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by Log-aesthetic Curves with G2 continuity
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Abstract. Yan et al. proposed a new family of curves called κ-curves which is composed of
quadratic Bézier splines that interpolates a sequence of control points by letting curvatures
extrema to occur at control points. Their interpolation method guarantees G2 continuity
at control points and G1 continuity at in�ection points. Recent progress in aesthetic design
include the development of Log-Aesthetic (LA) curves, which has been highlighted as the most
promising curve due to its special feature of self-a�nity and preserving monotonic curvature
pro�les. In this paper, we propose a novel method to generate LA curves interpolating control
points and enforcing local curvatures extrema to occur only at control points while preserving
G2 continuity everywhere, including at in�ection points. In addtion, LA curve o�ers extra
degree of freedom; its shape parameter α which can deform the curve according to designer's
preference.

Keywords: log-aesthetic Curve, κ-curve, extremum of curvature, G2 conituity, point se-
quences
DOI: https://doi.org/10.14733/cadaps.2021.399-410

1 INTRODUCTION

Yan et al. [10] proposed a new family of curves called κ-curves which is composed of quadratic Bézier splines
that interpolates a sequence of control points by letting local maxima and minima of curvatures occur at
control points. Figure 1 shows an example of κ-curves used to draw the outline for a bear. Their interpolation
method guarantees G2 continuity at control points and G1 continuity at in�ection points. This interpolating
curve has caught much attention among researchers as well as designers, and currently available in Adobe
Illustrator for practical design. Chen et al. [1] follow suit κ-curve and proposed feature points controlled
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interpolatory curve (FPC-curve) using piecewise cubic curves to control over geometric features namely cusps,
loops and in�ection points, which are considered intrinsic features of curves.

One of the disadvantage of quadratic and cubic curves are its natural characteristics of having complex
curvature function, hence hard to obtain a monotonic curvature pro�le segment which is essential for aesthetic
design. Recently, Log-aesthetic (LA) curves are claimed to be a promising curve for aesthetic design due to
its special feature of preserving monotonic curvature pro�les [4] . Yet another essential feature LA curves
possess is self-a�nity which tend to be useful for satisfying geometry continuity using a�ne transformation
procedures. In this paper, we substitute LA curves for Bézier curves to produce interpolating LA curves,
mimicking k-curves. Thus, we would be able to control extrama points on the curve which are now the control
points itself.

Figure 1: An example of a κ-curve[10].

2 GENERAL EQUATIONS OF AESTHETIC CURVES

LA curves are derived by representing Logarithmic Curvature Graph (LCG) as a straight line (linear LCG). The
equation for LCG which has a slope, α, is the fundamental equation of LA curves [6]:

log(ρ
ds

dρ
) = α log ρ+ C (1)

where s is the arc length of the curve, ρ is the radius of curvature and C is the constant. The shape parameter
of the LA curve is α. In this paper we let α < 0 in order to generate C-shaped and S-shaped (with in�ection
point) LA curves interpolating given points.

2.1 Formulas in Standard Form II

The following equation is obtained by substituting Λ = e−C into Eq.(1) where Λ ∈ [0,∞],

ds

dρ
=
ρα−1

Λ
(2)

By assuming ρ(0) = 1, integrating Eq.(2) and rewriting ρ in terms of arc length s:

ρ = (Λαs+ 1)
1
α (3)

which is called standard form II [11]. In this form, ρ is assumed to vary from 0 to ∞, hence the curvature
κ = 1/ρ also varies from 0 to ∞. ρ can also be expressed in terms of direction angle θ(s) by using Eq.(2)
and dθ(s)/ds = 1/ρ, we obtain:

ρ = ((α− 1)Λθ(s) + 1)
1

α−1 (4)
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The arc length s and θ(s) have various upper and lower bounds, depending on α value. The lower bounds of
s and θ(s) are −∞ and the upper bound of s and θ(s) are −1/(Λα) and 1/((1− α)Λ) respectively. Readers
are referred to [11] for a detailed study LA in�ection points.

Two versions of LA curves with respect to parameter s and θ is given as C(s) and P (θ):

C(s) =

∫ s

0

ei(
(Λαu+1)

α−1
α )

Λ(α−1)
)du (5)

P (θ) =

∫ θ

0

((α− 1)λψ + 1)
1

α−1 eiψdψ (6)

2.2 General Case

In this section, we discuss about the LA curves whose ρ 6= 1 at s = 0. The standard form II is used to generate
an LA segment and the input control points should be re�ected along a line connecting two control points
and/or the direction of the curve should be reversed if necessary. For a general case, we let α < 0 and the
signed curvature [2] of the LA curve, κ(s) is de�ned as follows [5]:

κ(s) =

{
(cs+ d)−

1
α if cs+ d ≥ 0

−(−cs− d)−
1
α otherwise

(7)

When κ(s) = 0, we may solve cs+d = 0, to get s = −d/c, hence the point at s = −d/c is an in�ection point.
Note that at an in�ection point, the radius of curvature ρ → ∞, so numerical calculation using ρ with arc
length s as shown in Eq.(5) is unstable. Furthermore it is inadequate to use Eq.(5) even though the interval
of integration can be separated from 0 to φmax and φmax to φD to get the end point of the curve.

The derivative of κ with respect to s is given by

dκ

ds
=

{
− c
α (cs+ d)−

1
α−1, if cs+ d ≥ 0

c
α (−cs− d)−

1
α−1, otherwise

(8)

If (−1/α− 1) ≥ 0, dκ/ds is continuous at the in�ection point. However (−1/α− 1) < 0, i.e. α < −1, dκ/ds
is discontinuous there. Similarly (−1/α− n) < 0, i.e. when α < −1/n, the nth derivative is discontinuous at
the in�ection point. The curve C(s) is given by

C(s) =

∫ s

0

ei(θs+
α

c(α−1)
(|cs+d|

α−1
α −|d|

α−1
α ))du (9)

where θ(0) = θs. To generate a segment of LA curve using standard form II, we set the start point P s, the
start direction angle θs, α, Λ, the total length s0, scaling factor sf , re�ection �ag and reverse �ag. Similarly,
in general case, we need P s, the start direction angle θs and α as in standard form II. In addition, we need c,
d, the total length h0. If we adopt the general case, neither the re�ection nor reverse �ags are necessary. For
implementation of the curve generation, it is sometimes necessary to convert from standard form II to general
case in accord to data structure. The parameters of general case are given by

c = λαsα−1f (10)

d = sαf (11)

h0 = sfs0 (12)

If the re�ection �ag is on, then both of the signs of c and d are changed as follows:

ĉ = −c (13)

d̂ = −d (14)
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Furthermore if the reverse �ag is on, then c remains the same, but

d̂ = −(d+ c h0) (15)

3 S-SHAPED CURVE GENERATION

At �rst we review the method proposed in [5] to generate an S-shaped LA curve as shown in Fig.2. Here we
used standard form II as the representaion of the LA curve. The arc length s of a curve with α < 0 is given
as a function of the directional angle φ at the end point as follows:

s(φ) =
{1 + (α− 1)Λφ}

α
α−1 − 1

Λα
(16)

It is necessary for the total arc length s to become larger than the arc length to the in�ection point s0 to form
an S-shaped curve where

s0 = − 1

Λα
(17)

Notice that s0 > 0 due to α < 0. If the directional angle is de�ned to be negative when it decreases over 0◦,
the directional angle becomes maximum at the arc length s0 and is given by

φmax =
1

(1− α)Λ
(18)

If the directional angle is speci�ed to be less than the value stated above, it is not possible to generate a curve
without a loop which indicates that the directional angle changes by more than 2π. s is expressed by means
of s0 from Eq.(16) as follows:

s(φ) = s0 +
{1 + (α− 1)Λφ}

α
α−1

Λα
(19)

As discussed in the previous section, at the in�ection point the continuity of dnκ/dsn depends on shape
parameter α. If we assume that the curve is S-shaped, the second term of Eq.(19) increases according to
the increase of φ → φmax. Beyond φmax the directional angle (φD in Fig. 2.) decreases. φD indicates the
directional angle of Pe calculated anticlockwise from x axis and, φD is the angle between the line through the
origin and Pe and the x axis. Hence we change the sign of the second term and de�ne s1 by

s1 = −{1 + (α− 1)Λφ}
α
α−1

Λα
(20)

Note that since α < 0, s0 > 0 hence, s1 > 0. The whole total arc length s is given by s0 + s1.

3.1 C-shaped or S-Shaped?

In this section, we construct a simple theorem to clearly identify whether a generated LA curve from given
boundary condition has in�ection points which generates S-shaped curves. The following theorem addresses
for a given boundary condition , the generated LA curve consists of in�ection points, i.e., if ∃b such that
0 < b < h0, where κ(b) = dθ(b)/ds = 0.

De�nition 1. A boundary condition (as shown in Fig.3 ) consists of a start point P s and the end point P e are
located on the x axis and the direction angles at P s is θs ∈ [−π2 , 0], the direction angle at P e is θe ∈ [−π2 , 0].
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Figure 2: Input of an S-shaped LA curve
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Figure 3: Boundary condition: the start and end points are transformed to the x axis and the end angles are
restricted to θs ∈ [−π2 , 0] and θe[−π2 , 0]. The �gure shows for the case with θe = 0.

Theorem 1. Let a LA curve is given as a function of arc length s, C(s), satis�es boundary condition
and at least C1-continuous and it is loop-free. The direction angle function of the curve is de�ned as
φ(s) ∈ [−π/2, π/2].The LA curve which interpolates P s = C(0), P e = C(h0) has an in�ection point in
s ∈ [0, h0].

Proof. Since the y coordinates of the start and end points are equal to 0, the following equation is satis�ed:

f(h0) =

∫ h0

0

sinφ(s)ds = 0 (21)

Since f(0) = f(h0) = 0 and sinφ(s) is a continuous function, by the mean-value theorem there is a such that
0 < a < h0 and sin θ(a) = 0. Since we assume that φ(s) ∈ [−π/2, π/2], we obtain φ(a) = 0.

When θe = 0, by applying the mean value theorem to φ(a) = φ(h0) = 0, there exists b such that

dθ(b)

ds
= κ(b) = 0 (22)

where a < b < h0.
When θe < 0, as sinφ is continuous and sin θs < 0, there exists εs > 0 and f(εs) < 0, and as sin θe < 0,

there exists εe > 0 and f(h − εe) > 0. Hence by the intermediate value theorem, there is c such that
εs < c < h0 − εe and f(c) = 0. By applying the mean value theorem for intervals [0, c] and [c, h0] of f(s),
there is b such that 0 < a < c, c < b < h0 and φ(a) = φ(b) = 0. Therefore there exists d such that

dθ(d)

ds
= κ(d) = 0 (23)

where a < d < b. Hence the LA curve C(s) has an in�ection point at s∗ = b.
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By using the above theorem we know the generated curve must be a S-shaped curve. However even if
θe > 0, the curve might be a S-shaped curve as well. Since Miura et al. [5] did not specify the exact condition
for θe, we describe a numerical method to determine whether the LA curve is C-shaped or S-shaped in this
section. Based on the generation method proposed by Yoshida and Saito [11] as shown in Fig.2, if θD > 2θE ,
the start and end points are �ipped to obtain θD ≤ 2θE and the signs of their direction angles are changed.
If θD = 2θE , the generated curve becomes a circular arc due to the symmetry of the boundary condition,
producing a C-shaped curve. By Theorem 1, if θD ≤ θE , a S-shaped curve is generated.

In θD ∈ [θE/2, θE ], there is ∃θ′D where if θD < θ′D, the curve is S-shaped and C-shaped otherwise. When
the arc length s < s0 in Eq.(17), the angle between the line connecting the point C(s), the origin and the
x axis increases as s increases. According to Eq.(17), the larger Λ, the smaller s0. Also from Eq.(18), for a
given θD, the maximum value of Λ is

Λmax =
1

(1− α)θD
(24)

Hence when s = −1/(Λmaxα), if the angle between the line connecting the point C(s), the origin and the x
axis is less than θE , then the curve is S-shaped and C-shaped otherewise.

Fig. 4 shows several LA curves generated for three types boundary conditions and their corresponding Λ
versus φ plotted below them. The shape parameter α is �xed as α = −0.5.The left and middle curves are
C-shaped LA curves, hence in�ection free. In their Λ versus φ graphs, the red line indicates φE = π/6 and
the blue curve indicates the direction angle φ between the line connecting the point C(s), the origin and the
x axis for a given Λ. Λ can change from 0 to Λmax = 1/((1− α)θD). In the left and middle graphs, the red
line and blue curve are intersects, i.e. when Λ = Λmax, angle φ is larger than θE . According to our numerical
identi�cation above, it means the generated curve is C-shaped, which is consistent in this example. On the
other hand, the right curve has an in�ection point indicated by ∗ and is S-shaped. When Λ = Λmax, angle φ
is smaller than θE , then we get is S-shaped LA curve.
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Figure 4: Three boundary conditions: the direction angle at the end point P e is changed at 25◦, 15◦ and 5◦

and their respective Λ versus φ graphs. (∗) indicates an in�ection point.

Figure 5 shows three types of LA curves generated with α ∈ {−0.5, 2.5, 5}. The curve on the left is a
C-shaped curve, whereas the other two are S-shaped curves. When Λ = Λmax, the angle φ > θE , the curve is
C-shaped. Whereas if the angle φ < θE , the curve is S-shaped, which is also consistent to our C- or S-shaped
numerical identi�cation.
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Figure 5: Similar boundary conditions but with three types of shape parameter α ∈ {−0.5, 2.5, 5} and their
respective Λ versus φ graphs. (∗) indicates an in�ection point.

4 LOG-AESTHETIC CURVE GENERATION ALGORITHM

As shown in Fig.6, we generate a sequence of LA curves with G2 continuity by the following algorithm:

1. Input a sequence of control points Pi.
2. Generate κ-curves interpolating the control points P i.
3. Calculate the tangential angle of κ-curves at P i as initial value of tangent angle θei of LA curves.
4. Calculate the line length li between control points Pi, the inner angle of the control polygon θi, so

another angle between the tangential line and the connection line is θfi = π − θi − θei.
5. Generate LA curves with a speci�ed α and a triangle located at the origin and congruent to the triangle

de�ned by the control points.
6. Find Λ from Eq.(3) that satis�es the angles of the triangle using bisection method.
7. Translate, rotate and scale the LA curve to the triangle de�ned by the control points.
8. Calculate the curvature κi,1, κi+1,0 of the LA curves at the control points P i.
9. Compare the curvature di�erence ∆κi at the control points. The G2 continuity is achieved ifwhen the

tolerance is satis�ed (e.g., ∆κi < 10−6). If it is not satis�ed, �nd the θei that satis�es the condition of
κi,1 = κi+1,0.

10. Use the new θei in Step 8. to recalculate the curvature of each LA curve segment at control points until
∆κi meets the accuracy desired.
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Figure 6: The notation for control points and tangential angles of LA curves.
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4.1 Examples of LA Curve Generation

As shown in Fig.7, we input 9 points sampled from an example in Yan et al. [10] and form a closed control
polygon with α = 0.5. At �rst the algorithm generates κ-curves interpolating the control points as shown on
the left with magnitude of signed curvatures in Fig.7. Then we extract tangent vectors at the control points
and use this information to set the tangential angle as the initial direction angles of each LA curve segment.
The middle �gure shows LA curves generated using the initial direction angles. As shown in the �gure G2

continuity at the joints of the LA curves is not satis�ed. For the normalized input control points, which is
bounded by a unit square, after iterating about 50 to 100 times, the di�erence of the curvature ∆κ satis�es the
precision of 10−6. It takes several seconds to ten and more seconds using a PC with Intel Core i7-6700 at 3.40
GHz to achieve this precision. We can visually detect there is some di�erence of their shapes between those
curves. After adjusting the direction angles, the LA curves become G2-continuous everywhere, comparatively
smoother than κ-curves. The most signi�cant di�erence bewteen the κ-curve and our curve is that we can
guarantee G2 continuity even at in�ection points. Similar to the κ-curve, some control point might be not at
a critical point of curvature, but all local maxima of curvature magnitude appear at control points.

Before adjustment of the direction angles After adjustment

Figure 7: The comparison between κ-curves and LACs with α = −0.5

a=-0.1 a=-1 a=-2.5

Figure 8: LA curves with various α values.

Figure 8 shows various closed LACs with di�erent α values. When α < 0 and in a small magnitude, i.e. -
0.1, the curves are a combination of straight line and circular arc-like parts satisfying G2 continuity everywhere.
By increasing its magnitude from −0.1 to −1 to −2.5, the curves gradually become more rounded. We can
accomplish subtle deformations by changing α values for �xed control points.
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Figure 9 shows various LA curves with di�erent α values. The beak tip of the bird is a start and end points
of the curve and they are located at the same position satisfying G0 continuity. It is straightforward to replace
an open κ-curve with LA curves with a G0 joint. We can use the direction angles at the start and end point
of the κ-curve, which are �xed during direction angle adjustment. By changing α ∈ {−0.1,−1,−2.5} , the
curves gradually become more rounded as the in previous example.

a=-0.2 a=-0.5 a=-1

Figure 9: LA curves with its curvature magnitude drawn using various α values, with a G0 joint at the beak.

a=-0.2 a=-0.5 a=-1

Figure 10: Di�erent shape of bird with various α values

a=-0.2 a=-0.5 a=-1

Figure 11: An aeroplane with various α values

a=-0.2 a=-0.5 a=-1

Figure 12: Mice with various α values
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Figures 10, 11 and 12 show combinations of closed and open curves with various α values. In each �gure,
the most left is the same κ-curves generated by control points in placed in the most right in �gure. The shape
of the bird wings, the heads of the planes, and the bellies of the mother and child mice clearly shows that we
can achieve subtle deformations by changing α values.

Figure 13 shows two examples with relatively dense control points using α = −0.5. We obtained very
similar shapes even if we change α.

a=-0.5 a=-0.5

Figure 13: Bear and Bambi with various α values

4.2 Discussions

Our method generates a G2 continuous LA curves. Hence if the number of control points is three, the
algorithm generates a circle as shown in Fig. 14. The most left �gure is a κ-curve with its control points.
The second curve is generated using LA curves before the adjustment of direction angles and the third �gure
is obtained after adjustment where we obtained a perfect circle.

However if the positions of three control points are irregular, for example three points are pushed to be �at,
although the initial LA curves are proper, the algorithm might be unstable and sometimes might not converge
to a desired shape. To avoid this phenomenon, a possible solution is to add one more control point as shown
for the bear's paws in Fig. 13.

Figure 15 shows two examples on deforming LA curves by changing the positions of input points and
adding extra control points. We can make the wing thinner by moving two control points in red sharper by
adding two extra control points.

a=-0.5 a=-0.5

Figure 14: Circle generation and non-convergent case
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a=-0.5 a=-0.5

Figure 15: Deformation by changing the positions of two input points and adding extra two control points

5 CONCLUSION & FUTURE WORK

We have proposed a novel method that enables a set interpolating curves by shape parameters and guarantees
G2 continuity at every control point by replacing quadratic Bézier curve with LA curves. We have also
proposed a numerical method to determine C-shaped or S-shaped LA curves clearly based on given boundary
condition and α values. We have also compared the shapes between κ-curves and LA curves. By increasing
the magnitude of the negative value of α in LA curves, we obtain gradually rounded shapes.

Work in progress include to speed up processing time of the proposed method using GPU and parallel
programming approach. For speeding up, we might be able to use discrete log-aesthetic curves [9] to detect
appropriate tangent vectors at the input points and �nally generate continuous log-aesthetic curves once. An
alternative approach will be to use bi-LAC proposed by Gobithaasan et al. [3], σ-curve [7] and τ -curve [8] for
deformation and various CAD practicalities.
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