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Abstract. We investigate genuine multi-sided surface representations that can be converted
into standard tensor product format, such as NURBS. Multi-sided patches offer versatility
in shape design, and permit smooth, watertight connections between adjacent patches us-
ing prescribed cross-derivatives; however, they can seldom be utilized by the majority of
CAD/CAM systems, which handle surfaces only in standard data formats. Tensor product
surfaces, on the other hand, may be too rigid for shape design, and trimmed patches can
only be smoothly connected up to user-defined tolerances. This motivates the search for
schemes that benefit from both representations.

We analyze four multi-sided surface representations that allow precise conversion into
tensor product format, namely S-patches, Warren’s patch, Kato’s patch and a variant of
the Charrot–Gregory patch. We compare these schemes from various aspects; in particular,
we deal with surface equations, singularities, degrees of the converted surfaces, the control
structure built and the computational efficiency of the conversion. Several examples help to
gain deeper insights into the problem.
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1 INTRODUCTION

The majority of aesthetic objects are represented by free-form shapes, and modeling these naturally involves
multi-sided (i.e., non-four-sided) surfaces. The mathematical representation of such patches is still an active
area in CAGD, and although a great variety of approaches have been published, none of the genuine n-sided
formulations have been standardized so far.

On the other hand, commercial CAD/CAM systems and related application programs only accept data in
standard formats, such as tensor product NURBS surfaces. For this reason, a widely applied practice is to
convert multi-sided surfaces into a CAD-compatible representation either by (i) approximating them with larger
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quadrilaterals and trimming away the exterior part beyond the boundaries, or (ii) splitting them into smaller
four-sided patches. Both techniques have their deficiencies. They only approximate the original multi-sided
surface, and in general, trimming cannot ensure even precise C0 continuity between adjacent patches. In the
splitting scheme the subdividing curves in the interior reduce the overall continuity of the surface.

Ideally, we would like to have an n-sided patch that:

i) can be used for design (has intuitive controls),

ii) can be attached to adjacent patches with G1 or higher continuity,

iii) and can also be represented accurately as a tensor product NURBS surface.

The above problem can be resolved, if the multi-sided surfaces can be represented as rational polynomials
of two parametric variables. Then they can be directly converted into NURBS form, without either changing
the surfaces or harming continuity. The result will be a collection of watertight trimmed surfaces.

Some of the well-known multi-sided schemes allow computing a trimmed rational bi-parametric represen-
tation. Our goal in this paper is to review these and discuss the difficulties of the conversion process. We
are going to provide further insights into specific computational and geometric problems that have not been
discussed elsewhere and are useful for analyzing the “pros and cons” of these representations.

The paper is structured as follows. In Section 2, we review four pure multi-sided schemes, and investigate
their conversions to tensor product NURBS. In Section 3, issues of the conversion process are discussed in
details, with emphasis on the quality of the generated control network, and its relation to singularities. Some
more complex test examples and comparisons follow in Section 4, showing actual high-degree examples with
control grids, and a summary of our findings concludes the paper.

2 MULTI-SIDED SURFACES

In the following, we are going to review four multi-sided representations: the S-patch [6], and the surface
schemes of Warren [12], Kato [5], and Charrot & Gregory [1]. Our conversion approach is presented in
Sections 2.1.1–2.1.2 specifically for S-patches, but it will be adapted to other representations in Sections 2.3
and 2.4.

2.1 S-Patch

The S-patch of Loop & DeRose [6] is a generalization of the Bézier triangle, or, more precisely, a Bézier
simplex mapping from (n − 1)D to 3D, where the n coordinates of the domain are supplied by generalized
barycentric coordinates. The depth (d) of an S-patch is the number of de Casteljau steps required to evaluate
a surface point, i.e., something similar to the degree of a Bézier triangle (but not the degree of the S-patch
itself). S-patches have many nice properties, and are known to be convertable into tensor product rational
Bézier surfaces of degree d(n− 2).

An n-sided S-patch is defined over a regular n-gon, parameterized by generalized barycentric coordinates
λ = (λ1, . . . , λn) [4]. Its control points {Ps} are labeled by n non-negative integers s = (s1, . . . , sn), whose
sum is the depth of the surface. Then points on the surface are defined by the equation

S(λ) =
∑
s

Ps ·Bds (λ) =
∑
s

Ps ·
(
d

s

)
·
n∏
i=1

λsii , (1)

where Bds (λ) are Bernstein polynomials with multinomial coefficients, and the sum is computed over all possible
values of s.
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(a) G1 frame (b) Control points by G1 constraints (c) All control points

Figure 1: Creating an S-patch from a G1 frame.

One drawback of this representation is its large number of control points, which renders it inconvenient for
interactive design. For example, a five-sided patch of depth 5 has 126 control points, while a 4-sided quintic
tensor product patch has only 36. A possible workaround is to use a G1 frame (Fig. 1a) for design that defines
the tangent planes at the boundaries. After increasing the depth by 3, these boundary constraints can be
interpolated [7], and the remaining interior control points can be set by some heuristic to generate a smooth
surface [9], see Figures 1b–1c.

The CAD-compatible conversion presented in [6] is a two-step process: first convert the surface into a
four-sided S-patch, and then to a tensor product patch. The first step is based on the composition of Bézier
simplexes [2], which has very high complexity. Even using a more efficient simplex composition algorithm [3],
converting a modest-sized S-patch still requires minutes of computation on today’s machines [10].

2.1.1 Parameterization Using Implicit Line Equations

Here we propose an alternative conversion process. Since a Bézier simplex is polynomial, the only problem is
how to express the generalized barycentric coordinates as a rational polynomial of the (u, v) parameters on
the 2D domain. Using Wachspress coordinates [4], {λi} can be expressed as

λi(u, v) =

n∏
j=1

j /∈{i−1,i}

hj(u, v)

/ n∑
k=1

n∏
j=1

j /∈{k−1,k}

hj(u, v), (2)

where the indexing is cyclic, and hj(u, v) is a distance function from the j-th side of the domain polygon. For
the sake of brevity, we will use the notation

Hk
J (u, v) =

n∏
j=1
j /∈J

hkj (u, v), (3)

where J is an index set to exclude certain terms. Then λi(u, v) = H1
i−1,i(u, v)/

∑n
k=1H

1
k−1,k(u, v).

The distance function should vanish at the base domain edge, and increase monotonically as we get farther
from it. The implicit equation of the line containing the base edge is suitable for this purpose, and is also a
linear polynomial, so the Wachspress coordinates can be expressed as rational polynomials of degree n − 2.
We normalize the distances so they take on the value 1 at the vertices adjacent to the side.

Formally, let

Vi =

(
1

2
+

1

2
cos(2π · i/n),

1

2
+

1

2
sin(2π · i/n)

)
, i = 1 . . . n (4)
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Figure 2: Parameterization.

denote the vertices of the regular n-sided domain inside the [0, 1]× [0, 1] square, see Figure 2a. Since a line L
is defined by the implicit equation L(u, v) = Au+Bv+C = 0, the coefficients can be unambiguously defined
by three equations. We define n lines Li (i = 1 . . . n) by the following constraints:

Li(Vi−1) = Li(Vi) = 0, Li(Vi−2) = Li(Vi+1) = 1. (5)

(Note that because of the symmetry of the regular polygon, the above four equations constrain only three
degrees of freedom.) The distance function is then defined as

hi(u, v) = Li(u, v), (6)

see constant parameter lines in Figure 2b.

2.1.2 Conversion to NURBS

With the above definition of generalized barycentric coordinates, the patch equation (1) becomes a rational
vector polynomial in u and v. Since |s| =

∑n
i=1 si = d, all terms of the sum have the same denominator,(
n∑
k=1

H1
k−1,k(u, v)

)d
, (7)

which is a polynomial of degree d(n − 2). It is easy to see that the rational degree δ of the whole patch is
also the same.

This means that we can represent an n-sided S-patch of depth d by a rational Bézier surface of δ × δ
degrees. In order to determine the positions of the control points, we still need to change from the power
basis to the Bernstein basis.

Assuming that the coefficients of a bi-degree δ polynomial p(u, v) are given in a matrix M such that

p(u, v) =
[

1 u u2 . . . uδ
]
M
[

1 v v2 . . . vδ
]>

, (8)

the Bézier coefficients are computed as N = C>MC, where C = {cij} is the upper triangular matrix with
elements

cij =

(
j

i

)/(
δ

i

)
, i, j = 0 . . . δ, i ≤ j. (9)
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(a) Control points (b) Conversion to NURBS

Figure 3: Warren’s 5-sided patch.

Then the same polynomial is expressed as

p(u, v) =
[
Bδ0(u) Bδ1(u) . . . Bδδ (u)

]
N
[
Bδ0(v) Bδ1(v) . . . Bδδ (v)

]>
. (10)

Control point positions and the corresponding weights are computed as homogeneous coordinates, by calcu-
lating the coefficients for the numerator and denominator of Eq. (1) separately, and assigning the latter as the
extra weight coordinate.

With this method, the Bézier control points of the tensor product representation can be located by straight-
forward computation, which takes only milliseconds.

2.2 Warren’s Patch

Warren [12] created multi-sided patches from Bézier triangles by assigning 0/0 base points to some of the
control points, essentially cutting off corners, and thus creating 5- and 6-sided surfaces; see an example in
Figure 3a. We can characterize Warren’s patch with the number mi of control rows “trimmed” from each
corner. Using the indices s = (s1, s2, s3) introduced in Section 2.1,

Ps = 0/0, when s2 + s3 < m1 or s3 + s1 < m2 or s1 + s2 < m3. (11)

For example, in Figure 3a two control rows are cut from two corners, so m1 = 2, m2 = 2 and m3 = 0.
A simple NURBS conversion is also shown in the paper, using the degenerate transformation

λ1 = (1− u)v, λ2 = uv, λ3 = 1− v. (12)

Applying this to Eq. (1) results in a tensor product surface; its control points can be computed using Eqs. (8–
10). Figure 3b shows an example. Note that the control points outside the patch boundaries are actually base
points and are drawn here only for better comprehension of the control net structure.

A nice property of this patch is that the “remaining” control points define the behavior of the boundary in
the same way as in a normal Bézier triangle, i.e., the first control row defines its position as a Bézier curve,
the second its first derivatives etc.

It is important to see that not all degree configurations are available. The example in Figure 3, for example,
has boundary curves with the following degrees, starting from the bottom side: [4, 2, 6, 6, 2]. In the common
case when all boundaries have the same degree, a 6-sided patch is easily created from a triangle of degree
3d, but due to its asymmetric construction, a 5-sided patch always has edge curves of different degrees. A
3d-degree triangle suffices here, as well, but some of the boundaries need to be degree elevated. For example,
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a 5-sided quintic patch can be generated from a 15-degree Bézier triangle by cutting 5 control rows from
two corners, resulting in boundaries of degrees [5, 5, 10, 10, 5], so two boundary curves need to be elevated to
degree 10.

In addition, using control points with zero weight is not a standard practice, and is not supported by many
systems. Meshing also presents a problem, as a uniform grid on the domain would result in distorted triangles,
since the “trimmed” boundaries correspond to corners of the domain triangle.

2.3 Kato’s Patch

Kato [5] proposed a surface defined as the transfinite interpolation of boundary curves with cross-derivatives:

SKato(u, v) =

n∑
i=1

Ri(si(u, v), hi(u, v))Γei (u, v), (13)

where Γei (u, v) is a singular blending function (see below), and Ri(si, hi) is a quadrilateral ribbon smoothly
interpolating the i-th side. The cross-degree of the ribbon (and thus the number of cross-derivative constraints)
is denoted by e.

Aside from the distance parameter hi, defined as in Section 2.1.1, this representation also uses a side
parameter si that takes on values from 0 to 1 as it sweeps from one adjacent side to the other, see Figure 2c.
One such function is

si(u, v) =
Li−1(u, v)

Li−1(u, v) + Li+1(u, v)
, (14)

which gives a rational polynomial parameterization.
The blending function is given as

Γei (u, v) = He+1
i (u, v)

/ n∑
k=1

He+1
k (u, v), (15)

with He+1
i (u, v) defined as in Eq. (3). Note that the denominator vanishes for the corner points of the domain

polygon, but the surface is well-defined there.
When the ribbons are given as Bézier surfaces of the form

Ri(si, hi) =

d∑
j=0

e∑
k=0

P ij,kB
d
j (si)B

e
k(hi), (16)

with P ij,k denoting the control points, the whole patch becomes a rational polynomial, and can be converted
to a tensor product Bézier patch with rational degree nd+ (n− 1)(e+ 1) + e, see Appendix A for the details.
In particular, using a G1 frame (e = 1), the degree will be nd+ 2n− 1.

2.4 Charrot–Gregory Patch

The Charrot–Gregory patch [1] combines corner interpolants, but it can also be formulated equivalently using
ribbon surfaces [11]. Let Ii−1,i(si−1, si) denote the corner interpolant based on sides i−1 and i, parameterized
by the corresponding side parameters. (Note that on a regular domain the si parameters defined above will
be the same as the radial parameterization in the original paper.)

The corner interpolant can be written as

Ii−1,i(si−1, si) = Ri−1(si−1, si) +Ri(si, 1− si−1)−Qi−1,i(si−1, si), (17)
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(a) Control points (b) Contours (c) Mean curvature (d) Zebra map

Figure 4: Trebol model.

where Ri−1 and Ri are linear ribbons (Eq. (16) with e = 1), and Qi−1,i is a correction patch defined by

Qi−1,i(si−1, si) = P i00+sid(P i10−P i00)+(1−si−1)d(P i01−P i00)+si(1−si−1)d2(P i11−P i10−P i01+P i00). (18)

Finally, the Charrot–Gregory surface itself is formulated as

SCG(u, v) =

n∑
i=1

Ii−1,i(si−1(u, v), si(u, v))Γi−1,i(u, v), (19)

where Γi−1,i(u, v) is the blending function

Γi−1,i(u, v) = H2
i−1,i(u, v)

/ n∑
k=1

H2
k−1,k(u, v). (20)

Conversion is done the same way as in Section 2.1.2; the converted patch is of degree nd+ 2(n− 2), see
details in Appendix A. Note that the degree is relatively high because of the rational parameterization. For
triangular surfaces, we can use distance parameters instead, thereby reducing the overall degree to d+ 3, see
Appendix B. Figure 4 shows an example with one 6-sided and three 3-sided surfaces.

3 DISCUSSION

One aspect of the tensor product conversion we have not touched on before is the quality of the control net.
Aside from Warren’s patch, which has singular control points, all the other representations have singularities
in or outside their domains. When a singular point is close to the domain of the tensor product patch (i.e.,
the unit square), the control points in the vicinity show erratic behavior.

S-patches are singular on the circle that goes through the intersections of the lines containing the domain
edges, as the denominator of Wachspress coordinates becomes zero on the adjoint curve of the domain, see
details in [4]. The Charrot–Gregory patch is singular at lines parallel to the edges, touching the adjoint circle
at the intersection points, since the denominator of si vanishes. Kato’s patch also has these singularities, while
it is also singular at the corners of the domain, where the denominator of the blending function vanishes.

Figure 5 illustrates this for 5-sided and 8-sided domains. Here the blue rectangle represents the domain of
the tensor product surface; the dashed circle shows the singularities of S-patches, while the red lines are the
singularities of Charrot–Gregory and Kato patches. The effect of these singularities depend on their proximity
to the unit square – consequently quite disastrous for the 8-sided case, see Figure 6a.
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(a) 5-sided domain (b) 8-sided domain

Figure 5: Singularities around the domain.

We can summarize the effect of singularities on the different surface representations as follows. The
triangular S-patch, which is not rational, has a stable control structure, while for n = 5 and n = 6 some
control points may lie far from the multi-sided surface. For n ≥ 7 the converted tensor product surfaces are
likely to have badly oscillating control points (possibly tending to infinity), which may lead to numerical issues.
The situation is better for the Charrot–Gregory patch, where reliable control nets can be generated for n ≤ 6.
The control grid of Kato’s patch, and the above surfaces with more than 6 sides, can hardly be used when
converted to NURBS form.

We present a solution to this problem. Normally the multi-sided domain is inside the unit square, so that
the trimming curves will be inside the surface, but if we lift this constraint, we can create a larger multi-sided
domain, thereby separating the unit square from the singularities. This means that the actual “trimmed” region
will be outside the standard [0, 1] × [0, 1] domain; this may not be supported by some applications, but the
control structure will be close to the surface. An example with an 8-sided patch is presented in Figure 6b; the
green rectangle in Figure 5b shows the unit square relative to the enlarged domain.

Rotating the domain, instead of scaling it, may also have a beneficial effect on the control grid. However,
in our experience, rotation of the domain in itself is not sufficient to deal with 7- or 8-sided surfaces. Figure 7
shows several rotations of a 5-sided domain. We can define the optimal rotation as one that minimizes the
functional

E =

δ∑
i=0

δ−1∑
j=1

∥∥∥∥Qi,j−1 +Qi,j+1

2
−Qi,j

∥∥∥∥2 +

δ−1∑
i=1

δ∑
j=0

∥∥∥∥Qi−1,j +Qi+1,j

2
−Qi,j

∥∥∥∥2 , (21)

where Qi,j are the control points of the bi-degree δ tensor product surface, essentially selecting the smoothest
control structure.

Table 1 summarizes the degrees of all four representations. It can be seen that these patches have
relatively high degrees, in particular when the number of sides and the degree of the boundaries are raised.
While Warren’s patch outperforms the others in this respect, the use of base points limits its usability in CAD
systems. Kato’s surface always has singularities, and its degree is fairly high, but it is the only construction
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(a) Control net (default domain) (b) Control net (enlarged domain) (c) Isophote lines

Figure 6: An 8-sided Charrot–Gregory patch.

(a) φ = 0◦ (b) φ = 20◦ (c) φ = 40◦

(d) φ = 60◦ (e) φ ≈ 75◦ (optimal) (f) φ = 80◦

Figure 7: The effect of rotating a 5-sided domain.

where G2 continuity can be easily achieved. We found that while the Charrot–Gregory patch has a slightly
higher degree than the S-patch, it has much lower computational cost in its multi-sided form, and have no
control net quality problems for the most frequent 5- and 6-sided configurations.

4 TEST CASES

In this section we will show the rational Bézier conversion of more complex objects. Since the tensor product
surface is exactly the same as the multi-sided original, there is little point in investigating the quality of the
patches; we are going to concentrate on the control net quality instead. The domain-scaling method outlined
above always generates nice control structures, so a comparison using the default domain is more informative.
(We will show only S-patches and Charrot–Gregory patches, because the other two surfaces always have
singularities.)
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n S-patch [6] Warren [12] Kato [5] Charrot–Gregory [1]

3 d[+3] (both Bézier triangles) 3d+ 5 d+ 3

5 3d[+9] ≈ 3d 5d+ 9 5d+ 6

6 4d[+12] 3d 6d+ 11 6d+ 8

7+ (n− 2)(d[+3]) N/A nd+ 2n− 1 nd+ 2n− 4

Table 1: Rational polynomial degrees of the converted surfaces for different number of sides, assuming
boundary curves of degree d. Gray cells indicate that the surface is susceptible to the singularity issue. For
S-patches, the number in brackets is applied when the surface is generated by a degree-d G1 frame.

All images in this section were created by a commercially available CAD system, Rhinoceros 3D [8]; the
colors show mean curvature distribution, patch boundaries and isocurves are drawn with black lines.

(a) n = 3, δ = 8 (b) n = 5, δ = 24 (c) n = 6, δ = 32

(d) n = 3, δ = 8 (e) n = 5, δ = 31 (f) n = 6, δ = 38

Figure 8: Control networks of S-patches (top) and Charrot–Gregory surfaces (bottom).

The model in Figure 8, defined by quintic G1 frames, has three 3-sided, two 4-sided, one 5-sided and one
6-sided surface. The triangular S-patch shown in Fig. 8a has a more regular control net than its counterpart in
Fig. 8d, but the 5-sided patch in Fig. 8b shows some outliers compared to Fig. 8e, and the 6-sided S-patch in

Computer-Aided Design & Applications, 18(1), 2021, 156–169
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


166

Fig. 8c has some control points close to infinity, causing numerical evaluation errors in the bottom-left corner,
while the control net in Fig. 8f, deviating to some extent, is still managable.

(a) n = 3, δ = 6 (b) n = 5, δ = 18 (c) n = 6, δ = 24

(d) n = 3, d = 6 (e) n = 5, δ = 21 (f) n = 6, δ = 26

Figure 9: “Pocket” model (top: S-patches, bottom: Charrot–Gregory patches).

We find similar results in the “Pocket” model (Figure 9), where the surfaces were defined by cubic G1

frames, and are of a lower degree. In this case the irregularities in the control net of the 6-sided S-patch did
not lead to any evaluation problems.

Finally, in Figure 10, a dolphin model is shown, defined by quintic G1 frames. The two 6-sided S-patches
are not evaluated correctly here due to the erratic control points. One of the Charrot–Gregory patches also
stretches far near the corners, but is still within the limits of exact evaluation.

5 CONCLUSIONS

We have described and analyzed four genuine multi-sided surface representations that can be converted into
standard, tensor product (rational Bézier) form. The conversion generally leads to high-degree patches, and
the control points of the resulting surfaces may oscillate, due to singularities, to an extent that prevents
practical usability in industrial CAD/CAM systems.

We have investigated the occurrence of singularities for these schemes, and introduced a technique to
avoid nonsense control structures. Using the proposed exact conversion procedures one can build watertight
and smoothly connected models with trimmed surface patches.

All four schemes presented in this paper have their deficiencies; however, our practical experience would
assign some advantage to Charrot–Gregory patches. We are going to continue searching for other patch
representations that possess both multi-sided shape control and low-degree tensor product form.
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(a) n = 6, δ = 32 (b) n = 6, δ = 32

(c) n = 6, δ = 38 (d) n = 6, δ = 38

Figure 10: Dolphin model (top: S-patches, bottom: Charrot–Gregory patches).
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A CONVERSION EQUATIONS

The following appendices show the patch equations with the numerator and denominator separated, so the
tensor product conversion can be done according to Eqs. (8–10).
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Kato’s Patch

The blending functions have the same denominators, but the side parameters do not. Introducing the notation
Li = Li−1 + Li+1, and omitting the parameters for brevity, the patch equation becomes

SKato =
1∑n

i=1H
e+1
i

·
n∑
i=1

d∑
j=0

e∑
k=0

P ij,k ·
(
d

j

)
Lji−1

L j
i

Ld−ji+1

L d−j
i

·
(
e

k

)
Lki (1− Li)e−k ·He+1

i . (22)

Dividing and multiplying the equation with
∏n
i=1 L d

i , we arrive at the form

SKato =
1∑n

i=1H
e+1
i

· 1∏n
i=1 L d

i

·
n∑
i=1

d∑
j=0

e∑
k=0

P ij,k·(d
j

)
· Lji−1L

d−j
i+1

n∏
r=1
r 6=i

L d
r

 · (e
k

)
Lki (1− Li)e−k ·He+1

i .

(23)

Charrot–Gregory Patch

Similarly to Kato’s patch, straightforward calculation leads to the form

SCG =
1∑n

i=1H
2
i−1,i

· 1∏n
i=1 L d

i

·
n∑
i=1

[
R̂i−1 + R̂i − Q̂i−1,i

]
·H2

i−1,i ·
n∏
r=1

r 6=i−1,i

L d
r , (24)

where

R̂i−1 =

d∑
j=0

[
P i−1j0 Li + Li−1d(P i−1j1 − P i−1j0 )

]
·
(
d

j

)
Lji−2L

d−j
i L d−1

i , (25)

R̂i =

d∑
j=0

[
P ij0Li−1 + Lid(P ij1 − P ij0)

]
·
(
d

j

)
Lji−1L

d−j
i+1L d−1

i−1 , (26)

Q̂i−1,i =
[
P i00Li−1Li + Li−1d(P i10 − P i00)Li−1 + Lid(P i01 − P i00)Li+

Li−1Lid
2(P i11 − P i10 − P i01 + P i00)

]
·L d−1

i−1 L d−1
i .

(27)

B TRIANGULAR CHARROT–GREGORY PATCH

Substituting hi−1 and hi for si and 1− si−1, respectively, the patch equation becomes

SCG4 =
1∑3

i=1H
2
i−1,i

·
3∑
i=1

[Ri−1(1− hi, hi−1) +Ri(hi−1, hi)−Qi−1,i(1− hi, hi−1)] ·H2
i−1,i, (28)

which is directly convertable to tensor product form. While this is of a much lower degree than the original
parameterization, it cannot be used for n > 3, because then hi may take on values larger than 1, and thus
the ribbons would be evaluated outside the [0, 1] interval, which can damage surface quality.
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