
468

Algebraic Filtering of Surfaces from 3D Medical Images with Julia

Miroslav Jirik1,3 , Antonio DiCarlo , Václav Liska1,4 and Alberto Paoluzzi2 ,

1 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic ,
jirik@lfp.cuni.cz

2Roma Tre University, Department of Mathematics and Physics, Rome, Italy,
3NTIS, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic,

4 Department of Surgery, University Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen,
Czech Republic ,

Corresponding author: Miroslav Jirik, jirik@lfp.cuni.cz

Abstract. In this paper we introduce a novel algebraic filter, based on algebraic topology
methods, to extract and smooth the boundary surface of any subset of voxels arising from
the segmentation of a 3D medical image. The input of the Linear Algebraic Representation
(lar) Surface extraction filter (lar-surf) is defined as a chain, i.e., an element of a linear
space of chains here subsets of voxels represented in coordinates as a sparse binary vector.
The output is produced by a linear mapping between spaces of 3- and 2-chains, given by the
boundary operator ∂3 : C3 → C2. The only data structures used in this approach are sparse
arrays with one or two indices, i.e., sparse vectors and sparse matrices. This work is based
on lar algebraic methods and is implemented in Julia language, natively supporting parallel
computing on hybrid hardware architectures.

Keywords: Medical 3D, Computational Topology, Linear Algebraic Representation, LAR,
Julia, Surface Extraction
DOI: https://doi.org/10.14733/cadaps.2021.468-485

1 Introduction

Isosurface extraction to produce geometric models of surfaces from volumetric data is important in many
applications. It is often used for interactive visualization of medical data and/or for flow modeling [21].

The most popular algorithm used for surface extraction from volume images is the Marching Cubes (MC).
The algorithm was described by Lorentsen and Cline [13] in 1987. A survey of MC-inspired algorithms was
published in 2006 [15]. The algorithm is based on considering the small cubes defining the volumetric image.
Each corner vertex of each cube is associated with input volumetric data, typically average of the incident
voxel data. MC traverses the data cube-by-cube, and constructs a triangulated iso-surface by using a lookup

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://orcid.org/0000-0002-8002-2079
http://orcid.org/0000-0002-7736-684X
http://orcid.org/0000-0002-5226-0280
http://orcid.org/0000-0002-3958-8089
mainto:jirik@lfp.cuni.cz
mainto:
mainto:
mainto:
mailto:jirik@lfp.cuni.cz
http://www.cad-journal.net

469

table depending on pattern of transitions between values of adjacent cube vertices. The main disadvantages
of this method are time requirements, ambiguity, and hole generation. Some of them were discovered shortly
after the algorithm was introduced. In 1991 Nielson and Hamman described an Asymptotic Decider to solve
the ambiguity problem on the faces of the cube. Natarajan noted that the ambiguity problem also occurs with
uniform samples [14]. In 1995 Chernyaev extended the number of lookup cases to 33 [5]. More recently, the
algorithm was updated by Custodio, Pesco, and Silva to enhance the quality of the iso-surface triangulation
[7].

Several alternative methods have been developed, including a method for surface extraction from a grid of
field values using particle attraction; a system was described by Crossno and Angel in [6]. A graph processing
that tracks the boundary cell-face adjacencies is described in [12]. Some parallel algorithms for iso-surface
extraction are discussed in [1]. A data-parallel algorithm, implemented in OpenCL, that runs entirely on
the GPU is presented in [23]. A Linear Algebraic Representation approach, parallelized using the OpenCL
framework on Linux, was introduced in [16].

In the present paper we discuss a distributed approach for surface extraction, where the lar-surf (Linear
Algebraic Representation Surface Extraction) filter is based on basic linear algebra and algebraic topology,
using linear spaces Cp of chains (of cells) of dimension 0 ≤ p ≤ 3 and the boundary matrix [∂3] : C3 → C2.

Input volumetric data are represented by a 3D voxel array and can be generated, e.g., by segmentation of a
computed tomography (left image in Fig. 4). A decomposition of input volumetric data into small submatrices
called bricks is performed, then the binary coordinate vector of each segment (mathematically, a chain) of
voxels is generated, and its boundary is computed by multiplying the boundary matrix. The resulting output
is a sparse binary vector encoding the lar representation of the boundary surface. This embarrassing parallel
data decomposition is used to compute the boundary patches independently within each brick. All pathes are
finally joined and smoothed via the Taubin algorithm [25].

The paper is organized as follows. Section 2 provides the basic topological and geometrical concepts needed
to understand the lar-surf method, including the building of boundary matrices, the map from Cartesian
indices to linear indices, and the Taubin smoothing method. Section 3 discusses the parametric design of the
unit block filtered by the parallel algorithm, including the block decomposition, the sparsity rate of the sparse
arrays used, and the block-level parallelism. Section 4 concerns to the algorithm implementation in Julia, and
a discussion of the parallel workflow. Section 5 presents some examples of algorithm execution on a liver and
its portal system. Section 7 shortly describes extensions of this approach, in particular the implementation
with Julia’s support for GPU parallelism and the multi-segmentation of medical images.

2 Background

Some basic concepts of solid modeling, and in particular the foundational idea of representation scheme, as well
as a few basic concepts of algebraic topology, are shortly introduced in this section, including the computation
of the matrix of a boundary operator between chain spaces.

2.1 Representation Scheme

A representation scheme for solid modeling is a mapping between a space of mathematical models and a
space of symbolic representations, like those generated by a formal grammar. Solid pointsets (i.e., “r-sets”)
are defined in [20] as compact (bounded and closed) regular and semianalytic1 subsets of the d-space. A
large number of representation schemes were defined in the past forty years, including the two main classes
of (a) boundary representations (“B-reps”), where the solid model is represented through its boundary el-
ements, i.e. faces, edges and vertices, and (b) decompositive/enumerative representations [20], that are a

1Semianalytic sets, studied in algebraic geometry, they are solutions of systems of polynomials; are closed under (regularized)
set union, intersection and difference, and therefore constitute a Boolean algebra [18].

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

470

decomposition of either the object or the embedding space, respectively, into a well-defined cellular complex.
In particular, a boundary representation provides a cellular decomposition of the object’s boundary into cells of
dimension zero (vertices), one (edges), and two (faces). Medical imaging can be classified as the enumerative
representation of cellular decompositions of organs and tissues [16], in particular, as subsets of 3D volume
elements (voxels) from 3D medical image.

2.2 Linear Algebraic Representation

The Linear Algebraic Representation (lar), introduced in [9], aims at representing the chain complex [8, 17]
generated by a piecewise-linear geometric complex embedded either in 2D or in 3D. This representation provides
a minimal characterization of geometry and topology of a cellular complex, through (a) the embedding mapping
µ : C0 → Ed of 0-cells (vertices), and (b) a description of d-cells and/or (d − 1)-cells as subsets of vertices.
When evaluated, it is able to return the whole chain complex:

C• = (Cp, ∂p) := C3

δ2←−
−→
∂3

C2

δ1←−
−→
∂2

C1

δ0←−
−→
∂1

C0. (1)

i.e., the whole sequence of graded linear chain spaces Cp, and all linear boundary ∂p and coboundary δp maps,
with δp = ∂>p−1. The domain of lar is the set of chain complexes generated by cell d-complexes (2 ≤ d ≤ 3).
The computer representations of lar are sparse binary matrices to represent both the operators and the
bases of chain spaces. Note that in algebraic topology a p-chain is defined as a linear combination of p-cells
with scalars from a field. When the scalar coefficients are from {−1, 0,+1}, a chain may represent any
(oriented) subset of cells from the cellular complex. Scalars from {0, 1} are used for non-oriented complexes.

We may, therefore, get the (p − 1)-boundary ∂pcp of any p-chain cp, by multiplying of the coordinate
representation [∂p] of the boundary operator times the coordinate representation [cp] of the chain in terms of
such scalars, i.e., by a matrix-vector product [∂p][cp].

It is possible to show that the lar representation scheme is very expressive, i.e., that it has a large
domain, including collections of: line segments, quads, triangles, polygons, meshes; pixels, voxels, volume
images; B-reps, enumerative and decompositive representations of solids. In this paper we apply lar methods
to computation of boundary representations of solid models from segmentation (labeling) of 3D medical
images. To display a triangulation of boundary faces in their proper position in space, the information required
is contained in the geometric chain complex (GCC):

µ : C0 → E3, (δ0, δ1, δ2) ≡ (geom, top) = (V, (EV, FE, CF))

Note that ordered pairs of letters from V,E,F,C, correspond to Vertices→Edges→Faces→Cells into the
Column→Row order of matrix maps of linear operators. The boundary 2-cycle surface (possibly non con-
nected) is transformed into a standard B-rep [22] using the information store within a GCC. The geometry
geom is given by the embedding matrix V of vertices (0-cells); the topology top by the three sparse matrices
(EV, FE, CF) of coboundaries (δ0, δ1, δ2) of the chain complex describing the space arrangement [19].

Construction of the Boundary Matrix ∂d

First, let us fix an ordering for the cells of a partition of the input data, i.e., the matrix of vertex coordinates
V, and the arrays of arrays of vertex indices specifying edges EV, pixels FV, and voxels CV, i.e., for each 0-, 1-,
2-, and 3-elements of a cell partition V,E,F,C of a 3D image. These orderings fix the p-bases for the linear
spaces Cp of p-chains (0 ≤ p ≤ 3). The matrix Mp = (mi,j) is called the characteristic matrix of the p-basis,
where each p-cell is expressed as a subset of vertices (0-cells), so that mi,j = 1 if and only if the j-th 0-cell
cj0 belongs to the boundary of i-th p-cell mi,j , and mi,j = 0 otherwise.

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

471

Figure 1: The binary image of the sparse coboundary matrix [δ2] = [∂3]
t

: C2 → C3, built for a small
volumetric data (or a brick) with shape (4, 4, 4). Note that the number of rows equals the size 4× 4× 4 = 64
of the voxel set; the number of columns is dn (1 + n)d−1 = 3 × 4 × 25 = 300. Of course, the number of
non-zeros per row (cardinality of the facet set of a single voxel) is six, whereas the number of non-zeros per
column is generally two, apart from boundary facets. The letter F stands for Faces, on matrix columns, and
the C stands for Cells (3-cells) on matrix rows.

The computation of the boundary matrix [∂p] begins by computing the compatible product of the two
characteristic matrices Mp−1M

t
p. Let us note that the product of binary matrices is not binary, so that by

computing the (sparse) matrix product (Mp−1M
t
p) = (ni,j), with ni,j =

∑
kmi,kmk,j , we get for each nij the

number of vertices shared by cip−1 and cjp. When this number equals the cardinality of cip−1, the elementary
chain is contained in the boundary of cjp.

In volume imaging data, comprised cubic 3-cells and square 2-cells between adjacent pairs of 3-cells,
everywhere we get ni,j = 4, we may state ci2 ⊂ ∂cj3. Therefore, in each j column of M2M

t
3 = (ni,j),

implementing the map FC : CV→ VF, we have exactly six rows where ni,j = 4, since a cube (3-chain) has six
boundary faces (a 2-chain) on its boundary. Of course, it will contain six non-zero elements for column. It
may be worth remembering that every 3-cell (voxel) of the volumetric data has exactly six 2-faces.

Finally, consider the linear boundary operator ∂p : Cp → Cp−1. As such, it contains by columns the
representation of domain basis elements, expressed as a linear combination of the basis elements of the range
space. Therefore, the operator matrix [∂p] is readily obtained by setting

[∂p](i, j) = 1 if ni,j =
∑
k

mi,kmk,j = #cip−1 and [∂p](i, j) = 0 otherwise.

To this purpose concider the rows of matrix [∂3]t in Figure 1, where the matrix is transposed for convenience.
The unit incidence coefficients in [∂3], shown as white pixels, are accordingly located by filtering the ni,j
elements with value 4. All the other matrix element are set to 0, shown as black pixels.

It is possible to show that all the interesting relations of incidence/adjacency between cells of different
dimensions can be both computed and efficiently queried by pairwise computing some matrix products, with
one of terms possibly transposed, using only the two boundary and coboundary operator matrices [∂p] and
[δp], and where [δp] = [∂>p]. We may also show that such matrices are very sparse, with their sparseness
growing rapidly with their size (see Section 3.2). The pattern of non-zeros in matrix [∂3], corresponding to a
small brick of shape (4, 4, 4), is given in Fig. 1.

2.3 Multi-indices from Cartesian Indices

In order to utilize the topological algebra shortly recalled in this paper, we need to explicitly sort the cells of the
various dimensions into linearly ordered sequences, possibly according to the order in which their information
is linearly accommodated in computer storage. In Julia, our algorithms are most efficiently written in terms

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

472

of a single linear index A[i], even if A is multi-dimensional. Regardless of the array’s native indices, linear
indices always range from 1:length(A).

2.4 Taubin Smoothing

Brick joining Every boundary chain extracted from an image block B(i, j, k, n) is a 2-cycle, i.e., a closed 2-
chain, defined as a 2-chain with empty boundary. Such 2-cycles are joined together by removing the boundary
artifacts, i.e., the double 2-cells at the boundaries of adjacent bricks, after having suitably shifted their indices
to an unique linear representation of the whole surface. The resulting raster surface is composed of mutually
orthogonal raster facets, and must be smoothed in order to get a fair surface.

Surface Smoothing A linear time and space algorithm for this purpose is the Laplacian smoothing, which
iteratively moves each vertex (0-cell) to the centroid of its neighbors. A well known weakness of this simple
algorithm is the asymptotic convergence of the whole mesh to a single point, resulting in unfair size reduction
even after few iterations. The Taubin smoothing algorithm [26, 27] alternates two Laplacian smoothing steps
with shrink and inflate effects respectively, with the result of delivering pretty invariant size and volume of the
smoothed mesh. The best results are obtained on meshes which have small variations of edge length and face
angles, which is the case of surfaces extracted from 3D raster images.

3 Brick-parametric Design

In this section we discuss how the input 3D image is handled in order to exploit a data parallelism at brick-level.
Specifically, we deal with the image decomposition via the brick operator, the brick-to-boundary mapping,
and the embedding of the extracted (boundary) 2-cycles from local to global coordinates, in order to merge
togheter the various surface patches.

3.1 Brick Decomposition

Let us assume that medical devices produce 3D images with lateral dimensions that are integer multiples of
some power of two, like 128, 256, 512, etc. Therefore, any cuboidal portion of the image is completely deter-
mined by the Cartesian indices of its voxels of lowest and highest indices, and is extracted by multidimensional
array slicing as image(`x :hx, `y :hy, `z :hz).

For the sake of simplicity, we assume a common size on the three image axes, and the block image B,
called brick, as function of the element of lowest coordinates i, j, k ∈ [0 :n−1] and of block lateral size n ∈ N:

B(i, j, k, n) := image(i : i+ n, j :j + n, k :k + n)

Figure 2a shows the brick decomposition in a 2D image, with positive integers (u, v) giving the lateral
sizes of the image. Note that brick sides do not necessarily correspond to image edges.

3.2 Brick Operator

Chain coordinates We are going to treat each image brick independently of each other. Hence, we map
each image brick B(i, j, k, n) to the linear chain space C3 of algebraic dimension n× n× n, using coordinate
vectors [c] ∈ {0, 1}n3

, where each voxel (basis element c ∈ C3) is mapped via Cartesian-to-linear map to a
vector with n3− 1 zeros and only one element 1. In other words, each voxel in a brick image will be seen as a
basis binary vector, and (more interestingly) every subset of brick elements as the corresponding binary vector
(sum of included basis vectors), with as many as the cardinality of the considered subset.

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

473

(a) A possible brick partitioning of a radiologic image.
The evidenced 2D brick, of size nd = 642, is sliced by
B([2, 1, 64]) = Image(128:172, 64:128) (b) Faces on the brick boundary

Figure 2: Brick decomposition

Boundary operator For a fixed brick size n, the boundary operator ∂d : Cd → Cd−1, with d ∈ {2, 3}, will
be constructed once and for all using the algorithm given in [17]. The corresponding computer code is inlined
within the boundary extraction software.

It is easy to see that all matrices [∂d] are very sparse, since they contains 2d non-zeros (ones) for each
column (of length nd), i.e., 4 ones or 6 ones per columns for the 2D and 3D case, respectively. We remind that
the matrix of a linear operator between linear spaces contains by columns the basis element of the domain,
represented in the target space. In our case, the former is an image element (2-cube or 3-cube), represented as
the chain of its boundary cells, i.e. either a 1-cycle of 4 edges (2D), or a 2-cycle of 6 faces (3D), respectively.

The number of rows of [∂d] equals the dimension of the linear space Cd−1, i.e., the number of (d−1)-cells
of the cellular partition of the image. We compute their number in two steps: (a) first, we map one-to-one the
nd d-cells with d adjacent (d−1)-cells, so getting dnd distinct basis elements of Cd−1; (b) then, we complete
the basis by adjoining nd−1 boundary elements for each of the d dimensions of the brick, so providing further
dnd−1 basis elements for Cd−1. The dimension of Cd−1, and therefore the number of rows of [∂d] matrix is
d (nd−1 + nd) = dnd−1 (1 + n). The number of columns of [∂d] equals the number of basis elements of Cd,
i.e., the number nd of brick elements.

Sparsity and size of the boundary matrix As we have seen, we have 2d non-zero elements for each
column of [∂d], so that the total number of non-zeros is 2dnd. The number of matrix element is given by
the number of rows ((d − 1)-cells), times the number of elements per row, i.e., dnd−1 (1 + n) × nd, giving
0 ≤ sparsity ≤ 1, with:

sparsity = 1− non-zero elements
total elements

= 1− 2d× nd

dnd−1 (1 + n)× nd
= 1− 2

nd−1 + nd

Using sparse matrices in CSC (Compressed Sparse Column) format we get a storage size

space(∂d) = 2×#nzero + #columns = 2× 2dnd + nd = (4d+ 1)nd.

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

474

Figure 3: Mapping between 2-cells and 1-cells, used to compute the size of [∂2] : C2 → C1 for a 2D brick of size
nd = 102. The dimensions of the chain spaces are: dimC2 = nd = 100, dimC1 = dnd + dnd−1 = 200 + 20.

In conclusion, for brick size n = 64, the matrix [∂d] requires for 2D bricks 9×642 = 36, 864 memory elements,
and for 3D bricks 13×643 = 3, 407, 872 memory elements. Counting the bytes for the standard implementation
of a sparse binary matrix (1 byte for values and 8 bytes for indices) we get (18d + 8)nd bytes, so requiring
180KB for 2D brick and 12MB for 3D brick.

3.3 Brick-to-boundary Mapping

Here we refer directly to the 3D case. Let us call segment S the bulk content of interest within the input
3D image of size (u, v, w). Our aim is to compute the segment boundary ∂3S. First we set the size n of the
brick, in order to decompose the input image(u, v, w) into a fair number M of bricks:

M = du/ne × dv/ne × dw/ne ' uvw

n3
.

Then, we consider each segment portion ci,j,k = S ∩ B(i, j, k, n) and compute its coordinate vector local to
the brick [c] ∈ C3(n3). This one is a sparse binary vector of length n3. Then, we assemble by columns the M
representations [c]j (1 ≤ j ≤ M) of segment portions into a sparse binary matrix S, of dimension nd ×M ,
with d = 3. Finally, we compute a matrix B of boundary portions of S, represented by columns as chain
coordinate vectors in C2:

B = [∂3(n)]S,

where the boundary matrix has dimension dnd−1(1 + n)× nd. Of course, the B sparse matrix has the same
column number M of S, because each column contains the boundary representation of the corresponding
S ∩ B(i, j, k, n), and the number of matrix rows is the dimension dnd−1 (1 + n) of the linear space C2.

Embedding Two final computational steps are required to embed the 2-chains in E3 space, and to assemble
the whole resulting surface. In particular, we need to compute the embedding function µ : C0 → E3, where
C0 is the space of 0-chains, one-to-one with the vertices of the extracted surface. The simplest solution is
to associate four vertices to each 2-cell of the extracted surface, i.e., to each non-zero entry in every column
of B. The µ function can be computed by identifying, via element position in the column, a triple of integer
values 0 ≤ x ≤ u, 0 ≤ y ≤ v, and 0 ≤ z ≤ w for each vertex of the 2-cell. The mapping can be implemented
using a dictionary, that will store the inverse coordinate transformation used at the beginning, i.e., the one
from Cartesian to linear coordinates, in order not to duplicate the output vertices.

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

475

Figure 4: The left image shows one slice with segmented organs from the Ircad dataset [24]. The other three
images show the surface of the liver and portal vein generated by the lar-surf.jl package.

3.4 Brick-level Parallelism

In the computational pipeline discussed in this paper, several steps can be efficiently performed in parallel at
the image-brick level, due to the embarrassingly data-parallel nature of the problem. In particular, little effort
is needed to split the problem into several parallel tasks Si,j,k, using multiarray slicing. The granularity of
parallelism, depending on the brick size n, is further exploited by the computation of a single boundary matrix
[∂d(n)], function only of brick size n, so that the initial communication cost of broadcasting the matrix to
compute nodes can be carefully controlled, and finely tuned depending on the system architecture. The whole
approach is appropriate for SIMD (Single Instruction, Multiple Data) hybrid architectures of CPUs and GPUs,
since only the initial brick setup of the boundary matrix and image slices, as well as the final collection of
computed surface portions, require inter-process communication.

4 Julia Implementation

The computer code is implemented in Julia language [3] according to the workflow described below, whose
stages are parallelized and/or optimized in various ways. The workflow scheme can be seen in Fig. 5. The
implementation is available on GitHub [11] and our LarSurf.jl package can be installed using a standard
Julia package register.

4.1 Parallel Workflow

Workflow setup The functions in this preliminary step include:

1. input of 3D medical image I with shape (`1, `2, `3), such that: I = [`1] × [`2] × [`3], where [`k] =
[1, 2, . . . , `k];

2. analysis of resources available in the computational environment, including operating system, type and
number of compute nodes (processors, cores, GPUs), number of cores per node, RAM and cache
amounts;

3. depending on the above, best choice of the size of 3D image brick B. With default size = 64, the
number of bricks will be n = d`1/sizee × d`2/sizee × d`3/sizee. Hence the default number of bricks,
of size 643, is m = 8× 8× 4 = 256, for standard medical images 512× 512× 256;

4. computation of sparse brick boundary matrix [∂B], where Int8 and Int64 are the types for values and in-
dices, returning a sparse matrix value of type SparseMatrixCSC{Int8}{Int64}, stored by Compressed
Sparse Column (CSC) format. The storage of [∂B] (for n = 64) requires about 12MB;

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

476

Figure 5: Workflow of lar-surf algorithm

5. creation of either a local or distributed channel to implement a producer/consumer model of paral-
lel/distributed computation, depending on available resources;

6. distribution of matrix [∂B], of default size 12MB, to all available nodes/cores (Julia workers), using the
Julia macro @eveywhere.

Job enqueuing Communication and data synchronization are managed through Channels, which are the
FIFO conduits that may provide producer/consumer communication. Overall execution time can be improved
if other tasks can be run while a task is being executed, or while waiting for an external service/function to
complete. The single work items of this stage follow:

1. extraction, from image arrays of the block views, depending on 3 Cartesian indices;

2. transform each block from global [`1]× [`2]× [`3] to local coordinates [n]× [n]× [n];

3. further transform of each foreground voxel ν ∈ S ⊆ I from Cartesian to linear coordinates, using suitable
functions from Julia’s library.

4. enqueuing the job (as a sequence of integer positions for the non-zero image elements aligned in a
memory buffer of proper Channel type).

3-Chain encoding The interesting part of the Image I is called Segment S. The goal of the whole workflow
is to extract a boundary model of S from I. The portion of S inside B, will be denoted as S(B). Each block
B of the 3D image must by converted into the coordinate representation of a vector ν ∈ C3 in the linear space
of 3-chains.

In coordinates local to B, once an ordering from Cartesian to linear coordinates has been fixed, this vector
is represented by a binary array of length size3. With size = 64, we have 643 = 262144, with a non-zero

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

477

value (i.e. 1) for each foreground voxel in S(B). Therefore, the coded segment portion S(B) results in a space
occupancy of about 262 KB if encoded as a full array (i.e., including zero values). When encoded as a sparse
vector, its space occupancy will correspondingly decrease.

1. each encoding task produces either a full or sparse binary vector. We get either 262 KB or less per job,
depending on the use of either a full vector, or a sparse one;

2. a special format for sparse CSC (Compressed Sparse Column) vectors can be used, since the value data
for non-zeros does not need storage. Hence only a single 1-array of Int64 row positions (with total
length equal to the number of non-zeros in the block, with 8× nnz kB storage) is needed;

3. prepare sequences of such data vectors, in order to feed efficiently the available processor threads.

4. In case of presence of one/more GPUs, a smaller size of the block is preferable for speed, even with
smaller boundary matrices and higher numbers of coded vector chains.

SpMM Multiplication According to current literature [4], it is more convenient to execute SpMV (sparse
matrix-vector) multiplications than SpMSpV (sparse matrix-sparse vector) multiplications. Since we have 256
such jobs (one multiplication per block) to perform in the default setting of the algorithm (size of the block
643; the size of the image 5122 × 256), or more in case of either smaller blocks or image larger than the
standard one, this stage must be evidently parallelized and carefully tuned, possibly by using the GPU, if
available.

1. the total speed of this stage is strongly dependent on the hardware available, on the granularity of bricks,
and on the choice between dense/sparse storage of encoded 3-chains;

2. the compute elements or threads is fed without solution of continuity in a dataflow process. This parallel
operation is, according to our preliminary experiments, the critical one of the whole workflow, since any
∆T (either positive or negative) in this stage contributes to the total time T .

2-Chain decoding Each multiplication of [∂B] : C3 → C2, times a 3-chain ν ∈ C3, produces a 2-chain
σ ∈ C2, i.e., the coordinate representation of the boundary vector σ ∈ C2. The inverse of the coding
algorithm is executed in the present stage. This process can also be partially superimposed in time with the
previous ones, depending on the size of the memory buffers used to feed the CPU cores or the GPUs and get
their results. Its elementary steps are as follows:

1. reading of position of ones (non-zeros) in the 2-chain as linear indices of rows;

2. conversion from linear indices to Cartesian indices in coordinates local to the B block, using the appro-
priate library functions;

3. conversion from each Cartesian index value to a suitably oriented (i.e., with proper attitude) geometry
quadrilateral (or pair of triangles) in local coordinates.

Julia’s vectorized pipeline data-flow was the more appropriate model to feed the workers’ jobs.

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

478

Assembling and artifact filtering The results of the previous stages can be described as a collection of sets
of geometric quadrilaterals (quads), each one encoded as an array of quadruples of integer indices, pointing to
the linear array of grid vertices associated with the image block B. In other words, all quads of each job are
now given in the same local coordinates. Besides putting each partial surface S(B) = (VB , FVσ) in the global
coordinate system of the image, the present stage must eliminate the redundant boundary features possibly
generated at the edges of the partial surface S(B) within each block B:

1. translate each array FVσ, of type Lar.Cells, by summing each vertex index to the linearized offset of the
Cartesian coordinates (i, j, k) of the B’s reference vertex, i.e., the one with lowest Cartesian coordinates
within the B block.

2. remove both instances of double quads generated by Lar software at the block boundaries (see Fig. 2b).
These are artifacts generated by the decomposition of the whole image into a number of blocks of
tractable size.

3. a smart strategy to remove such artifacts was used, that does not require any sorting nor searching on
the assembled array of quads. The output set of 2-cells (or triangles) is just rewritten, discarding the
elements pointing to all vertices with one coordinate equal to a block boundary. A proper software filter
was applied to this purpose.

Smoothing The final smoothing of the generated surfaces cannot be performed block-wise since this would
introduce non-smooth artifacts at the block boundaries. Anyway, Taubin smoothing [25] can be performed in
parallel, since for each vertex in the final surface (except eventually the ones on the image I boundaries) it
essentially consists in computing a new position as a proper average of its neighboring vertices, i.e., by applying
a discrete Laplacian operator. Some appropriate sets of workers may so be assigned the task of generating
iteratively a new position for the vertices they take cure of. In particular, we have:

1. job enqueuing, by writing sets of integers (global linear indices of vertices) in array buffers of type
Channel;

2. vectorized computation of proper averages of near vertices;

3. job dequeuing, by recovering finished tasks from a channel and assembling the results into the embedding
function V : C0 → E3, providing an array of type Lar.Points of Float64 × 3, with vertex coordinates
by column.

4.2 Performance Analysis

Boundary matrix size The size of the boundary matrix is a critical parameter of the lar-surf method. To
determine the optimal size of the boundary matrix we experimented on artificial data (Fig. 6a). The size of
the experimental data was set to 512× 512× 512 (a typical size of Computed Tomography medical images).
Computation was done on the Tesla DGX-1 machine.

According to the experiment the fastest computation is with boundary matrix size 64 × 64 × 64. This is
an expected result. The larger boundary matrix is too big to fit in CPU’s cache memory.

Comparison with the Marching Cubes algorithm To compare the time requirements of lar-surf with
Marching Cubes implemented in Python we performed an experiment on Ircadb dataset [24]. Dataset contain
20 Computed Tomography images (see table 1) with xy-resolution from 0.56 mm to 0.87 mm and z-resolution
from 1.0 mm to 4.0 mm. The number of slices is each series varies from 74 to 260 and the size of each slice is
512× 512. The dataset contains manually segmented liver, portal vein, and other structures. We performed

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

479

8 16 32 64 128
Boundary Size

102

103

Ti
m

e
[s

]

(a) Time requirements of the lar-surf filter used on arti-
ficial volumetric data with various sizes of boundary matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Data ID

101

102

Ti
m

e
[s

]

LarSurf Parallel
Marching Cubes

(b) Time requirements of the LAR-SURF filter and March-
ing Cubes on the Ircad dataset. Error bars show the 95%
confidence interval

Figure 6: Performance analysis of the lar-surf filter.

surface extraction of the liver with Marching Cubes and LAR-SURF. The time required for computation can
be seen in Fig. 6b.

Based on the t-test with α = 0.99, p = 8.735× 10−24 and s = −16.67 it can be shown that the mean
time consumed by LAR-SURF is significantly smaller than that consumed by Marching Cubes.

5 Examples

Use of the LarSurf.jl package can be seen on listings 1 where the liver segmentation with 2865131 voxels
from the Ircad dataset is used as an input for our surface extraction algorithm. The size of 3D volumetric
image is 129× 512× 512 and the voxel resolution is 1.6× 0.57× 0.57 [mm]. The output liver surface model
is formed by 182124 triangles and the number of vertices is 90822. The visualization can be seen in Fig. 7.

Listing 1: Get surface from DICOM volumetric data

us i ng D i s t r i b u t e d
us i ng Pio3d # Read 3D data from DICOM f i l e s
addprocs (3) # s e t number o f p r o c e s s o r s
us i ng La rSu r f

La rSu r f . l sp_se tup ([6 4 , 64 , 6 4]) # s e t b l o ck s i z e

read data from DICOM f i l e s
datap = Pio3d . read3d ("3Di rcadb1 .1/MASKS_DICOM/ l i v e r ")
s egmenta t i on = datap [" data3d "]
voxels ize_mm = datap [" voxels ize_mm"]

get s u r f a c e
V, FV = La rSu r f . l s p_ge t_su r f a ce (segmentat ion , voxels ize_mm)
FVt r i = La rSu r f . t r i a ngu l a t e_quad s (FV)

do smooth ing and save data

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

480

Figure 7: Triangulated surfaces of the macroscopic and microscopic structures of the liver extracted by the lar-surf
algorithm. (a) Detail of the portal vein (PV) with resolution 1.6 × 0.57 × 0.57 [mm]. (b) model of the human liver,
with portal vein and hepatic artery connected to colon and stomach. (c) microvasculature of a pig liver, based on
corrosion cast of interlobular veins prepared by Eberlova [10]. The size of the specimen is 0.936 [mm] along each axis
and the resolution of the Micro-CT data is 4.682 µm. Note that brick boundaries are flat.

Vs = La rSu r f . Smoothing . smoothing_FV_taubin (V, FV,0 . 5 , −0 .2 , 40)
o b j l i n e s = La rSu r f . Lar . l a r 2 o b j (Vs , FVtr i , " l i v e r . ob j ")

The portal vein surface extraction can be performed with a small change of the input path in the code.
The 3D image resolution is the same. The number of input voxels is 103533. The output surface is created
by 90822 vertices and 182124 triangles.

The right image of Fig. 7 is the surface of the microvasculature of a pig liver. The volumetric image is
based on Micro-CT data of corrosion casts of pig liver. [10]. The size of the visualized data is 100×100×100
voxels and the size of the voxel is 4.682 µm. The number of triangles is 544784 and the number of vertices
is 272826.

6 Discussion of Method

Most other methods for extraction of boundary surfaces from 3D data arrays—including [28] and [29]—use
implicit functions, defined by first averaging upon 3D mesh vertices the lighting or brightness of incident voxels,
and then by applying some marching cube algorithm in order to traverse and to triangulate the iso-valued
boundary patches.

We use instead, we use a binary labeling of the voxel sets of the image segment of interest, and the
standard medical 3D image array as solid representation. The set of boundary facets is extracted through
spMV (sparse matrix vector multiplication) of the [∂3] matrix times the binary vector labeling the voxels of the
segment. The boundary matrix is computed once and for all, sent to all workers (cores or nodes), then used in
parallel for all image brick extractions. This algebraic method can be immediately extended to multi-material
processing, as well as to designing multi-material tissue layering for 3D printing.

In particular, we might organize a multi-material (or multi-organ) extraction, simply by multiplication of
the boundary matrix [∂3] : C3 → C2 times a binary matrix where the non-zero elements on each column
represent either one of the materials, or one of the organs to be algebraically extracted by the filter. The two
surface patches common to two adjacent segments will be exactly coincident, and share the same geometry
and topology, with the only exception of the each patch contours, where the influence of adjacent patches
induces each instance to be separated and rounded-off.

The main advantage of the approach discussed in this paper is given by its very algebraic nature; our

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

481

implementation does not need any kind of algorithmic graph traversal, of difficult parallelization, but only
the execution of standard algebraic computing kernels, and in particular the spMV and the spMspM (sparse
matrix–sparse matrix multiplication) kernels, nowadays efficiently implemented by tensor processors on Nvidia
hardware. As we have shown, the parallelization, both shared-memory and distributed, is also fairly easy and
with good speed-up.

7 Conclusion

We introduced a Julia implementation of an algebraic filter to extract the boundary surface of some specific
image segment, described as a 3-chain of voxels from 3D medical images. Translation from Cartesian indices
of cells to linearized indices, computation of sparse boundary matrices, and sparse matrix-vector multiplication
are the main computational kernels of this approach.

The implementation of the lar-surf filter is available in an open-source repository and can be installed
using standard Julia package manager [11].

We showed a good speed-up over marching-cubes algorithms. The existing implementation employs Ju-
lia’s channels for multiprocessing. Our performance experiment determined an optimal size of the brick size.
Parallelization makes a large portion of spared computational cost. Moreover, we expect additional improve-
ments in the future because our approach is appropriate for SIMD (Single Instruction, Multiple Data) hybrid
architectures of CPUs and GPUs, since only the initial block setup of the boundary matrix and image slices
and the final collection of computed surface portions require inter-process communication.

Currently, the computational pipeline is being strongly improved to gain a greater speed-up using native
Julia implementation CUDA.jl of Nvidia programming platform [2] and Julia’s SuiteSparseGraphBLAS.jl
framework [4] for graph algorithms with the language of linear algebra. In particular, we are extending the
use-pattern of this library, in order to work with general cellular complexes.

ACKNOWLEDGEMENTS

This work was supported by Charles University Research Centre program UNCE/MED/006 “Uni-
versity Center of Clinical and Experimental Liver Surgery” and Ministry of Education project ITI
CZ.02.1.01/0.0/0.0/17_048/0007280: Application of modern technologies in medicine and industry. The
research was also supported by the project LO 1506 of the Czech Ministry of Education, Youth and Sports.

A Appendix

Here we provide, for the sake of readers, a list of symbols used in the paper, and a small set of related
definitions. A description of public dataset used in the experiments, and a coding example of computation of
the sparse [∂3] boundary matrix in Julia is finally given.

1.1 Symbol list

I three-dimensional medical image
`1, `2, `3 dimensions of image
S segment: a subset of voxels from image segmentation
B 3D image brick
size lateral dimension of cubic brick B
n number of bricks B (jobs) in I
[∂B] boundary matrix for brick B
Cp linear (vector) space of p-chains
ν ∈ Cp p-chain

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

482

[ν] coordinate representation (binary vector) of ν
E3 Euclidean 3-space

1.2 Definitions

Boundary model Closed manifold surface of the boundary of a solid model
CSC Compressed Sparse Column format for sparse matrices
Global coordinates Integer linear coordinates of I
Local coordinates Integer linear coordinates of B
Cartesian coordinates Integer triples (i, j, k) one-to-one with voxels
Voxels Individual elements in 3D image (3-cells)
p-chain Formal linear combination of p-cells with coefficients in {0, 1}
Coord. repr. Binary vector (for p-chains) or binary matrix (for chain operators)
Quad Geometric quadrilateral; convex polygon with four vertices
Foreground voxel Individual element of a segment S
Segment Subset of voxels resulting from image segmentation

1.3 3D-Ircadb Dataset

For perfomance analysis the public dataset from the Research Institute against Digestive Cancer (IRCAD) [24]
was used. Table 1 describes the dataset.

z-resolution [mm] xy-resolution [mm] obj. voxels size xy size z

min 1.00000 0.561000 5.832080e+05 512.0 74.000000

mean 1.77750 0.725141 1.894777e+06 512.0 141.150000

50% 1.60000 0.739094 1.760604e+06 512.0 127.000000

max 4.00000 0.873047 3.341433e+06 512.0 260.000000

Table 1: Ircad dataset description [24]. It contains 20 Computed Tomography images of the abdomen with
manually segmented tissues.

1.4 Basic operations in LAR

Boundary matrices for grids of cubes:
We give here the full Julia code for the algebraic computation of ∂3 matrix, for a very small : grid of unit
3-cubes. Due to the simplicity of the cells (voxels = cubes), a sufficient (geom,top) pair is given below as
(V,CV), where CV is an array of arrays of Int64 indices of vertices of grid cubes.

julia> using LinearAlgebraicRepresentation, SparseArrays
julia> Lar = LinearAlgebraicRepresentation
julia> V, CV = Lar.cuboidGrid([3,2,1])
julia> V
0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0
0.0 0.0 1.0 1.0 2.0 2.0 0.0 0.0 1.0 1.0 2.0 2.0 0.0 0.0 1.0 1.0 2.0 2.0 0.0 0.0 1.0 1.0 2.0 2.0
0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
julia> CV
[[1, 2, 3, 4, 7, 8, 9,10], [3, 4, 5, 6, 9,10,11,12], [7, 8, 9,10,13,14,15,16],
[9,10,11,12,15,16,17,18], [13,14,15,16,19,20,21,22], [15,16,17,18,21,22,23,24]

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

483

Face and Edge Data generation:
In the following, we provide the functions for generating the face data FV (vertex indices in faces) with function
CV2FV and edge data EV (vertex indices in edges) with function CV2EV from cell data CV.

function CV2FV(v:: Array{ Int64 })
return faces = [[v[1], v[2], v[3], v[4]], [v[5], v[6], v[7], v[8]],

[v[1], v[2], v[5], v[6]], [v[3], v[4], v[7], v[8]],
[v[1], v[3], v[5], v[7]], [v[2], v[4], v[6], v[8]]]

end
function CV2EV(v:: Array{ Int64 })

return edges = [[v[1],v[2]], [v[3],v[4]], [v[5],v[6]], [v[7],v[8]], [v[1],v[3]], [v[2],v[4]],
[v[5],v[7]], [v[6],v[8]], [v[1],v[5]], [v[2],v[6]], [v[3],v[7]], [v[4],v[8]]]

end

Characteristic matrices:
The function K transforms an array of arrays (VV, EV, FV, CV) into a sparse binary characteristic matrix
(M0, M1, M2, M3). A Julia sparse matrix needs three arrays I, J, Vals of rows, columns, values of non-zeros:

VV = [[v] for v=1:size(V, 2)];
FV = collect(Set{Array{Int64,1}}(vcat(map(CV2FV, CV)...)))
[[13,15,19,21], [1,2,3,4], [7,9,13,15], [13,14,15,16], [7,8,13,14], [1,2,7,8], [2,4,8,10], [7,8,9,10],
[3,5,9,11], [8,10,14,16], [15,16,21,22], [9,11,15,17], [3,4,5,6], [17,18,23,24], [11,12,17,18],
[1,3,7,9], [3,4,9,10], [9,10,15,16], [4,6,10,12], [13,14,19,20], [9,10,11,12], [15,16,17,18],
[19,20,21,22], [15,17,21,23], [16,18,22,24], [21,22,23,24], [10,12,16,18], [5,6,11,12], [14,16,20,22]]

EV = collect(Set{Array{Int64,1}}(vcat(map(CV2EV, CV)...)))
[[15,17], [16,22], [6,12], [17,23], [18,24], [4,10], [3,4], [13,15], [11,12], [9,15], [13,19],
[1,7], [5,11], [5,6], [12,18], [8,14], [15,21], [17,18], [1,3], [2,4], [16,18], [2,8], [21,23],
[20,22], [1,2], [14,16], [10,16], [13,14], [19,21], [7,13], [9,10], [23,24], [11,17], [21,22],
[3,9], [3,5], [9,11], [7,9], [14,20], [7,8], [22,24], [19,20], [8,10], [15,16], [10,12], [4,6]]

function K(CV)
I = vcat([[k for h in CV[k]] for k =1: length(CV)]...);
J = vcat(CV ...);
Vals = Int8[1 for k=1: length(I)];
return SparseArrays.sparse(I,J,Vals)

end
VV = [[k] for k=1:size(V,2)];
M0 = K(VV); M1 = K(EV); M2 = K(FV); M3 = K(CV);

Boundary matrices:
The boundary matrices between non-oriented chain spaces are computed by sparse matrix multiplication
followed by matrix filtering, produced in Julia by the broadcast of vectorized integer division (.÷):

This code is working with Julia 1.2
partial_1 = M0 * M1’
partial_2 = div.((M1 * M2’), 2)
s = sum(M2, dims=2)
partial_3 = (M2 * M3’) ./ s
partial_3 = div.(partial_3, 1)

Miroslav Jirik http://orcid.org/0000-0002-8002-2079
Antonio DiCarlo http://orcid.org/0000-0002-7736-684X

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://orcid.org/0000-0002-8002-2079
http://orcid.org/0000-0002-7736-684X
http://www.cad-journal.net

484

Václav Liska http://orcid.org/0000-0002-5226-0280
Alberto Paoluzzi http://orcid.org/0000-0002-3958-8089

REFERENCES

[1] Bajaj, C.L.; Pascucci, V.; Thompson, D.; Zhang, X.Y.: Parallel accelerated isocontouring for out-of-core
visualization. Proceedings of the 1999 IEEE Symposium on Parallel Visualization and Graphics, PVGS
1999, 97–104, 1999. http://doi.org/10.1145/328712.319342.

[2] Besard, T.; Foket, C.; De Sutter, B.: Effective Extensible Programming: Unleashing Julia on GPUs.
IEEE Transactions on Parallel and Distributed Systems, 30(4), 827–841, 2019. ISSN 15582183. http:
//doi.org/10.1109/TPDS.2018.2872064.

[3] Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B.: Julia: A fresh approach to numerical computing.
SIAM Review, 59(1), 65–98, 2017. http://doi.org/10.1137/141000671.

[4] Buluc, A.; Mattson, T.; McMillan, S.; Moreira, J.; Yang, C.: Design of the GraphBLAS API for C. In
Proceedings - 2017 IEEE 31st International Parallel and Distributed Processing Symposium Workshops,
IPDPSW 2017, 643–652, 2017. ISBN 9781538634080. http://doi.org/10.1109/IPDPSW.2017.117.

[5] Chernyaev, E.: Marching cubes 33: Construction of topologically correct isosurfaces. Tech. rep., 1995.
http://wwwinfo.cern.ch/asdoc/psdir.

[6] Crossno, P.; Angel, E.: Isosurface extraction using particle systems. Proceedings of the IEEE Visualization
Conference, 495–498, 1997. http://doi.org/10.1109/visual.1997.663930.

[7] Custodio, L.; Pesco, S.; Silva, C.: An extended triangulation to the Marching Cubes 33 algorithm.
Journal of the Brazilian Computer Society, 25(1), 6, 2019. ISSN 1678-4804. http://doi.org/10.
1186/s13173-019-0086-6.

[8] Dicarlo, A.; Milicchio, F.; Paoluzzi, A.; Shapiro, V.: Chain-based representations for solid and physical
modeling. IEEE Transactions on Automation Science and Engineering, 6(3), 454–467, 2009. ISSN
15455955. http://doi.org/10.1109/TASE.2009.2021342.

[9] Dicarlo, A.; Paoluzzi, A.; Shapiro, V.: Linear algebraic representation for topological structures. Comput.
Aided Des., 46, 269–274, 2014. ISSN 0010-4485. http://doi.org/10.1016/j.cad.2013.08.044.

[10] Eberlova, L.; Liska, V.; Mirka, H.; Tonar, Z.; Haviar, S.; Svoboda, M.; Benes, J.; Palek, R.; Emingr,
M.; Rosendorf, J.; others: The use of porcine corrosion casts for teaching human anatomy. Annals of
Anatomy-Anatomischer Anzeiger, 213, 69–77, 2017.

[11] Jirik, M.; Paoluzzi, A.: LarSurf.jl package on GitHub, 2020. https://mjirik.github.io/LarSurf.
jl/.

[12] Lachaud, J.O.; Montanvert, A.: Continuous analogs of digital boundaries: A topological approach to
iso-surfaces. Graphical Models, 2000. ISSN 15240703. http://doi.org/10.1006/gmod.2000.0522.

[13] Lorensen, W.E.; Cline, H.E.: Marching Cubes: A High Resolution 3D Surface Construction Algorithm.
ACM siggraph computer graphics, 21(4), 163–169, 1987.

[14] Natarajan, B.K.: On generating topologically consistent isosurfaces from uniform samples. The Visual
Computer, 11(1), 52–62, 1994. ISSN 1432-2315. http://doi.org/10.1007/BF01900699.

[15] Newman, T.S.; Yi, H.: A survey of the marching cubes algorithm. Computers and Graphics (Pergamon),
30(5), 854–879, 2006. ISSN 00978493. http://doi.org/10.1016/j.cag.2006.07.021.

[16] Paoluzzi, A.; Dicarlo, A.; Furiani, F.; Jirik, M.: CAD models from medical images using LAR. Computer-
Aided Design, 13(6), 2016. ISSN 0010-4485. http://doi.org/10.1080/16864360.2016.1168216.

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://orcid.org/0000-0002-5226-0280
http://orcid.org/0000-0002-3958-8089
http://doi.org/10.1145/328712.319342
http://doi.org/10.1109/TPDS.2018.2872064
http://doi.org/10.1109/TPDS.2018.2872064
http://doi.org/10.1137/141000671
http://doi.org/10.1109/IPDPSW.2017.117
http://wwwinfo.cern.ch/asdoc/psdir
http://doi.org/10.1109/visual.1997.663930
http://doi.org/10.1186/s13173-019-0086-6
http://doi.org/10.1186/s13173-019-0086-6
http://doi.org/10.1109/TASE.2009.2021342
http://doi.org/10.1016/j.cad.2013.08.044
https://mjirik.github.io/LarSurf.jl/
https://mjirik.github.io/LarSurf.jl/
http://doi.org/10.1006/gmod.2000.0522
http://doi.org/10.1007/BF01900699
http://doi.org/10.1016/j.cag.2006.07.021
http://doi.org/10.1080/16864360.2016.1168216
http://www.cad-journal.net

485

[17] Paoluzzi, A.; Shapiro, V.; DiCarlo, A.; Furiani, F.; Martella, G.; Scorzelli, G.: Topological computing
of arrangements with (co)chains. Transactions on Spatial Algorithms and Systems (ACM TSAS), 2020.
Accepted for publication.

[18] Paoluzzi, A.; Shapiro, V.; DiCarlo, A.; Scorzelli, G.; Onofri, E.: Finite Boolean Algebras for Solid Geometry
using Julia’s Sparse Arrays. arXiv e-prints, arXiv:1910.11848, 2019. https://arxiv.org/pdf/1910.
11848.

[19] Paoluzzi, A.; Shapiro, V.; DiCarlo, A.; Scorzelli, G.; Onofri, E.: Finite boolean algebras for
solid geometry using julia’s sparse arrays, 2019. https://arxiv.org/abs/1910.11848. Eprint in
https://arxiv.org/abs/1910.11848.

[20] Requicha, A.G.: Representations for rigid solids: Theory, methods, and systems. ACM Comput. Surv.,
12(4), 437–464, 1980. ISSN 0360-0300. http://doi.org/10.1145/356827.356833.

[21] Rohan, E.; Lukes, V.; Jonásová, A.: Modeling of the contrast-enhanced perfusion test in liver based on
the multi-compartment flow in porous media. Journal of Mathematical Biology, 77(2), 421–454, 2018.
ISSN 14321416. http://doi.org/10.1007/s00285-018-1209-y.

[22] Shapiro, V.: Solid modeling. In G. Farin; J. Hoschek; S. Kim, eds., Handbook of Computer Aided
Geometric Design, chap. 20, 473–518. Elsevier Science, 2002.

[23] Smistad, E.; Elster, A.C.; Lindseth, F.: Real-Time Surface Extraction and Visualization of Medical Images
using OpenCL and GPUs. In Norsk informatikkonferanse, 141–152, 2012. http://www.tapironline.
no/last-ned/1050.

[24] Soler, L.: 3D-IRCADb-01 dataset, 2016. https://www.ircad.fr/research/3dircadb/.
[25] Taubin, G.: Curve and surface smoothing without shrinkage, 1995. http://doi.org/10.1109/iccv.

1995.466848.
[26] Taubin, G.: A signal processing approach to fair surface design. In Proceedings of the 22Nd Annual

Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95, 351–358. ACM, New
York, NY, USA, 1995. ISBN 0-89791-701-4. http://doi.org/10.1145/218380.218473.

[27] Taubin, G.: Geometric Signal Processing on Polygonal Meshes. In Eurographics 2000 - STARs. Euro-
graphics Association, 2000. ISSN 1017-4656. http://doi.org/10.2312/egst.20001029.

[28] Wang, C.C.L.: Direct extraction of surface meshes from implicitly represented heterogeneous volumes.
Comput. Aided Des., 39(1), 35?50, 2007. ISSN 0010-4485. http://doi.org/10.1016/j.cad.2006.
09.003.

[29] Wang, C.C.L.: Extracting Manifold and Feature-Enhanced Mesh Surfaces From Binary Volumes. Journal
of Computing and Information Science in Engineering, 8(3), 2008. ISSN 1530-9827. http://doi.org/
10.1115/1.2960489. 031006.

Computer-Aided Design & Applications, 18(3), 2021, 468-485
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

https://arxiv.org/pdf/1910.11848
https://arxiv.org/pdf/1910.11848
https://arxiv.org/abs/1910.11848
http://doi.org/10.1145/356827.356833
http://doi.org/10.1007/s00285-018-1209-y
http://www.tapironline.no/last-ned/1050
http://www.tapironline.no/last-ned/1050
https://www.ircad.fr/research/3dircadb/
http://doi.org/10.1109/iccv.1995.466848
http://doi.org/10.1109/iccv.1995.466848
http://doi.org/10.1145/218380.218473
http://doi.org/10.2312/egst.20001029
http://doi.org/10.1016/j.cad.2006.09.003
http://doi.org/10.1016/j.cad.2006.09.003
http://doi.org/10.1115/1.2960489
http://doi.org/10.1115/1.2960489
http://www.cad-journal.net

	Introduction
	Background
	Representation Scheme
	Linear Algebraic Representation
	Multi-indices from Cartesian Indices
	Taubin Smoothing

	Brick-parametric Design
	Brick Decomposition
	Brick Operator
	Brick-to-boundary Mapping
	Brick-level Parallelism

	Julia Implementation
	Parallel Workflow
	Performance Analysis

	Examples
	Discussion of Method
	Conclusion
	Appendix
	Symbol list
	Definitions
	3D-Ircadb Dataset
	Basic operations in LAR

