
66

Interpolating Splines of Biarcs from a Sequence of Planar Points
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Abstract. An algorithm for the numerical computation of a spline of biarcs that interpolates
a given set of ordered planar points is presented. Biarcs are G1 curves composed of two arcs
of circle that may degenerate to line segments. The tangents at each point are free variables,
which are optimised to minimise three different targets, namely: the total length of the spline,
the integral of the absolute value of the curvature, the integral of the square of the curvature.
Indeed other targets are possible. Conditions for the existence of the spline are given in terms
of admissible point sequences and numerical experiments validate the proposed method.
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1 INTRODUCTION

This work extends our previous study on biarc interpolation [7], where we discussed a new approach to the
fitting problem in 2D, changing the point of view from purely geometrical to completely analytical, hence
avoiding the need of distinguishing among C-shaped, S-shaped or J-shaped biarcs. These classic geometric
methods, although being intuitive, do not blend smoothly among the three mentioned cases, in particular for
small values of the curvature.

In our work, we showed how all possible cases can be handled in one shot with the analytic approach,
which relies on a smooth formulation of the problem. The introduction of the sinc function, allowed us to
write a numerically stable equation that considers a biarc which includes degenerated arcs, i.e. line segments.
Another benefit of our solution is that the problem is solved in closed form. The crucial point is to avoid the
division by the curvature that appears if one writes down the equation of a circle, a denominator that has to
go to zero when the circle blends to a line. In the classic methods, this blending is not considered because
each case is tackled with an exclusive condition on the curvature (exactly equal to zero, or different from
zero). Clearly, in practical applications, when data come from experiments or sensors, it is rare to have perfect
lines (i.e. curvatures that are exactly zero), indeed very small values can appear producing almost vanishing
denominators and thus numerical instabilities.
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Paper contribution. Aim of the present work is to extend our smooth algorithm in the computation of
a spline of biarcs that interpolates a set of given ordered planar points, without information on the angles.
Indeed, if the angles are specified, the spline is easily determined by a serial application of the algorithm
in [7], because the problem is completely determined. When only the points are given and the angles are free,
there are enough degrees of freedom to construct a nonlinear optimisation problem (NLP) that minimises a
functional (e.g. length, curvature) and outputs a G1 spline of biarcs.

There is a standalone version of the algorithm available at Matlab Central and a C++ version, with Matlab
interface [3], via mex files1.

Related work. Biarcs were originally studied by Bèzier [10], Bolton [11] and Sabin [30], in an industrial rather
than academic setting. They appeared later also in textbooks, e.g. [21]. The Authors in [32] remark that biarcs
are a simple but powerful class of curves that offers many interesting features, among them we recall that the
arc-length can be evaluated in closed form, hence they are well suited for (real-time) numerical algorithms, e.g.
numerically controlled machining CNC. Their offsets have also closed form parametrisations, the computation
of the distance of a point from the curve is straightforward. Despite the simple geometric properties, they
can be effectively used as primitives for approximations with a reasonably high level of quality. The tangent
vector field is continuous and defined everywhere, the curvature is defined almost everywhere and is piecewise
constant. Biarcs are employed successfully in various applications, for instance, in the approximation of higher
degree curves [28, 19, 13] or spirals [20], they easily produce curves particularly used in CNC machining and
milling, where the cutting devices follow the so-called G-code, i.e. a path composed of straight lines and circles.
Other applications of biarcs are in Computer Aided Design or Manufacturing (CAD-CAM), where they are
used to specify the path [33] or the offset of a more general curve [16], or approximating NURBS [27, 29] and
data [26, 28, 34, 17]. These papers are mainly focused on a low degree approximation of a curve with biarcs
within a specified tolerance. The idea is that there is complete knowledge of the curve to be approximated,
such as tangents and lengths, the object of study is the sampling phase to produce a spline that is close to the
curve within the tolerance. A different problem is considered in [19], where a point sequence is approximated
(within a user tolerance) with the minimum number of arc segments. This approach is interesting also because
it handles obstacles along the path.

We propose an algorithm that interpolates the original point sequence minimising a functional, thus the
degrees of freedom relative to the angles are used as variables for the optimisation step.

2 BIARC FORMULATION

Before discussing the biarc spline, we briefly revise the construction of a biarc that connects two points in the
plane with assigned initial and final angles with a pair of (possibly degenerate) circle arcs, see Figure 1. Let
p0 = (x0, y0)T and p1 = (x1, y1)T be two points in the plane R2, ϑ0 and ϑ1 be the associated angles, then
the biarc problem requires to find the solution of the following Boundary Value Problem (BVP), which is the
solution of the following G1 Hermite interpolation problem [7, 6, 4]:

x′(`) = cos θ(`), x(0) = x0, x(L) = x1,

y′(`) = sin θ(`), y(0) = y0, y(L) = y1,

θ′(`) = k(`), θ(0) = ϑ0, θ(L) = ϑ1,

(1)

1https://it.mathworks.com/matlabcentral/fileexchange/69782-biarc,
https://github.com/ebertolazzi/Clothoids
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Figure 1: Standard scheme of a biarc interpolation, p0 = (x0, y0)T and p1 = (x1, y1)T are the initial and
final points, ϑ0 and ϑ1 the associated angles. The centres of the circles of the two arcs are c0 and c1.

where the curvilinear abscissa ` is in the range [0, L] and the curvature must be piecewise constant:

k(`) =

{
κ0 0 ≤ ` < `?,

κ1 `? ≤ ` ≤ L.
(2)

To solve BVP (1) with (2), it is required to find the junction angle ϑ(`?) to obtain a smooth and unique
solution (see [7], other choices can be found in [23]). The next lemma sets the conditions for existence and
uniqueness of the solution for a biarc interpolation problem, which is useful in the discussion that follows for
the spline of biarcs.

Lemma 1 (Biarc existence/uniqueness) The solution of the BVP (1) with a piecewise constant curvature
of the form (2) exists and is unique provided that

1. There exists ω that solves the problem

p1 − p0 = ‖p1 − p0‖

(
cosω

sinω

)
, |ϑ0 − ω| ≤ π, |ϑ1 − ω| ≤ π.

2. The junction angle ϑ(`?) satisfies ϑ(`?) = 2ω − (ϑ0 + ϑ1)/2,

3. The angles ϑ1 and ϑ0 satisfy |ϑ1 − ϑ0| < 2π.

Proof. See Lemma 2 of reference [7] for points 1, 2 and 3. �

The next lemma shows that the solution to a biarc interpolation has a smooth dependence on the parameters
p0, p1, ϑ0 and ϑ1 of the problem.

Lemma 2 (Biarc smoothness w.r.t. parameters) The solution presented in the above Lemma 1 has smooth
dependence on the parameters p0, p1, ϑ0 and ϑ1 provided that

|ϑ0 − ω| ≤ π − ε, |ϑ1 − ω| ≤ π − ε, |ϑ1 − ϑ0| ≤ 2π − ε, ‖p1 − p0‖ ≥ ε, (3)

for an ε > 0. The unique solution can be explicitly written as

κ0 = κ(ϑ0, ϑ1, ω, d), κ1 = −κ(ϑ1, ϑ0, ω, d), `0 = `(ϑ0, ϑ1, ω, d), `1 = `(ϑ1, ϑ0, ω, d),
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pi−1 pi pi+1 pi−1 pipi+1

Figure 2: Regular (left) and non regular (right) aligned points.

where ω = ω(p0,p1) and d = ‖p1 − p0‖,

ω = ω(p0,p1) = atan2(y1 − y0, x1 − x0),

κ(ϑ0, ϑ1, ω, d) =
2

d

(
sin(ω − ϑ0) + sin

(
ω − ϑ0 + ϑ1

2

))
,

`(ϑ0, ϑ1, ω, d) =
d

2

(
cos

(
ϑ1 − ϑ0

4

)
sinc

(
ω − 3ϑ0 + ϑ1

4

))−1
,

and the function sinc z is defined as

sinc z :=
sin z

z
= 1 +

∞∑
n=1

(−1)n
x2n

(2n+ 1)!
.

Proof. From Corollary 1 of reference [7], the definition of κ and ` is deduced. Lemma 2 of reference [7] gives
the required existence and uniqueness of the solution. The ε in (3) is required to be away from the singular
points of the smooth function κ and `. �

Remark 1 The function atan2(y, x) is the angle ω (argument) in the range (−π, π] of the complex number
x+ i y that satisfies (see the Arg function section 2.1 [1]){

x = d cosω,

y = d sinω,
d =

∥∥∥∥∥
(
x

y

)∥∥∥∥∥ .
3 SPLINE OF BIARCS

This section is devoted to the study of a spline of biarcs, that is, a sequence of those curves that interpolate
given ordered points in the plane. To construct such a sequence of biarcs it is enough to determine the angle
associated with each point. However, to ensure the existence of a spline through a set of assigned points, a
regularity condition must be enforced.

Definition 1 (Regular points) A sequence of points {pi}Ni=0 is regular if ‖pi−1 − pi‖ > 0 for i = 1, 2, . . . N
and the angle of three consecutive points is not ±π, i.e.,

(pi+1 − pi) · (pi−1 − pi) + ‖pi+1 − pi‖ ‖pi−1 − pi‖ > 0, i = 1, 2, . . . N − 1. (4)

This definition implies that if three consecutive points pi−1, pi and pi+1 are aligned, then the point pi is
between pi−1 and pi+1 (see Figure 2). The regularity condition of definition 1 does not exclude aligned points
if they lie ordered (in the sense of the regularity condition 1) on the common line, see Figure 2.
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Definition 2 (Spline of biarcs) Let {pi}Ni=0 be a sequence of regular planar points. A spline of biarcs is a
sequence of biarcs that interpolate these points with C1 continuity.

The next theorem shows the existence of a spline of biarcs that interpolates a sequence of assigned regular
points. The available degrees of freedom ensure also that the set that contains the solution is not empty and
has more than a single element, that is, there is the opportunity to optimise the degrees of freedom in order to
obtain a spline that minimises a functional, we propose in what follows some classic target functions. Before
stating the theorem, it is necessary to present a technical proposition, required for its proof.

Proposition 1 Let (x0, y0) and (x1, y1) be two points in the plane, then

atan2(y1, x1)− atan2(y0, x0) = atan2(y1x0 − y0x1, x0x1 + y0y1) + 2πk (5)

where k = 0 if atan2(y1, x1)− atan2(y0, x0) ∈ (−π, π] otherwise k = ±1.

Proof. The first consideration is that Arg(x + iy) = atan2(y, x), where Arg is the principal value of the
argument for complex numbers. Then, considering the two points as two complex numbers, z0 = x0 + iy0,
z1 = x1 + iy1, it is a classic result in complex analysis (see [1]) that the principal value of the argument of
the quotient of two complex numbers is equal to the difference of the two arguments:

Arg

(
z1
z0

)
= Arg(z1)−Arg(z0) mod (−π, π].

The ratio at the left hand side can be simplified with standard computations as

z1
z0

=
x0x1 + y0y1
x20 + y20

+ i
y1x0 − y0x1
x20 + y20

,

where the denominator is a conformal scaling factor that can be neglected as it does not change the angles.
Recasting the result in the correct interval yields the proof. �

Theorem 1 (Biarc spline existence) Let {pi}Ni=0 be a sequence of regular points, let pi and pi+1 be two
consecutive points. Then, there exists an integer ki, that defines the angle ωi+1/2 of the segment that joins
pi with pi+1, as:

ωi+1/2 := 2kiπ + atan2 (yi+1 − yi, xi+1 − xi) . (6)

These angles satisfy the condition
∣∣ωi−1/2 − ωi+1/2

∣∣ < π. The choice of any sequence of angles ϑi ∈
[ϑi,min, ϑi,max] defines a unique spline of biarcs, where the non empty intervals [ϑi,min, ϑi,max], for i =
1, 2, . . . , N − 1, are defined as

ϑi,min :=


ω1/2 − π i = 0,

ωN−1/2 − π i = N,

max
(
ωi−1/2, ωi+1/2

)
− π otherwise,

ϑi,max :=


ω1/2 + π i = 0,

ωN−1/2 + π i = N,

min
(
ωi−1/2, ωi+1/2

)
+ π otherwise.

Proof. Consider the identity (5) and let α be the angle between the vectors (x0, y0)T and (x1, y1)T . Then,
with standard properties of the scalar and vector product in 2D:

x0x1 + y0y1 = `0`1 cosα, x0y1 − y0x1 = `0`1 sinα, `0 =
√
x20 + y20 , `1 =

√
x21 + y21 .
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The angle α satisfies

α = atan2(sinα, cosα) = atan2(`0`1 sinα, `0`1 cosα) = atan2(x0y1 − y0x1, x0x1 + y0y1)

= atan2(y1, x1)− atan2(y0, x0) + 2kπ.
(7)

Condition (4) implies that |α| < π, and relation (7) for the difference ωi−1/2 − ωi+1/2 gives that ωi−1/2 −
ωi+1/2 = β+ 2nπ with |β| < π. Starting with ω1/2 = atan2 (y1 − y0, x1 − x0), the integers ki are computed
recursively. The condition

∣∣ωi−1/2 − ωi+1/2

∣∣ < π implies that ϑi,min < ϑi,max, thus the intervals are not
empty. �

The next lemma presents explicit formulas for the evaluation of points and angles on a spline of biarcs.

Lemma 3 (Biarc spline evaluation) The pointwise evaluation along a biarc spline, inside the segment [si−1, si],
can be written as

x(s) =

{
xi−1 + f(s− si−1, ϑL, κL) s ≤ s?,
xi + f(si − s, ϑR, κR) s ≥ s?,

f(s, ϑ, κ) = s sinc
(κs

2

)
cos
(
ϑ+

κs

2

)

y(s) =

{
yi−1 + g(s− si−1, ϑL, κL) s ≤ s?,
yi + g(si − s, ϑR, κR) s ≥ s?,

g(s, ϑ, κ) = s sinc
(κs

2

)
sin
(
ϑ+

κs

2

)

θ(s) =

{
ϑL + (s− si−1)κL s ≤ s?,
ϑR + (si − s)κR s ≥ s?,

where

ϑL = ϑi−1, ϑR = ϑi, κL = κ(ϑL, ϑR, ωi−1/2, di−1/2), κR = −κ(ϑR, ϑL, ωi−1/2, di−1/2),

with ωi−1/2 defined in (6) and di−1/2 = ‖pi−1 − pi‖. Moreover, s is the arc length in the range [si−1, si]
and the curvilinear abscissa of the junction point is s? = si−1 + `(ϑL, ϑR, ωi−1/2, di−1/2).

Proof. The proof is a direct application of the results presented in [7]. �

4 INTERPOLATION PROBLEMS

Theorem 1, for a regular set of points, defines a family of interpolating biarc splines. Since any choice of the
angles associated with the points yields a biarc spline, there are degrees of freedom available to optimise a
functional and thus to determine a unique spline. Keeping the interpolation points fixed, a target function T
depends only on the chosen angles, i.e. it is possible to write T (ϑ0, ϑ1, . . . , ϑN ). The spline is selected by
minimisation of the target. The problem can be stated as a constrained minimisation:

Minimize T (ϑ0, ϑ1, . . . , ϑN )

Subject to ϑi,min ≤ ϑi ≤ ϑi,max.
(8)

Notice that the interpolation conditions on the points are not explicitly necessary because, by construction,
all the possible biarc splines pass trough the interpolation points.
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Figure 3: The standard setting for the construction of the guess (green arrow - right) starting from the
piecewise linear spline (left). In blue the admissible angle intervals, in red the forbidden angle ranges.

Remark 2 Theorem 1 ensures that the intervals [ϑi,min, ϑi,max] are not empty and that the target is defined
for any sequence of angles ϑi belonging to the associated interval. This is a Slater condition, that is, the set
defined by the constraints is not empty and the target is coercive (bounded from below), which implies that
the minimum optimal solution exists.

Consider the biarc joining pi−1 and pi with initial and final angles ϑi−1, ϑi, with di−1/2 = ‖pi − pi−1‖
and ωi−1/2 the angle of the line segment joining pi−1 and pi with respect to the x-axis. For this biarc,
the contribution is denoted (with a slight abuse of notation) by T (ϑi−1, ϑi, ωi−1/2, di−1/2) and the target
becomes:

T (ϑ0, ϑ1, . . . , ϑN ) =

N∑
i=1

T (ϑi−1, ϑi, ωi−1/2, di−1/2).

A good property shared by a target function is the invariance with respect to isometries, that is a composition
of rotations and translations. Thus, we propose only targets that satisfy

T (ϑL, ϑR, ω, d) = T (ϑL + α, ϑR + α, ω + α, d)

for any angle α. In the applications, there are special targets of interest. Among the most used in the field of
(polynomial) splines, we mention the shortest length and the least curvature.
For computational reasons, it is convenient to write the target relative to a single biarc as the sum of the
contributions of the two curves that build the biarc. Some classic target functions discussed next are:

P1. Minimum total length of the spline [22, 5] (target T ≡ T1), which can be expressed over each biarc as

T1(ϑL, ϑR, ω, d) = `(ϑL, ϑR, ω, d) + `(ϑR, ϑL, ω, d).
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P2. Minimum of the (absolute) curvature integral [22] (target T ≡ T2), which yields

T2(ϑL, ϑR, ω, d) =

∫ s?

si−1

|κ(s)| ds+

∫ si

s?
|κ(s)| ds =

∣∣∣∣∣
∫ s?

si−1

κ(s) ds

∣∣∣∣∣+

∣∣∣∣∫ si

s?
κ(s) ds

∣∣∣∣
= |`(ϑL, ϑR, ω, d)κ(ϑL, ϑR, ω, d)|+ |`(ϑR, ϑL, ω, d)κ(ϑR, ϑL, ω, d)| .

(9)

Target (9) can be simplified using the identity

2κ(ϑL, ϑR, ω, d)`(ϑL, ϑR;ω, d) = 4ω − 3ϑL − ϑR, (10)

hence, the contribution in (9) becomes

T2(ϑL, ϑR, ω, d) =
1

2
|4ω − 3ϑL − ϑR|+

1

2
|4ω − 3ϑR − ϑL| .

P3. Minimum energy [12, 15, 24, 25, 5] (integral of the curvature squared, target T ≡ T3), which can be
expressed over each biarc as

T3(ϑL, ϑR, ω, d) =

∫ s?

si−1

κ(s)2 ds+

∫ si

s?
κ(s)2 ds

= `(ϑL, ϑR, ω, d)κ(ϑL, ϑR, ω, d)2 + `(ϑR, ϑL, ω, d)κ(ϑR, ϑL, ω, d)2.

(11)

Target (11) can be simplified using the identity (10), hence, the contribution in (11) becomes

T3(ϑL, ϑR, ω, d) =
1

2
(4ω − 3ϑL − ϑR)κ(ϑL, ϑR, ω, d) +

1

2
(4ω − 3ϑR − ϑL)κ(ϑR, ϑL, ω, d).

For target P2, a typical problem of handling the absolute value is the lack of differentiability: to overcome
this problem, we implemented a regularised approximation of the modulus function, which is discussed later.
The smooth approximation of the modulus, combined with Lemmas 1 and 2, guarantees the smoothness of
problem (8) and its efficient solution with methods that require gradients and hessians of the target function.
The selection of one specific target is application dependent, we give some examples: for the generation of a
path to be followed by a wheeled (nonholonomic) vehicle, a popular choice is the shortest path, that connects
an initial with a final point, thus target P1 is suitable. In this case, a spline of biarcs can be an alternative to
the Markov-Dubins curves [9, 14], which also combine line segments and circle arcs. This can be effective for
re-planning a short deviation (obstacle avoidance) from a nominal trajectory for high performance vehicles [2],
but in other cases, where comfort of the passengers is important, target P2 or P3 may be preferred. As
another application, we used target P2 to reconstruct the borders of a road, after a smoothing of the raw
sensor data acquired by the car [8], where a very high accuracy is not so important compared to the speed of
the computation.

We now discuss a feasible initial guess for the nonlinear programming (8) (NLP). Theorem 1 readily
gives intervals where to select the optimal solution. Thus, we define the starting point of the solver as the
intermediate angle (see green arrows in Figure 3 (right) inside the blue angle ranges) according to the formula:

θ0 = ω1/2, θN = ωN−1/2, θi =

(
ωi−1/2
di−1/2

+
ωi+1/2

di+1/2

)/(
1

di−1/2
+

1

di+1/2

)
, i = 1, . . . , N − 1. (12)
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The above formula weights the initial angles with the length of the line segment that connect consecutive
points. Numerical evidence shows that this choice works in all the tested cases. Equation (12) is used to
initialize the starting point for the NLP (8).

4.1 Derivative of Target P1

The numerical solver performance can be improved by providing the explicit expressions of the gradient and
Hessian of the target function. In this section we present these formulas in a form suitable for implementation.
The next quantities are given in terms of the angles and of the sinc function and its derivatives.

t1 =
ϑL − ϑR

4
, t2 = ω − 3ϑR + ϑL

4
, t3 = ω − 3ϑL + ϑR

4
, SL = sinc(t2), SR = sinc(t3),

t4 = − sinc′(t2)

SL
, t5 =

sinc′(t3)

SR
, t6 =

sinc′′(t2)

SL
, t7 =

sinc′′(t3)

SR
, t8 = tan(t1), t9 = cos(t1),

t10 =
t8
SR

+
t8
SL

, t11 = t10(2t8 + 1/t8), t12 =
t5(6t5 − 2t8)− 3t7

SR
, t13 =

t4(6t4 − 2t8)− 3t6
SL

.

The above auxiliary expressions allow us to write the target of problem P1 as

T1(ϑL, ϑR;ω) =
d

2t9

(
1

SL
+

1

SR

)
,

the gradient and the Hessian can be built with the following partial derivatives:

∂

∂ϑL
T1(ϑL, ϑR;ω) =

d

8t9

(
t10 +

3t5
SR
− t4
SL

)
∂

∂ϑR
T1(ϑL, ϑR;ω) =

d

8t9

(
t5
SR
− 3t4
SL
− t10

)
∂2

∂ϑL
2T1(ϑL, ϑR;ω) =

d

32t9

(
t11 + 3t12 +

2t4(t4 − t8)− t6
SL

)
∂2

∂ϑR
2T1(ϑL, ϑR;ω) =

d

32t9

(
t11 + 3t13 +

2t5(t5 − t8)− t7
SR

)
∂2

∂ϑL∂ϑR
T1(ϑL, ϑR;ω) =

d

32t9
(t12 + t13 − t11)
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4.2 Smoothing and Derivatives of Target P2

For target P2, the absolute value is not differentiable, thus we need to use a smoothed approximation of this
function. In [31], there are versions of a smoothed absolute value function, namely:

φ1(x; ε) = ε
(

log
(

1 + e−x/ε
)

+ log
(

1 + ex/ε
))

= 2ε log
(

1 + e−|x|/ε
)

+ |x|

φ2(x; ε) =

{
|x| |x| ≥ ε/2
x2

ε + ε
4 otherwise

φ3(x; ε) =
√

4ε2 + x2

φ4(x; ε) =

{
|x| − ε

2 |x| ≥ ε
x2

2ε otherwise.

(13)

Let φ(x; ε) = φk(x; ε) be one of the above regularised functions, then, target P2 becomes:

∫ L

0

|κ(s)| ds ≈
N∑
i=1

T
(
ϑi−1, ϑi, ωi−1/2, di−1/2; ε

)
with

T2(ϑL, ϑR, ω, d; ε) =
1

2
φ (4ω − 3ϑL − ϑR; ε) +

1

2
φ (4ω − 3ϑR − ϑL; ε) .

We can supply the solver with the gradient and the Hessian of the target function:

∇ϑT2(ϑL, ϑR, ω, d) = −1

2
φ′ (4ω − 3ϑL − ϑR; ε)

(
3

1

)
− 1

2
φ′ (4ω − 3ϑR − ϑL; ε)

(
1

3

)
,

∇2
ϑT2(ϑL, ϑR, ω, d)T =

1

2
φ′′ (4ω − 3ϑL − ϑR; ε)

(
9 3

3 1

)
+

1

2
φ′′ (4ω − 3ϑR − ϑL; ε)

(
1 3

3 9

)
.

There are no big differences in the use of the smoothing functions (13); the presented numerical tests use the
simpler φ3(x; ε). The value for ε is problem dependent, it should be as small as possible, but if it is too small,
it can make the NLP hard to solve. A good choice is ε = |typ(κ)| 10−4 where typ(κ) is the typical value of
the curvature used in the problem.

4.3 Derivative of Target P3

The target P3 and its derivatives can be expressed in terms of the following auxiliary functions:

t1 = ω − ϑL, t2 = ω − ϑR, t3 = 4ω − 3ϑL − ϑR, t4 = 4ω − 3ϑR − ϑL, t5 =
ϑL + ϑR

2
− ω,

t6 = cos t1, t7 = cos t2, t8 = sin t1, t9 = sin t2, t10 = sin t5, t11 = cos t5,

t12 = (t3 + t4)t10, t13 = 4t10 −
1

2
t11(t3 + t4), t14 = 4t11 +

1

4
t10(t3 + t4), t15 = t3t8, t16 = t4t9.
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The integral of the curvature squared is written as

T3(ϑL, ϑR;ω) = −1

d
(t12 + t15 + t16) .

The derivatives of P3 are

∂

∂ϑL
T3(ϑL, ϑR;ω) =

1

d
(t13 − t3t6 + 3t8 + t9)

∂

∂ϑR
T3(ϑL, ϑR;ω) =

1

d
(t13 − t4t7 + t8 + 3t9)

∂2

∂ϑL
2T3(ϑL, ϑR;ω) =

1

d
(t14 + t15 + 6t6)

∂2

∂ϑR
2T3(ϑL, ϑR;ω) =

1

d
(t14 + t16 + 6t7)

∂2

∂ϑL∂ϑR
T3(ϑL, ϑR;ω) =

1

d
(t14 + t6 + t7) .

5 NUMERICAL EXPERIMENTS

We validate the presented algorithm for the construction of an interpolating biarc spline over some numerical
tests, most of them are taken from [18]. We report also the dataset of the considered cases, see Table 2. For
each test we collected the results in Table 1.
The minimum length is interesting per se and also in comparison with Dubins curves, that is lines and arc
segments with bounded curvature. The minimum energy is useful to obtain paths that do not contain sharp
turns. Finally, the integral of the absolute curvature looks to be a good trade-off between the loose curve of
minimal energy and the minimum length. This can be noticed especially in test 1 (Figure 4 - P2), where the
curve follows the intuitive path of lines and arcs. It is also interesting to compare the length of P1 which,
graphically, seems longer than P2 but it is not. Test 2,3,4,5 represent corners: target P1 and P2 produce
the expected shape, whereas P3 gives a smoother path. Test 4 was taken from Figure 1 of [18], test 5 from
Figure 7-8 of [18]. Test 6 represents the profile of a bottle (Figure 9 of [18]); here P1 and P2 show a more
traditional style, whereas P3 exhibits a more stylish (pleasing) design. Test 7 is the shape of a shoe/footprint;
also in this case target P2 is a good trade-off between P1 and P3. The points are sampled from Figure 2 of
reference [15]. In addition, the cyclic condition ϑ0 = ϑN is added to the constraints. Finally, we present test
8 to show that the algorithm scales well with the number of points (700). The curve represents the F1 circuit
track of Spa-Francorchamps (Belgium), whose data have been extracted from [3] by sampling the reference
clothoid spline curves every 10 meters. The number of iterations is contained and a graphical result is shown
in Figure 11. We put the picture of one target only, as the other curves are graphically indistinguishable.

6 CONCLUSION

We have presented a method to construct a spline of biarcs, which takes a sequence of ordered planar points
as input. The spline has G1 continuity and is selected via an optimisation process that minimises a target
function. We proposed three possible targets, which are widely used in the construction of polynomial or
clothoid splines, the minimum length, the integral of the absolute value of the curvature and the energy
(curvature squared). Concretely, the algorithm consists of an NLP; for the mentioned targets we give the
gradient and the Hessian to improve the performance of the numeric solver. Also an initial guess is furnished,
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Table 1: Table of the results of the 8 proposed numerical tests. Each test has been conducted with the three
presented targets P1 − P2 − P3, the results are given in terms of iterations of the nonlinear solver IPOPT
and number of function evaluations. We reported the values of the targets (T ) as well as the total length of
the spline (L), in order to compare qualitatively and quantitatively the splines. T and L of target P1 are of
course the same.

Target iter. feval. T L

Te
st

1 P1 10 11 18.0747 18.0747

P2 22 154 18.8460 18.7084

P3 16 38 12.1828 18.9841

Te
st

2 P1 9 15 13.9010 13.9010

P2 55 270 12.6426 14.2821

P3 14 51 12.5622 14.0510

Te
st

3 P1 9 15 80.8207 80.8207

P2 55 270 3.4734 80.8617

P3 14 51 0.4647 83.4518

Te
st

5 P1 9 16 72.9525 72.9525

P2 4 45 3.0239 72.9583

P3 8 13 0.0868 76.7610

Target iter. feval. T L

Te
st

6 P1 9 12 81.9130 81.9130

P2 13 101 3.2174 81.9139

P3 14 26 0.4153 83.4164

Te
st

7 P1 17 36 82.1899 82.1899

P2 47 248 15.6840 82.4792

P3 33 107 5.0824 83.0096

Te
st

7 P1 19 249 367.61 367.61

P2 18 298 15.241 375.12

P3 25 286 0.263 374.48
Te

st
8 P1 15 34 6991.51 6991.51

P2 4 53 61.5821 6991.52

P3 26 45 0.76673 6991.67

which is always a feasible point. The algorithm has been validated over a test set partially present in literature
and partially new. The results show that the absolute curvature is an effective cost function that is a good
trade-off between the minimum length and the curvature squared.
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Table 2: Table of the dataset used in the numerical experiments. For the test 8 the point sequence is too
long to fit the page but is available online.

T
es

t
1 x 0 4 4 1 1 4 4 0

y 0 0 1 1 2 2 3 3

T
es

t
2 x 0 1 2 2 2 1 0 -1 -2 -2 -2 -1 0

y -2 -2 -1 0 1 2 2 2 1 0 -1 -2 -2

T
es

t
3 x 1 2 3 4 5 6 7 8 9 10

y 10 10 10 10 10 10 10.515 50 60 85

T
es

t
4 x 0 26 28 54

y 0 24 24 0

T
es

t
5 x 0 10 31 40.8 41 41 41 41

y 41 41 41 41 40.8 31 10 0

T
es

t
6 x 0 1.34 5 10 10.6 10.7 10.7 10.8 11.4 19.6 20.2 20.3 20.3 20.4 21 26 29.6 31

y 0 5 8.6 10 10.4 12 28.6 30.2 30.6 30.6 30.2 28.6 12 10.4 10 8.6 5 0

T
es

t
7 x 242 218 196 171 137 85 143 173 213 242

y 96 117 113 112 123 98 66 73 75 96

target P1 target P2

target P3 Guess

Figure 4: Test 1. Top left minimum length (P1), top right integral of the absolute curvature (P2), bottom
left minimum energy (P3), bottom right initial guess given by (12).

Computer-Aided Design & Applications, 18(1), 2021,66-85
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


79

target P1 target P2

target P3 Guess

Figure 5: Test 2. Top left minimum length (P1), top right integral of the absolute curvature (P2), bottom
left minimum energy (P3), bottom right initial guess given by (12).

target P1 target P2

target P3 Guess

Figure 6: Test 3. Top left minimum length (P1), top right integral of the absolute curvature (P2), bottom
left minimum energy (P3), bottom right initial guess given by (12).
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target P1 target P2

target P3 Guess

Figure 7: Test 4. Top left minimum length (P1), top right integral of the absolute curvature (P2), bottom
left minimum energy (P3), bottom right initial guess given by (12).

target P1 target P2

target P3 Guess

Figure 8: Test 5. Top left minimum length (P1), top right integral of the absolute curvature (P2), bottom
left minimum energy (P3), bottom right initial guess given by (12).
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target P1 target P2

target P3 Guess

Figure 9: Test 6. Top left minimum length (P1), top right integral of the absolute curvature (P2), bottom
left minimum energy (P3), bottom right initial guess given by (12).

target P1 target P2

target P3 Guess

Figure 10: Test 7. Top left minimum length (P1), top right integral of the absolute curvature (P2), bottom
left minimum energy (P3), bottom right initial guess given by (12).
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Figure 11: Test 8. The curve produced by optimising target P2. The result is very close to the curves
produced by the other targets.
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Algorithm 1: Biarc solution algorithm
Biarc (x0, y0, ϑ0, x1, y1, ϑ1);
begin

dx ← x1 − x0; dy ← y1 − y0;

d←
(
d2x + d2y

)1/2
ω ← atan2(dy, dx);

θ0 ← ω + Range(ϑ0 − ω); θ1 ← ω + Range(ϑ1 − ω);

t← 2 cos
(
θ1−θ0

4

) /
d θ? ← 2ω − θ0 + θ1

2
;

∆θ0 ← θ?−θ0
2 ; ∆θ1 ← θ?−θ1

2 ;

`0 ← 1
/

(t sinc (∆θ0)) ; `1 ← 1
/

(t sinc (∆θ1)) ;

κ0 ← 2t sin (∆θ0) ; κ1 ← −2t sin (∆θ1) ;

x? ← x0 + cos
(
θ?+θ0

2

) /
t; y? ← y0 + sin

(
θ?+θ0

2

) /
t;

return [`0, θ0, κ0], [`1, θ1, κ1], x?, y?, θ?;
end

Sinc (x) // approximate (sinx)/x with error ≤ 1.3 · 10−20

begin

if |x| < 0.002 then return 1 +
x2

6

(
1− x2

20

)
;

return (sinx)/x
end

Range (θ) // return θ + 2kπ with k such that the angle is in [−π,−π]
begin

while θ > +π do θ ← θ − 2π;
while θ < −π do θ ← θ + 2π;
return θ

end
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