𝑖𝐴2 = 𝑘𝑖𝐴1 ∩ 𝑐𝑘𝑖𝐴2 = 𝑘𝑖𝐴1 ∩ 𝑖𝑘𝑐𝐴2 (2.28) 

 
As shown in Figure 5, it may have isolated, pendant and detached boundary points, and limit points 
belonging to its complement. As intersection, irregular boundary may exist and have to be 

regularized by post difference regular closed operation. Note that 𝑘𝑖𝐴1 − 𝑘𝑖𝐴2  and 𝑘𝑖(𝑘𝑖𝐴1 −
𝑘𝑖𝐴2) has the same interior though different boundaries. 

 
(ii) To prove (same interior), e.g. Equation (2.29) below: 

 

 𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) = 𝑖𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) (2.29) 

 

Proof: For arbitrary sets e.g. Equation (2.30) below: 

 𝑖𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) = 𝑖𝑘(𝑖𝑘𝑖𝐴1 ∩ 𝑐𝑘𝑖𝐴2) ⊆ 𝑖(𝑘𝑖𝑘𝑖𝐴1 ∩ 𝑘𝑐𝑘𝑖𝐴2) = 𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝑘𝑐𝐴2) =
𝑖𝑘𝑖𝐴1 ∩ 𝑖𝑘𝑖𝑘𝑐𝐴2 = 𝑖𝑘𝑖𝐴1 ∩ 𝑖𝑘𝑐𝐴2 = 𝑖(𝑘𝑖𝐴1 ∩ 𝑖𝑘𝑐𝐴2) = 𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) (2.30) 

 
However, it has Equation (2.31) below: 
 

 𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) ⊆ 𝑖𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) (2.31) 

 

Hence, Equation (2.32) is set and listed as below: 
 

 𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) = 𝑖𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) ∎ (2.32) 

 

(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) − 𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) = 𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2 ∩ 𝑐𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2)

= 𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2 ∩ 𝑘𝑐(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) 
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Figure 5: Example to illustrate isolated, detached, dangling & “open” boundaries due to regularized 
closed difference. 

 

Given the Equation (2.33) below: 
 

 𝐴1 ∩ 𝐴2 = 𝐴1 − (𝐴1 − 𝐴2), 𝐴1, 𝐴2 ⊆ 𝕌 (2.33) 

 
To prove the Equation (2.32), Equation (2.34) is set below: 
 

 𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) = 𝑘𝑖[𝑘𝑖𝐴1 − 𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2)] (2.34) 

 
Proof of Equation (2.34), Equations (2.35) and (2.36) is set below: 

            𝑘𝑖[𝑘𝑖𝐴1 − 𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2)] = 𝑘𝑖[𝑘𝑖𝐴1 ∩ 𝑐𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑐𝑘𝑖𝐴2)] = 𝑘𝑖[𝑘𝑖𝐴1 ∩
𝑖𝑘𝑐(𝑘𝑖𝐴1 ∩ 𝑐𝑘𝑖𝐴2)] = 𝑘𝑖[𝑘𝑖𝐴1 ∩ 𝑖𝑘(𝑐𝑘𝑖𝐴1 ∪ 𝑐𝑐𝑘𝑖𝐴2)] = 𝑘𝑖[𝑘𝑖𝐴1 ∩ 𝑖𝑘(𝑐𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2)] =
𝑘𝑖[𝑘𝑖𝐴1 ∩ 𝑖(𝑘𝑐𝑘𝑖𝐴1 ∪ 𝑘𝑘𝑖𝐴2)] = 𝑘𝑖[𝑘𝑖𝐴1 ∩ 𝑖(𝑘𝑐𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2)] ⊇ 𝑘𝑖[𝑘𝑖𝐴1 ∩ (𝑖𝑘𝑐𝑘𝑖𝐴1 ∪
𝑖𝑘𝑖𝐴2)] = 𝑘𝑖[𝑘𝑖𝐴1 ∩ (𝑐𝑘𝑖𝑘𝑖𝐴1 ∪ 𝑖𝑘𝑖𝐴2)] = 𝑘𝑖[𝑘𝑖𝐴1 ∩ (𝑐𝑘𝑖𝐴1 ∪ 𝑖𝑘𝑖𝐴2)] = 𝑘𝑖[(𝑘𝑖𝐴1 ∩
𝑐𝑘𝑖𝐴1) ∪ (𝑘𝑖𝐴1 ∩ 𝑖𝑘𝑖𝐴2)] = 𝑘𝑖[∅ ∪ (𝑘𝑖𝐴1 ∩ 𝑖𝑘𝑖𝐴2)] = 𝑘(𝑖𝑘𝑖𝐴1 ∩ 𝑖𝑖𝑘𝑖𝐴2) = 𝑘(𝑖𝑘𝑖𝐴1 ∩
𝑖𝑘𝑖𝐴2) = 𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2)    (2.35) 
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Hence, 
 

 𝑘𝑖[𝑘𝑖𝐴1 − 𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2)] ⊇ 𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) ∎      (2.36) 

 

As a result, CSG tree cannot be implemented with regularized closed union and difference only. In 

addition, if the swept solid generated in the process of positive offset [11] of 𝑘𝑖𝐴1 is regular closed 

𝑘𝑖𝐴2, then the positive offset result is simply their union.  However, to maintain the negative offset 

result to be regular closed, regularized difference or 𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) should be used. 

2.3 Regularized Complement 

Ordinary complement has the involution property, e.g. Equation (2.37), 
 

 𝑐𝑐𝐴 = 𝐴 (2.37) 

 

Moreover, complement of closed set is open while complement of open set is closed, e.g. Equations 
(2.38) and (2.39), 

 𝑐(𝑘𝐴) = 𝑐𝑘𝑐𝑐𝐴 = 𝑖𝑐𝐴 (2.38) 

and 

 𝑐(𝑖𝐴) = 𝑐𝑐𝑘𝑐𝐴 = 𝑘𝑐𝐴 (2.39) 

 

From the Tilove’s work in [14] and [15], regularized complement is defined to be 𝑘𝑖𝑐(𝑘𝑖𝐴).  No 

explanation nor description on its use is mentioned. The relationship of regularized complement is 
set by Equation (2.40), 
 

 𝑘𝑖𝑐(𝑘𝑖𝐴) = 𝑘𝑐𝑘𝑐𝑐𝑘𝑐𝑘𝑐𝐴 = 𝑘𝑐𝑘𝑐𝑘𝑐𝐴 = 𝑘𝑖𝑘𝑐𝐴 (2.40) 

From Table 3, the 𝑘𝑖𝑐 operation satisfies the involution property for regular closed set, e.g. Equation 

(2.41), 
 

 (𝑘𝑖𝑐)2(𝑘𝑖𝐴) = 𝑘𝑐𝑘𝑐𝑐𝑘𝑐𝑘𝑐𝑐𝑘𝑐𝑘𝑐𝐴 = 𝑘𝑐𝑘𝑐𝑘𝑐𝑘𝑐𝐴 = 𝑘𝑐𝑘𝑐𝐴 = 𝑘𝑖𝐴 (2.41) 

However, the 𝑘𝑖𝑐 operation always gives closed set and will not interchange open set with closed 

set, e.g. Equations (2.42) and (2.43) below: 
 

 𝑘𝑖𝑐(𝑘𝐴) = 𝑘𝑐𝑘𝑐𝑐𝑘𝐴 = 𝑘𝑐𝑘𝐴 = 𝑘𝑖𝑐𝐴 (2.42) 

and 

 𝑘𝑖𝑐(𝑖𝐴) = 𝑘𝑐𝑘𝑐𝑐𝑐𝑘𝑐𝐴 = 𝑘𝑐𝑘𝑐𝑘𝑐𝐴 = 𝑘𝑖𝑘𝑐𝐴 (2.43) 

 
Also, it can be proved that the closed complement operations when combined with regularized set 

operations do not satisfy all de Morgan’s law as compared in Table 3. 
 
For regular closed set, there is no irregular boundary. But it may be bounded or unbounded. In 

Euclidean 3-dimensional space, the universal set 𝔼3 is unbounded (ℝ = (−∞,∞)) while the empty 

set is bounded.   In this metric space, the complement of a bounded set will be unbounded and vice 
versa.  As rigid motion in CSG tree (edge) being used to re-position and/or re-orient the leaf and 
subtree is finite, Table 4 and Figure 6 can then be obtained by assuming orientable boundary. The 

𝑘𝑖𝑐 operation will then be useful to ensure all regular closed set to be bounded.  Note that the other 
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closed complement operators 𝑘𝑖𝑘𝑐 and 𝑘𝑐 will behave the same as 𝑘𝑖𝑐. Properties of candidate 

complements applied on different types of sets is tabulated by Table 5. 

 

de Morgan’s law 
𝑐(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) = 𝑐𝑘𝑖𝐴1 ∪ 𝑐𝑘𝑖𝐴2 
𝑐(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) = 𝑐𝑘𝑖𝐴1 ∩ 𝑐𝑘𝑖𝐴2 

𝑐 
𝑐𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) ≠ 𝑘𝑖(𝑐𝑘𝑖𝐴1 ∪ 𝑐𝑘𝑖𝐴2) 
𝑐𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) ≠ 𝑘𝑖(𝑐𝑘𝑖𝐴1 ∩ 𝑐𝑘𝑖𝐴2) 

𝑘𝑐 
𝑘𝑐𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) = 𝑘𝑖(𝑘𝑐𝑘𝑖𝐴1 ∪ 𝑘𝑐𝑘𝑖𝐴2) 
𝑘𝑐𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) ⊆ 𝑘𝑖(𝑘𝑐𝑘𝑖𝐴1 ∩ 𝑘𝑐𝑘𝑖𝐴2) 

𝑘𝑖𝑘𝑐 
𝑘𝑖𝑘𝑐𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) = 𝑘𝑖(𝑘𝑖𝑘𝑐𝑘𝑖𝐴1 ∪ 𝑘𝑖𝑘𝑐𝑘𝑖𝐴2) 
𝑘𝑖𝑘𝑐𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) ⊆ 𝑘𝑖(𝑘𝑖𝑘𝑐𝑘𝑖𝐴1 ∩ 𝑘𝑖𝑘𝑐𝑘𝑖𝐴2) 

𝑘𝑖𝑐 
𝑘𝑖𝑐𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) = 𝑘𝑖(𝑘𝑖𝑐𝑘𝑖𝐴1 ∪ 𝑘𝑖𝑐𝑘𝑖𝐴2) 
𝑘𝑖𝑐𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) ⊆ 𝑘𝑖(𝑘𝑖𝑐𝑘𝑖𝐴1 ∩ 𝑘𝑖𝑐𝑘𝑖𝐴2) 

 
Table 3: Different closed complement operations vs. de Morgan’s laws. 

 
 

operand operator operand result 

 𝑐 bounded set unbounded set 

 𝑐 unbounded set bounded set 

bounded set ∪ bounded set bounded set 

bounded set ∪ unbounded set unbounded set 

unbounded set ∪ unbounded set unbounded set 

bounded set ∩ bounded set bounded set 

bounded set ∩ unbounded set bounded set 

unbounded set ∩ unbounded set bounded/unbounded set 

bounded set − bounded set bounded set 

bounded set − unbounded set bounded set 

unbounded set − bounded set bounded/unbounded set 

unbounded set − unbounded set bounded set 

 

Table 4: Results on operations of bounded and unbounded set. 
 
 

 
 
 
 
 
 
 
 

Figure 6: Intersection of 2 unbounded sets can be bounded or unbounded. 
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 𝐴 𝑖𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝐴 𝑘𝑖𝐴 𝑘𝑖𝑘𝐴 𝑘𝐴 

𝑐 𝑐𝐴 𝑘𝑐𝐴 𝑘𝑖𝑘𝑐𝐴 𝑘𝑖𝑐𝐴 𝑖𝑘𝑐𝐴 𝑖𝑘𝑖𝑐𝐴 𝑖𝑐𝐴 

𝑖𝑐 𝑖𝑐𝐴 𝑖𝑘𝑐𝐴 𝑖𝑘𝑐𝐴 𝑖𝑘𝑖𝑐𝐴 𝑖𝑘𝑐𝐴 𝑖𝑘𝑖𝑐𝐴 𝑖𝑐𝐴 

𝑖𝑘𝑖𝑐 𝑖𝑘𝑖𝑐𝐴 𝑖𝑘𝑐𝐴 𝑖𝑘𝑐𝐴 𝑖𝑘𝑖𝑐𝐴 𝑖𝑘𝑐𝐴 𝑖𝑘𝑖𝑐𝐴 𝑖𝑘𝑖𝑐𝐴 

𝑖𝑘𝑐 𝑖𝑘𝑐𝐴 𝑖𝑘𝑐𝐴 𝑖𝑘𝑐𝐴 𝑖𝑘𝑖𝑐𝐴 𝑖𝑘𝑐𝐴 𝑖𝑘𝑖𝑐𝐴 𝑖𝑘𝑖𝑐𝐴 

𝑘𝑖𝑐 𝑘𝑖𝑐𝐴 𝑘𝑖𝑘𝑐𝐴 𝑘𝑖𝑘𝑐𝐴 𝑘𝑖𝑐𝐴 𝑘𝑖𝑘𝑐𝐴 𝑘𝑖𝑐𝐴 𝑘𝑖𝑐𝐴 

𝑘𝑖𝑘𝑐 𝑘𝑖𝑘𝑐𝐴 𝑘𝑖𝑘𝑐𝐴 𝑘𝑖𝑘𝑐𝐴 𝑘𝑖𝑐𝐴 𝑘𝑖𝑘𝑐𝐴 𝑘𝑖𝑐𝐴 𝑘𝑖𝑐𝐴 

𝑘𝑐 𝑘𝑐𝐴 𝑘𝑐𝐴 𝑘𝑖𝑘𝑐𝐴 𝑘𝑖𝑐𝐴 𝑘𝑖𝑘𝑐𝐴 𝑘𝑖𝑐𝐴 𝑘𝑖𝑐𝐴 

(a) candidate complements 
 

 𝐴 𝑖𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝐴 𝑘𝑖𝐴 𝑘𝑖𝑘𝐴 𝑘𝐴 
(𝑐)2 = 1 𝐴 𝑖𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝐴 𝑘𝑖𝐴 𝑘𝑖𝑘𝐴 𝑘𝐴 
(𝑖𝑐)2 = 𝑖𝑘 𝑖𝑘𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝐴 𝑖𝑘𝐴 
(𝑖𝑘𝑖𝑐)2 = 𝑖𝑘 𝑖𝑘𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝐴 𝑖𝑘𝐴 
(𝑖𝑘𝑐)2 = 𝑖𝑘𝑖 𝑖𝑘𝑖𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝐴 𝑖𝑘𝑖𝐴 𝑖𝑘𝐴 𝑖𝑘𝐴 
(𝑘𝑖𝑐)2 = 𝑘𝑖𝑘 𝑘𝑖𝑘𝐴 𝑘𝑖𝐴 𝑘𝑖𝐴 𝑘𝑖𝑘𝐴 𝑘𝑖𝐴 𝑘𝑖𝑘𝐴 𝑘𝑖𝑘𝐴 
(𝑘𝑖𝑘𝑐)2 = 𝑘𝑖 𝑘𝑖𝐴 𝑘𝑖𝐴 𝑘𝑖𝐴 𝑘𝑖𝑘𝐴 𝑘𝑖𝐴 𝑘𝑖𝑘𝐴 𝑘𝑖𝑘𝐴 
(𝑘𝑐)2 = 𝑘𝑖 𝑘𝑖𝐴 𝑘𝑖𝐴 𝑘𝑖𝐴 𝑘𝑖𝑘𝐴 𝑘𝑖𝐴 𝑘𝑖𝑘𝐴 𝑘𝑖𝑘𝐴 

(b) double complements 
 

Table 5: Properties of candidate complements applied on different types of sets. 
 

2.4 Regularized Complement and Negative Offset 

According to Rossignac’s work [11] on offset operation, denote the (regularized) positive offset, then 

the (regularized) negative solid offset of a non-empty 𝑆  is defined as the complement of the 

expanded complement, e.g. Equation (2.44), 

 

                                                                     𝑆 ↓∗ 𝑟 = 𝑐∗((𝑐∗𝑆) ↑∗ 𝑟)                                           (2.44) 

 
 

Let 𝑘𝑖𝐴 be the regular closed set to be offset. 𝑘𝑖𝐴𝑠 be the regular closed set obtained by sweeping 

a closed ball of radius 𝑟 centered at ∂𝑘𝑖𝐴. 
 
One can formulate positive offset as Equation (2.45): 
 

                                 (𝑘𝑖𝐴) ↑∗ 𝑟 = 𝑘𝑖𝐴 ∪ 𝑘𝑖𝐴𝑠                                                 (2.45) 

 
and negative offset as Equation (2.46): 

                                              (𝑘𝑖𝐴) ↓∗ 𝑟 = 𝑘𝑖(𝑘𝑖𝐴 − 𝑘𝑖𝐴𝑠)                                                 (2.46) 
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The following is to check all negative offset definitions (using regularized difference and different 

closed complements: 𝑘𝑐, 𝑘𝑖𝑘𝑐, 𝑘𝑖𝑐) are equivalent as Equation (2.47): 

 

𝑘𝑖𝑐(𝑘𝑖𝑐𝑘𝑖𝐴 ∪ 𝑘𝑖𝐴𝑠) = 𝑘𝑖𝑘𝑐(𝑘𝑖𝑘𝑐𝑘𝑖𝐴 ∪ 𝑘𝑖𝐴𝑠) = 𝑘𝑐(𝑘𝑐𝑘𝑖𝐴 ∪ 𝑘𝑖𝐴𝑠) = 𝑘𝑖(𝑘𝑖𝐴 − 𝑘𝑖𝐴𝑠) 
(2.47) 

 
Proof by Equations (2.48) to (2.50): 

             

𝑘𝑖𝑐(𝑘𝑖𝑐𝑘𝑖𝐴 ∪ 𝑘𝑖𝐴𝑠) = 𝑘𝑖𝑐(𝑘𝑖𝑘𝑐𝐴 ∪ 𝑘𝑖𝐴𝑠) = 𝑘𝑖(𝑐𝑘𝑖𝑘𝑐𝐴 ∩ 𝑐𝑘𝑖𝐴𝑠) = 𝑘𝑖(𝑖𝑘𝑖𝐴 ∩ 𝑖𝑖𝑘𝑐𝐴𝑠) =
𝑘𝑖(𝑘𝑖𝐴 ∩ 𝑖𝑘𝑐𝐴𝑠) = 𝑘𝑖(𝑘𝑖𝐴 ∩ 𝑐𝑘𝑖𝐴𝑠) = 𝑘𝑖(𝑘𝑖𝐴 − 𝑘𝑖𝐴𝑠) ∎(2.48) 

 

𝑘𝑖𝑘𝑐(𝑘𝑖𝑘𝑐𝑘𝑖𝐴 ∪ 𝑘𝑖𝐴𝑠) = 𝑘𝑖𝑘𝑐(𝑘𝑖𝑘𝑐𝐴 ∪ 𝑘𝑖𝐴𝑠) = 𝑘𝑖𝑘(𝑐𝑘𝑖𝑘𝑐𝐴 ∩ 𝑐𝑘𝑖𝐴𝑠) =
𝑘𝑖𝑘(𝑖𝑘𝑖𝐴 ∩ 𝑐𝑘𝑖𝐴𝑠) = 𝑘𝑖𝑘(𝑖𝑘𝑖𝐴 ∩ 𝑖𝑖𝑘𝑐𝐴𝑠) = 𝑘𝑖𝑘𝑖(𝑘𝑖𝐴 ∩ 𝑖𝑘𝑐𝐴𝑠) = 𝑘𝑖(𝑘𝑖𝐴 − 𝑘𝑖𝐴𝑠) ∎  (2.49) 

 

𝑘𝑐(𝑘𝑐𝑘𝑖𝐴 ∪ 𝑘𝑖𝐴𝑠) = 𝑘(𝑐𝑘𝑐𝑘𝑖𝐴 ∩ 𝑐𝑘𝑖𝐴𝑠) = 𝑘(𝑖𝑘𝑖𝐴 ∩ 𝑖𝑖𝑘𝑐𝐴𝑠) = 𝑘𝑖(𝑘𝑖𝐴 − 𝑘𝑖𝐴𝑠) ∎      

(2.50) 

3 MANUFACTURING PROCESS & REGULAR CLOSED OPERATORS 

Manufacturing or fabrication processes can be classified into one of the three types: additive, 
subtractive, and formative [5].   Whether or not parts are moldable or castable have been studied 
using visibility.  This section discusses how to model parts manufactured in different categories with 
regular closed operators. 

3.1 Additive 

Additive includes processes like joining, bonding, welding and glueing as well as interlocking in single 
laser beam stereolithography and sintering scanning and dual beam curing of liquid photocurable 
resin. 
 

Input (Parts to be unioned together) is described by Equation (3.1): 
 

 𝑘𝑖𝐴1& 𝑘𝑖𝐴2 (3.1) 

 
Output is described by Equation (3.2): 
                                                                         

                                                                        𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2                                              (3.2) 
Regularized closed operation after union is redundant as Equation (3.3): 
 

 𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) = 𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2 (3.3) 

In addition, result of ACSG (additive CSG) tree [2] after finite number of addition is shown by 

Equation (3.4): 

                                                                          (3.4) 
as regularized union is associative. 
 

Property (regularized union is associative): Given the following Equation (3.5): 
 

 𝑘𝑖𝐴𝑗

𝑛

𝑗=1
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𝑘𝑖𝐴1 ∪ (𝑘𝑖𝐴2 ∪ 𝑘𝑖𝐴3) = (𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) ∪ 𝑘𝑖𝐴3                              (3.5) 

 
To prove with an Equation (3.6): 

 

𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖(𝑘𝑖𝐴2 ∪ 𝑘𝑖𝐴3)) = 𝑘𝑖(𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) ∪ 𝑘𝑖𝐴3)              
(3.6) 
 

Proof (e.g. equation 3.7): 

 

                        𝐿𝐻𝑆 = 𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖(𝑘𝑖𝐴2 ∪ 𝑘𝑖𝐴3)) = 𝑘𝑖(𝑘𝑖𝐴1 ∪ (𝑘𝑖𝐴2 ∪ 𝑘𝑖𝐴3)) =

𝑘𝑖((𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) ∪ 𝑘𝑖𝐴3) = 𝑘𝑖(𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) ∪ 𝑘𝑖𝐴3) = 𝑅𝐻𝑆    ∎       (3.7) 

 
Fastening, riveting and assembly operations with or without relative motion will not merge the mating 

parts. In such cases, union is not involved, but appropriate rigid motion transforms of the inputs with 
respect to the result. 

3.2 Subtractive: 

Input: 

Stock or blank 𝑘𝑖𝐴1 and subtractive feature 𝑘𝑖𝐴2 
 
Output: 
The following Equation (3.8) is obtained. 

 

 𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) (3.8) 

 
Regular closed operation after difference is compulsory as (Equation 3.9) and it may not be regular 
closed in general. 

 𝑘𝑖𝐴1 − 𝑘𝑖𝐴2 (3.9) 

 
In subtractive machine tool classification, the cutting profile is defined in terms of generatrix and 

directrix sweeping. The subtractive feature modeled as regular closed set can either be (bounded) 
solid cutter or (bounded or unbounded) half space, generated by orientable swept surface (e.g. in 
wire cutting). 
 
Property: regularized union and is given by Equations (3.10) and (3.11). 

 

 𝑘𝑖𝐴1 − (𝑘𝑖𝐴2 ∪ 𝑘𝑖𝐴3) = (𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) − 𝑘𝑖𝐴3 (3.10) 

 
 (𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) ∪ 𝑘𝑖𝐴3 = (𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴3) − (𝑘𝑖𝐴2 − 𝑘𝑖𝐴3) (3.11) 

In general, the two set identities in terms of union and difference do not hold for their regularized 
closed version, e.g. Equations (3.12) and (3.13),  
  

             𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖(𝑘𝑖𝐴2 ∪ 𝑘𝑖𝐴3)) ≠ 𝑘𝑖(𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) − 𝑘𝑖𝐴3)                     (3.12) 

 

 𝑘𝑖(𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) ∪ 𝑘𝑖𝐴3) ≠ 𝑘𝑖(𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴3) − 𝑘𝑖(𝑘𝑖𝐴2 − 𝑘𝑖𝐴3))         (3.13) 

 

Proof of Equations (3.10) and (3.12) into Equations (3.14) and (3.15): 
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                𝐿𝐻𝑆 = 𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖(𝑘𝑖𝐴2 ∪ 𝑘𝑖𝐴3)) = 𝑘𝑖(𝑘𝑖𝐴1 − (𝑘𝑖𝐴2 ∪ 𝑘𝑖𝐴3)) =

𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑐(𝑘𝑖𝐴2 ∪ 𝑘𝑖𝐴3)) = 𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑐𝑘𝑖𝐴2 ∩ 𝑐𝑘𝑖𝐴3)                                                   (3.14)    
       

  𝑅𝐻𝑆 = 𝑘𝑖(𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) − 𝑘𝑖𝐴3) = 𝑘𝑖(𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑐𝑘𝑖𝐴2) ∩ 𝑐𝑘𝑖𝐴3) ≠ 𝐿𝐻𝑆    ∎     (3.15) 
 

Proof of Equations (3.11) and (3.13) into Equations (3.16) and (3.17): 
 

                   
𝐿𝐻𝑆 = 𝑘𝑖(𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) ∪ 𝑘𝑖𝐴3) = 𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) ∪ 𝑘𝑖𝐴3 = 𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑐𝑘𝑖𝐴2) ∪ 𝑘𝑖𝐴3  

(3.16) 
                                                                                                                                                 

𝑅𝐻𝑆 = 𝑘𝑖(𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴3) − 𝑘𝑖(𝑘𝑖𝐴2 − 𝑘𝑖𝐴3)) = 𝑘𝑖((𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴3) ∩ 𝑐𝑘𝑖(𝑘𝑖𝐴2 ∩

𝑐𝑘𝑖𝐴3)) = 𝑘𝑖((𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴3) ∩ 𝑖𝑘𝑐(𝑘𝑖𝐴2 ∩ 𝑐𝑘𝑖𝐴3)) = 𝑘𝑖((𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴3) ∩ 𝑖𝑘(𝑐𝑘𝑖𝐴2 ∪

𝑘𝑖𝐴3)) ≠ 𝐿𝐻𝑆                                                    (3.17) 
 
Corollary: 

Therefore, CSG tree with only regularized union and difference cannot be reconfigured as ordinary 
union and difference. The correct formulation of DSG (destructive solid geometry) tree in should be 
defined as the Equations (3.18). 
 

                                     𝑘𝑖(𝑘𝑖(⋯𝑘𝑖(𝑘𝑖(𝑘𝑖𝐴1 − 𝑘𝑖𝐴2) − 𝑘𝑖𝐴3) − ⋯ ) − 𝑘𝑖𝐴𝑛)               (3.18) 
An alternative definition below is simpler but not identical, 

 

                                                                   𝑘𝑖(𝑘𝑖𝐴1 −⋃ 𝑘𝑖𝐴𝑗
𝑛
𝑗=2 )                                    (3.19) 

3.3 Formative: 

Casting or injection molding and forming: 
Input: 

Mold halves 𝑘𝑖𝐴1& 𝑘𝑖𝐴2 
 
Output: 

The part is the closure of the complement of the cavity formed by closing the mould halves which 

is regular closed and is shown by Equation (3.20), 
 

𝑘𝑐(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2)                                                   (3.20) 
 
 
To prove with Equation (3.21): 

  

𝑘𝑖(𝑘𝑐(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2)) = 𝑘𝑐(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2)                            (3.21) 
 
Proof of Equation (3.22): 

                                      𝑘𝑖𝑘𝑐(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) = 𝑘𝑐𝑘𝑖(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2) = 𝑘𝑐(𝑘𝑖𝐴1 ∪ 𝑘𝑖𝐴2)     (3.22)                                              
 
In reverse engineering of orthographic views to obtain the solid model, swept solids are intersected 
[13]. Since associative property does not hold for regularized intersection, reconfiguration of 
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regularized intersection based CSG tree is not possible in general.  Assumption had to be made for 
no irregular boundary being generated in regularized intersection. 
 
Property (regularized intersection is not associative): 
 
Given an Equation (3.23), 

 

𝑘𝑖𝐴1 ∩ (𝑘𝑖𝐴2 ∩ 𝑘𝑖𝐴3) = (𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) ∩ 𝑘𝑖𝐴3                        (3.23)        
 
To prove with Equation (3.24):             
                                 

                       𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖(𝑘𝑖𝐴2 ∩ 𝑘𝑖𝐴3)) ≠ 𝑘𝑖(𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) ∩ 𝑘𝑖𝐴3)                        (3.24) 

 
Proof of Equations (3.25) and (3.26): 
 

                 𝐿𝐻𝑆 = 𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖(𝑘𝑖𝐴2 ∩ 𝑘𝑖𝐴3)) ⊆ 𝑘𝑖(𝑘𝑖𝐴1 ∩ (𝑘𝑖𝑘𝑖𝐴2 ∩ 𝑘𝑖𝑘𝑖𝐴3)) =

𝑘𝑖(𝑘𝑖𝐴1 ∩ (𝑘𝑖𝐴2 ∩ 𝑘𝑖𝐴3)) = 𝑘𝑖((𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) ∩ 𝑘𝑖𝐴3)         (3.25) 
 

𝑅𝐻𝑆 = 𝑘𝑖(𝑘𝑖(𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) ∩ 𝑘𝑖𝐴3) ⊆ 𝑘𝑖((𝑘𝑖𝐴1 ∩ 𝑘𝑖𝐴2) ∩ 𝑘𝑖𝐴3)                   (3.26) 
 
Consequently, it can be concluded that Equations (3.25) and (3.26) are not equal and is shown by 
Equation (3.27). 
 

                                ∴ 𝐿𝐻𝑆 ≠ 𝑅𝐻𝑆    ∎                                              (3.27)                                                                           
 

4 CONCLUSION 

This paper reviewed the point set topological approach using operational formulation and provided 
an alternate method to check the correctness of regularized set operations that was difficult to be 
previously formulated. An operational approach of general topology that may be more legible to 

CAD/CAM practitioners has been explained in detail. Some previous ad-hoc results are refined, and 
some new properties are derived.  However, the above-mentioned operators are unable to detect 
non-manifold interim results in applying regularized set operations. Nevertheless, it is envisaged that 
the work presented will provide a solid foundation for future development. For instance, geometric 
modeling may be extended to using spatial reasoning via parallel operators to spatial modal logic. 

Essential topological concepts are described and visualized in easy to understand directed graphs 

with restated results in a more mathematically correct version. Examples to use the prefix unary 
operators are demonstrated in solid modeling properties derivations and proofs as well as engineering 
applications. The results in this paper proved that regularized intersection cannot be formulated in 
terms of regularized union and difference as the non-regularized version. Besides, the results simply 
provided the alternate approach that is easier to check the correctness for future research and 
development in geometric modeling. Besides, the implementation of directly slicing CSG models for 
additive manufacturing with the proofs for the correctness in topology after regularization will be 

explored for the future work.  
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