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Abstract. Shape interpolation is an important methodology for 3D modeling in digital geom-
etry processing. It has been widely applied in computer animation, geometric design, and so
on. This paper proposes a framework for producing smooth interpolation sequences on a high
dimensional manifold, which is spanned by given 3D keyframes represented as meshes with
the same connectivity. Speci�cally, we convert each keyframe to a high dimensional vector
stacked with edge lengths and dihedral angles and regard it as a point in the corresponding
shape space. We then project these points (keyframes) onto a planar space and further
triangulate the 2D projections into a mesh. A 2D manifold embedded in the shape space
can be obtained by using Loop subdivision surface to interpolate the high-dimensional mesh
which is constructed by transferring the connectivity of the 2D mesh onto the correspond-
ing keyframes. For the convenience of modeling, we design an interactive interface which
supports sampling C2 continuous animation sequences on the manifold by drawing cubic
B-splines on its projected plane. Thorough experiments show that our approach is e�cient
and capable of producing high quality animation sequences, compared to the state-of-the-art
3D shape interpolation methods.

Keywords: 3D shape interpolation, edge length and dihedral angle, shape subdivision man-
ifold, progressive interpolation, animation sequence
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1 INTRODUCTION

Shape interpolation is an important method for 3D modeling in digital geometry processing, which has widely
been used in computer animation and geometric design. Though shape interpolation has been investigated
thoroughly, most approaches belong to linear interpolation, which usually extracts geometric quantities en-
coding the given shapes [34] or transformation deforming one shape to the other [2], and then compute the
corresponding quantities of the intermediate shape by linear interpolation.
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However, both aforementioned mechanisms use only two keyframes to create intermediate shapes. If a set
of keyframes are given, they usually generate a whole sequence by interpolating between successive frames
pair by pair. Such a shape curve only achieves C0 continuity at the keyframes which usually exhibit unsmooth
transition artifacts. To address the issue, Heeren et al. [11] directly extended their shapes interpolation
methods [12, 10] to construct geodesic paths passing through all given shapes. The improvement could
produce pleasing animations, but is time-consuming due to involving global optimization. Huber et al. [15]
introduced discrete cardinal splines and interpolatory subdivision curves in the above Riemann shell space to
achieve smooth interpolation. This approach appears a little di�cult for engineering applications due to its
low e�ciency. Xia et al. [33] directly employed a cubic spline to interpolate the control polygon of keyframes
in the shape space de�ned by linear rotation-invariants. The approach greatly reduces the computation time
while maintaining the smooth transition property. Nevertheless, all these methods only construct a shape
curve and therefore do not su�ciently explore the shape space blended by given keyframes.

This paper proposes a framework to produce smooth interpolation sequences on a high dimensional man-
ifold, which is spanned by given 3D keyframes represented as meshes. And these meshes share the same
connectivity. Speci�cally, as shown in Fig. 1, we convert each keyframe to a high dimensional vector stacked
with edge lengths and dihedral angles, and regard it as a point in the corresponding shape space. We then
project these high dimensional points onto a planar space via Local Linear Embedding (LLE) [22] and further
triangulate the projections into a 2D mesh base on Delaunay triangular. The connectivity of the 2D mesh is
�nally transferred to the high dimensional points to obtain a shape mesh in the shape space. A 2D manifold
embedded in the shape space can thus be obtained by using Loop subdivision surface to interpolate the shape
mesh. The loop surface constructed in the shape space is C1 continuous in the general case, and C2 contin-
uous for regular meshes [19, 30]. In order to obtain the shape sequence, we draw a cubic B-spline curve on
the parametric space of the surface and map it to the surface for sampling. When the curve does not pass
through the vertexes of shape mesh, the curve constructed on the loop surface is theoretically C2. If there is
a actual control point of curve passing through the vertexes of shape mesh, the curve is C1 continuous. For
the convenience of modeling, we design an interactive interface which supports sampling animation sequences
on the manifold by drawing cubic B-splines on the corresponding projected plane. Our contributions include:

� A shape subdivision manifold is constructed to pass through the given set of keyframes (animation
meshes) in a high dimensional shape space de�ned by the edge lengths and dihedral angles, which
greatly enriches the optional animation sequences;

� Nonlinear dimensionality reduction of locally linear embedding is elaborately selected to perform the 2D
manifold embedding, such a projected layout can capture the similarity among keyframes well.

� An interactive interface is designed to help navigate the shape manifold. By drawing a cubic B-spline
freely within the 2D projected region, users can obtain their desired C2 continuous smooth mesh se-
quence.

2 RELATED WORK

Closely relevant to the central theme, we now brie�y review previous approaches and their related applications
in three categories: linear shape interpolation, geodesic path generation for two shapes, and geodesic path
interpolating multiple keyframes.

2.1 Linear Shape Interpolation

At present, most shape interpolation methods belong to linear interpolation. The essence of shape interpola-
tion is to �nd geometric or motion quantities whose linear change can drive the shape smoothly and naturally
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deforming. Various techniques have been proposed, such as ARAP (As Rigid As Possible) [2] shape interpola-
tion reconstructs the intermediate shape by linearly blending the identity matrix and the transformations from
source triangles to the corresponding target triangles. Since then, the idea of ARAP algorithm has been used
for reference by many subsequent researchers, such as [4], [26] and [17]. MeshIK [28] can be regarded as a
variant of the ARAP interpolation, which linearly interpolates deformation gradients from source triangles to
the corresponding target triangles to obtain intermediate shapes.

Multi-scale interpolation by Winkler et al. [32] blends the edge lengths and dihedral angles of given meshes
and then use the multi-scale strategy to recover the intermediate shapes. Scheme [8] also reconstructed the
intermediate pose by specifying the length and dihedral angle of its edges. And [3] de�ned isometry-invariant
intrinsic coordinates (IICs) for each mesh edge, which consists of the length of the current edge, the exterior
angle of between adjacent triangles, and the exterior angle between two edges. All these methods can be
viewed as extensions of the approach in [25] and [24].

In addition, there are methods based on extrinsic attributes based methods, such as [32], [14], [21] and
[9].

However, all these methods only use two keyframes to create the intermediate shapes between them and
therefore results in piecewise smooth interpolation sequences. Namely, the animation sequence generated by
multiple keyframes usually exhibits the artifact of unsmooth shape transition near a internal keyframe.

2.2 Geodesic Paths Interpolating Two Shapes

The idea of using geodesic for navigating shape space is recent. Kilian et al. [16] accounted for 3D shapes as
points of a Riemannian shape space equipped with an isometric inner-product. Shape interpolation is then cast
to �nd a geodesic path in the shape space. Meshless modeling [1] represents a shape by blending a set of nodes
sampled from the volume of the shape. Keyframe interpolation is then cast into a constrained minimization on
the trajectories of the nodes. Heeren et al. [12] found a geodesic path by modeling time-discrete geodesic paths
of shape sequences in the space of shells instead. Both methods result in a large-scale nonlinear optimization
problem and cannot cope with the large-scale deformation problem due to linear initialization.

By viewing the interpolation as a motion problem, AIAP (As Isometric As Possible) [18] introduced an
as-isometric-as-possible framework which is derived by minimizing the total variation of edge lengths of all
frames. Zhang et al. [35] strive to �nd the solution using only one (edge) anchor for each interpolation
example. Recently, NNwarp [20] proposed a neural network-based nonlinear deformation method.

Interpolating geodesic paths between two shapes still su�ers from unsmooth shape transition. In addition,
this kind of algorithms usually involves global optimization and therefore is computationally ine�cient.

2.3 Geodesic Paths Passing Through Multiple Keyframes

The shape curve of interpolating two keyframes mentioned above obviously only achieves C0 continuity at
the keyframes. This will lead to an unsmooth transition. To address the above issue, Heeren et al. [11]
directly extended their two shapes interpolation method to construct geodesic paths passing through all given
shapes. The improvement may produce pleasing animations, but is time-consuming due to involving global
optimization. Huber et al. [15] introduced discrete cardinal splines and interpolated subdivision curves in
the above Riemann shell space to achieve smooth interpolation. This approach appears a little di�cult for
engineering applications and seems not e�cient enough considering that shapes are represented with Loop
subdivision surfaces. Xia et al. [33] directly employed a cubic spline to interpolate the control polygon of
keyframes in the shape space de�ned by their linear rotation-invariants.

All these methods focus on constructing a smooth shape sequence interpolating multiple keyframes, and
did not exploit the possible shape space spanned by the given keyframes. In view of this, our method constructs
a shape subdivision surface de�ned by the keyframes to generate more animation sequences. By interactively

Computer-Aided Design & Applications, 18(3), 2021, 486-501
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


489

selecting keyframes on the shape subdivision surface, users can obtain a huge number of animation sequences.
This undoubtedly helps users to realize their design intention more easily.

3 OVERVIEW

We �rst introduce the notations. Assume we are given n triangular meshes {M1,M2, . . . ,Mn} as keyframes,
where n is not less than three and all Mi = (V,E, F ) share the same connectivity. Let |V |, |E|, and |F | be
the number of vertices, edges and faces respectively. Furthermore, let Φi = (Θi,Li) be the 2|E| dimension
vector, where Θi is a vector stacked with |E| dihedral angles of edges and Li is a vector �lled with |E| edge
lengths of triangles. We then view each keyframe as a point in R2|E| and denote the set of key vectors
by D = {Φ1,Φ2, . . . ,Φn}. Our shape interpolation is based on subdivision surfaces and consists of four
steps: dimension reduction, triangulation manifold, construction of interpolatory Loop subdivision surface in
the shape space, and shape sequence reconstruction as shown in Fig. 1. A brief explanation for each step is
sketched respectively in the following and more technical details will be discussed in Section 4.

global optimization. Huber et al (2017) introduced discrete cardinal splines and 

interpolatory subdivision curves in the above Riemann shell space to achieve smooth 

interpolation. This approach appears a little difficult for engineering applications and seems 

not efficient enough considering that shapes are represented with Loop subdivision 

surfaces. Xia et al. (2019) directly employed a cubic spline to interpolate the control polygon 

of keyframes in the shape space defined by their linear rotation-invariants. All this methods 

focus on constructing a shape curve smoothly transitioning among multiple keyframes, and 

underexploited infinite possibilities in shape sapce.  

 

3 Overview 

We first introduce the notations used in this paper before sketching the pipeline of the 

proposed algorithm. Assume we are given 𝑛 triangular meshes ℳ = {𝑀1, 𝑀2, … 𝑀𝑛} as 

keyframes, where all 𝑀i = (𝑉, 𝐸, 𝐹) have the same connectivity. Let |𝑉|, |𝐸|, and |𝐹| be the 

vertices, edges and faces numbers, respectively. Furthermore, let Φ𝑖 = (Θ𝑖 , L𝑖) be the 2|E| 

dimension vector, where Θ𝑖 is a vector stacked with |E| dihedral angles of edges and L𝑖 is 

a vector filled with |E| edge lengths of triangles. We then view each keyframe as a point in 

ℝ2|𝐸| and denote the set of key vectors by 𝔒 = {Φ1, Φ2, … , Φ𝑛}. Our shape interpolation 

via subdivision surfaces mainly consists of four components: dimension reduction, 

triangulation manifold, construction of interpolatory Loop subdivision surface in the shape 

space, and shape sequence reconstruction as shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Pipeline of the proposed algorithm: (a) A set of input models {𝑀1, 𝑀2, … 𝑀𝑛}; (b) Dimension reduction 

by projecting high dimensional points of the shape space onto a 2D plane; (c) Triangulation of the 2D points using 

Delaunay algorithm; (d) The interpolatory Loop subdivision surface on the 2D plane; (e) An interactive path (yellow) 

on the 2D surface. The orange points are selected by the user and the yellow line is generated by cubic splines ; (f) 

A shape sequence obtained by back projection onto the shape manifold. 

 

Dimensionality reduction. In this step, we project 𝔒 = {Φ1, Φ2, … , Φ𝑛} onto a 2D planar 

space by using a dimensionality reduction method called local linear embedding (LLE, Roweis 

and Saul, 2000). Denote the projected points by 𝒹 = {ϕ1, ϕ2, … , ϕ𝑛}  with ϕ𝑖  be the 

projection of Φ𝑖. As a good manifold learning algorithm, LLE can effectively learn the overall 

embed features that reflect the manifold structure of the data set. Experimental results will 

keyframes dimension reduction 

(a)  (b)  (c)  (d)  (e)  

(f)  

triangulation progressive interpolation surface          interactive path 

Figure 1: Pipeline: (a) a set of keyframes {M1,M2, . . .Mn}; (b) dimension reduction of high dimensional
points (keyframes) in the shape space; (c) triangulation of the 2D points using Delaunay algorithm; (d)
progressive interpolatory Loop subdivision surface; (e) a cubic B-spline interactive path (yellow) generated
by user-selected points (orange) on plane; (f) a shape sequence obtained by back-projection onto the shape
manifold.

Step 1: Dimensionality reduction. Given a set of keyframes as shown in Fig. 1(a), each of which is
viewed as a point in a high-dimensional shape space, we want to construct a shape space expanded by them.
Our idea is to create a control mesh with the keyframes as vertices and then generate an shape interpolatory
subdivision surface. In addition, adjacent vertices of the control mesh should have similar shape. Finally, once
the shape space has been created, we hope that it is easy for users to navigate interactively. Based on these
considerations, we project the keyframes onto a 2D space using LLE [22] which is able to e�ectively learn the
structured features of the dataset and to preserve them in the embedded space. As an example, Fig. 1(b)
illustrates the projection of the shapes in Fig. 1(a). For the sake of description, we denote the projected point
set of D by d = {φ1, φ2, . . . , φn} with φi ∈ R2 be the projection of Φi.

Step 2: Triangulation in the shape space. After obtaining the 2D projection d of the keyframes, we
triangulate the projected points into a planar triangular mesh using Delaunay triangulation algorithm, which
we denote by Md as shown in Fig. 1(c). The connectivity of Md is then mapped onto the corresponding
high-dimensional shape points in D to obtain a mesh MD in the shape space. The vertices of MD are the
corresponding initial keyframes.
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Step 3: Progressive interpolation Loop subdivision surfaces in shape space. This step constructs
a shape subdivision manifold MD interpolating the vertices (keyframes) of MD based on a variant of Loop
subdivision described in [5], which is the main goal of this paper. The shape manifold is almost everywhere
C2 according to [7]. As we investigate shape interpolation, therefore require the shape subdivision manifold
passing through the keyframes. Noting that Loop subdivision surfaces are approximation, we employ the
progressive interpolation algorithm [5, 6] to generate an interpolatory one. Fig. 1(d) depicts the projected
interpolatory subdivision surface of the keyframe set in Fig. 1(a). We can simply regard the interpolatory
subdivision surface of Md, denoted by Md, as the projection of MD.

Step 4: Reconstruction of shape sequences. Obviously, a curve onMD will correspond to an animated
sequence. For the convenience of modeling, we design an interactive interface to support sampling animation
sequences on MD by drawing curves on its projected subdivision surface Md. The user actually only needs to
specify a few points sequentially (see Fig. 1(e) for example). Our system will generate a cubic B-spline passing
through these points. Uniformly sampling a set of points on the curve and then mapping them onto MD will
lead to a sequence of vectors of edge lengths and dihedral angles (shape points). Converting the vectors into
shape meshes �nally yields a smooth sequence of 3D shapes as shown in Fig. 1(f).

4 METHODS

This section will describe some important details according to the pipeline mentioned in the overview. Firstly,
evaluating the most suitable dimensionality reduction approach to project keyframes onto a 2D plane. Then,
progressively interpolating the Loop surface is discussed. And �nally, explain how to reconstruct animation
sequence according to the spline path on the subdivision surfaces.

4.1 Dimension Reduction of Shape Space

A lot of methods have been proposed to reduce the dimensionality of high dimensional datasets. For example,
Isometric feature mapping (Isomap) [29] sustains the geodesic distance between samples in the dataset. LLE
[22] assumes that local regions of a high-dimensional manifold are nearly planar and therefore a sample can be
linearly blended by its neighbors. The linear relationship is maintained in the process of dimension reduction.
Local Tangent Space Arrangement (LTSA) [36] approximates the local geometry of the high-dimensional
manifold with tangent spaces learned by �tting an a�ne subspace to the neighborhood of each sample in the
dataset.

We choose one from the aforementioned three algorithms by using them to project some shape sequences
onto a plane and observing whether the similarity of two shapes and the distance between their projections
are compatible. The results, discussed in Section 5.1, show that LLE is most suitable for our setting, therefore
we brie�y describe here how to adapt the universal LLE to our scenarios. Speci�cally, for each sample Φi ∈ D
and the set of its neighbors

{
Φij , j = 1, 2, ..., k

}
, LLE calculates the blending weights wiij between Φi and

Φij by minimizing the following reconstruction errors

E(W ) =

n∑
i=1

∥∥∥∥∥∥Φi −
∑

1≤j≤k

wiij Φij

∥∥∥∥∥∥
2

2

, s.t.
∑

1≤j≤k

wiij = 1 (1)

We call W = (wij)n×k the reconstruction weight matrix in which entry wij = 0 if j is not a neighbor
of i. W re�ects the local geometric properties between each sample and its neighbors. It is worth noting
that these weights remain unchanged under a�ne transformations such as rotation, scaling and translation
[22, 23]. With W known, we then �nd the projections by enforcing them to meet the same structure:

arg min
{d}

n∑
i=1

∥∥∥∥∥∥φi −
∑

1≤j≤k

wijφij

∥∥∥∥∥∥
2

2

(2)
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4.2 Shape Interpolation Subdivision Surfaces

Given n discrete high dimensional mesh D as keyframes, this section describes a pose manifold MD spanned
by keyframes via progressively interpolate the triangulation of D base on Loop subdivision [5, 6]. Speci�cally,
we use the following formula to make the pose manifold MD iteratively approximate the triangulation of D.

Φ
(t)
i = Φ

(t−1)
i +

(
Φi − Φ

(t−1,∞)
i

)
, t = 1, 2, . . . (3)

where Φ(t,∞) =
(

Φ
(t,∞)
1 ,Φ

(t,∞)
2 ,...,Φ

(t,∞)
n

)
are the limit positions of the subdivision surface with control vertices

Φ(t) =
(

Φ
(t)
1 ,Φ

(t)
2 , . . . ,Φ

(t)
n

)
, and Φ

(0)
i = Φi. Iterate k times to get a control mesh Φ(k) and the corresponding

limit mesh Φ(k,∞). When k tends to in�nity, the distance between Φ(0) and Φ(k,∞) decreases to zero. It
is easy to extend the proof in [5] to show the convergence of the iterative process in Equation 3. In all our
experiments we set k = 5, since under such a condition, the di�erence between Φ(0) and Φ(k,∞) becomes very
small. Fig. 2 illustrates the masks of limit position [13] applied in the paper. Fig. 2 (a) depicts the limit mask
of an interior vertex while Fig. 2 (b)∼(g) illustrate limit masks of total six di�erent boundary con�gurations. A
boundary vertex is called a regular vertex if its valence is four. Otherwise, it is called an extraordinary vertex.

2009, Deng et al. 2012). Specifically, we use the following formula to iteratively approximate 
the control vertices in order to interpolate ॊ 

Φ௜
ሺ௧ሻ ൌ Φ௜

ሺ௧ିଵሻ ൅ ሺΦ௜ െ Φ௜
ሺ௧ିଵ,ஶሻሻ, t ൌ 1,2, …                    （1） 

where Φ௜
ሺ଴ሻ ൌ Φ௜  and Φሺ௧,ஶሻ ൌ ሺΦଵ

ሺ௧,ஶሻ, Φଶ
ሺ௧,ஶሻ, … ,Φ௡

ሺ௧,ஶሻሻ  are the limit positions of the 

subdivision surface with control vertices Φሺ௧ሻ ൌ ሺΦଵ
ሺ௧ሻ, Φଶ

ሺ௧ሻ, … ,Φ௡
ሺ௧ሻሻ. Iterate ݇ times to get a 

control mesh Φሺ௞ሻ and the corresponding limit mesh Φሺ௞,ஶሻ. When k approaches infinity, 

the distance between Φሺ଴ሻ and Φሺ௞,ஶሻ decreases 0. It is easy to extend the proof in (Cheng 

et al. 2009) to show the iteration process is also convergent in our very high dimensional 

space. In all our experiments we set ݇ ൌ 5. Since when ݇ ൌ 5, the difference between Φሺ଴ሻ 

and Φሺ௞,ஶሻ is very small. Figure 4 illustrates the limit position masks (Hoppe et al. 1994) used 

in the paper. The vertices on the boundary are divided into two categories: regular vertices 

and extraordinary vertices. A boundary vertex is called a regular vertex if its valence is 4, as 

the one shown in Figure 4 (b). Otherwise, a boundary vertex is called an extraordinary vertex. 

The limit position masks of Loop subdivision of an interior vertex are as shown in Figure 4 (a). 

There are totally 6 different configurations shown in Figure 4 (c)~(h).  
 
 
  
 
 
 
 
 
Figure 4. Limit position masks of Loop subdivision for (a) interior vertices with k neighbors,  

where ߱௞ ൌ 3 ൤11 െ 8 ൬ଷ
଼
൅ ቀଷ

଼
൅ ቀଵ

ସ
ቁ cos ቀଶగ

௞
ቁቁ

ଶ
൰൨

ିଵ

, and (c)~(g) are different kinds of boundary vertices, where the solid 

shape indicates the vertex to be evaluated, and circular vertices are regular rhombus vertices are irregular.  

4.3 Reconstruction of shape sequences 

The shape sequence reconstruction mainly consists of two parts. First, we need to obtain a 
sequence of sample points on 2D plane. For this purpose, we design an interactive interface 
for the user to select points and generate a cubic B-spline curve passing through these points, 
and then sample the points on the curve. The second part is to find the corresponding edge 
lengths and dihedral angles in the shape space based on these 2D sampling points, and then 
convert the edge lengths and dihedral angles into the vertex coordinates to recover the mesh. 

Interactive interface design. For convenience of modeling, we design an interactive 
interface to support sampling animation sequences on the manifold. Firstly, the user needs 
to select a few points ሼ݀୧ሽ௜ୀ଴௡  on our 2D interface as control points. These control points have 
corresponding meshes in high dimensional space. We treat these corresponding meshes as 
key-frame meshes. On the 2D plane, after selecting points by user, the system will 
automatically generate a cubic B-spline curve. We refer to the inverse solution method 
introduced by Lin et al. 2003 to calculate the theoretical control points ሼ݌୧ሽ௜ୀ଴

௡ାଶ. Then with the 
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Figure 2: The masks of limit position mask of Loop subdivision for (a) interior vertices with k neighbors,

where ωk = 3[11− 8( 3
8 + ( 3

8 + ( 1
4 ) cos ( 2π

k ))
2
)]−1, and (b)∼(g) are di�erent kinds of boundary vertices, where

the solid shape indicates the vertex to be evaluated, circular points are regular vertices and rhombus points
are irregular vertices.

4.3 Reconstruction of Shape Sequences

The shape sequence reconstruction mainly consists of two parts. First, we need to get a sequence of sample
points on the 2D plane. For this purpose, we design an interactive interface for users to select points and
generate a cubic B-spline curve through these points, and then sample the points on the curve. The second
part �nds the corresponding vector of edge lengths and dihedral angles in the shape space based on these 2D
sampling points, and then converts the vector into the vertex coordinates to recover the mesh.

4.3.1 Interactive Interface and Curve Creation

For the convenience of modeling, we design an interactive interface to support sampling animation sequences
on the manifold. Firstly, the user is required to select a few points {di}ni=0 on our 2D interface as actual control
points. These actual control points have corresponding meshes in high dimensional space. We regard these
corresponding meshes as user-selected meshes, which will be interpolated. On the 2D plane, after selecting
points by users, the system then automatically generates a cubic B-spline curve. Speci�cally, the cubic B-spline
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passing through n+ 1 user-selected points {pi, i = 0, 1, ..., n} is

Li(t) =
1

6

(
1− 3t+ 3t2 − t3

)
qi +

1

6

(
4− 6t2 + 3t3

)
qi+1 +

1

6

(
1 + 3t+ 3t2 − 3t3

)
qi+2 +

1

6
t3qi+3 (4)

Where qi is the theoretical control point of cubic B-spline curve and pi is the actual control point selected by
the user on the subdivision surface. By introducing Li(0) = pi into Equation 4, we can get n − 2 equations
with n unknown quantity. In addition, there are two boundary conditions L̇0(0) = d0, L̇n−3(0) = dn−3 that
the default is the natural boundary condition d0 = 0, dn−3 = 0. Then the theoretical control points of the
curve can be obtained, and �nally the cubic B-spline curve passing through the user-selected points can be
obtained. At the same time, the corresponding cubic B-spline curve will also be generated in the shape space,
which passes through all the user-selected meshes.

Our interface supports modifying the spline by adjusting control points. Here, adjusting the control points
includes deleting or adding the last one of the currently selected points, or adding a new control point onto
the generated curve. Our system supports two editing modes: points selection and spline sampling. Switching
the mode from points selection to spline sampling, we can then uniformly discretize the curve to obtain a
sequence of 2D points. Accordingly, a series of parameters, edge lengths and dihedral angles are obtained by
cubic B-spline in the high dimensional space MD. These parameters are used to reconstruct the 3D mesh
sequence, which passes through the user-selected meshes.

4.3.2 Mesh Reconstruction

Given a point m on the 2D spline, our shape reconstruction procedure �rst maps m back to a point on the
shape subdivision surface MD, which is a high-dimensional vector of edge lengths and dihedral angles. Mesh
M can then be reconstructed from this vector by using the algorithm described in [31]. Repeat the same
operation on all 2D sampled points, we can obtain a smooth sequence of animated meshes.

5 EXPERIMENTAL RESULTS

We implemented the proposed approach and an interactive interface using C/C++ on a PC with Intel (R) Core
(TM) i7-2600 CPU @ 3.4GHz. This section will present a variety of experiments to verify the performance
of the proposed framework. Before presenting shape interpolation results, we �rst conduct experiments to
show why we choose LLE in Section 4.1 to project our shapes onto the plane (Section 5.1), and then brie�y
analyze the impact of the element number of KNN (K-nearest neighbors) using in the shape projection (Section
5.1). Next, a variety of examples are presented to show the ability of our approach in modeling animation
sequences, and �nally our method is compared with the two closely related approaches [11, 33] from three
aspects: interpolation of keyframes with large deformation, smoothness of edge length variation, and time
e�ciency (Sections 5.3 and 5.4).

5.1 Selection of the Projection Approaches

We �rst perform three reduction algorithms, LTSA, LLE, and Isomap, on a set of eight facial keyframes, as
shown in Fig. 3. Intuitively, the result of LLE is most compatible with the similarity among frames because
the more similar the expressions are, the closer their projections.

The top row of Fig. 4 is an even more telling example in which keyframes include rest (0 and 1), bending
to right (2, 9), bending to left (3), bending backward (5, 8), and bending forward (6,7) poses. The layout of
projections by LLE almost perfectly re�ects the bending orientations. The bottom row of Fig. 4 presents the
projections of 15 keyframes of human arm pose which also show the result of LLE is most reasonable among
three.
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Intuitively, the result by LLE is most compatible with the similarity among frames because the 
more similar the expressions are, the closer their projections.  
 
 

 

 

 

Figure 2 Projections of 8 facial expressions by LTSA (left), LLE (middle) and Isomap (right) respectively. In three 
images, the rectangular boxes represent the projected coordinate spaces which are different for the three algorithms. 
Star ‘*’ indicates the projected position of keyframes while the serial numbers near stars are used to indexed the 
keyframes. 

 
The top row of Figure 3 is an even more telling example in which keyframes include rest (0 

and 1), bending to right (2, 9), bending to left (3), bending backward (5, 8), and bending 
forward (6,7) poses. The layout of projections by LLE almost perfectly reflects this bending 
relationship of key poses. The bottom row of Figure 3 presents projections of 15 key human 
arm poses which also show the result by LLE is most reasonable among three.  

Note that we don’t need to care the coordinate scales in all these examples but only 
concern the relative position relations among keyframes. Taking these experiments into 
account, we finally choose LLE as the dimensionality reduction tool in our system. 
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Figure 3 Projections of 10 key cactus poses (top row) and 15 key human poses (bottom row) by LTSA (left), LLE 
(middle) and Isomap (right) respectively. In each row, keyframes marked a serial number are first shown and their 
projections are depicted with star ‘*’ within the corresponding projected spaces (rectangular boxes).  

4.2 Shape Interpolation Subdivision Surfaces 

Given high-dimensional meshes ॊ, we can further construct a pose manifold spanned by 
vertices of ॊ by using progressive interpolation of Loop subdivision surfaces (Cheng et al. 
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Figure 3: Projections of eight facial expressions by LTSA (left), LLE (middle) and Isomap (right) respectively.
Stars (*) indicate the position of the projections and numbers index the keyframes.

Note that we do not need to care about coordinate scales in all these examples but only concern the
relationship among keyframes. Taking these experiments into account, we �nally use LLE to perform dimension
reduction in our system.

Intuitively, the result by LLE is most compatible with the similarity among frames because the 
more similar the expressions are, the closer their projections.  
 
 

 

 

 

Figure 2 Projections of 8 facial expressions by LTSA (left), LLE (middle) and Isomap (right) respectively. In three 
images, the rectangular boxes represent the projected coordinate spaces which are different for the three algorithms. 
Star ‘*’ indicates the projected position of keyframes while the serial numbers near stars are used to indexed the 
keyframes. 
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arm poses which also show the result by LLE is most reasonable among three.  
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concern the relative position relations among keyframes. Taking these experiments into 
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Figure 3 Projections of 10 key cactus poses (top row) and 15 key human poses (bottom row) by LTSA (left), LLE 
(middle) and Isomap (right) respectively. In each row, keyframes marked a serial number are first shown and their 
projections are depicted with star ‘*’ within the corresponding projected spaces (rectangular boxes).  

4.2 Shape Interpolation Subdivision Surfaces 

Given high-dimensional meshes ॊ, we can further construct a pose manifold spanned by 
vertices of ॊ by using progressive interpolation of Loop subdivision surfaces (Cheng et al. 
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Figure 4: Projections of 10 key cactus poses (top row) and 15 key human poses (bottom row) by LTSA (left),
LLE (middle) and Isomap (right) respectively. In each row, keyframes marked a serial number are �rst shown
and their projections are depicted with stars (*) within the corresponding projected space.

5.2 The Impact of KNN Size on the Projections

We use three examples to analyze the impact of the KNN size on the LLE projected layout. Let n be the number
of given keyframes and k be the element number of KNN. Considering that n used for shape interpolation is
usually small in practice, we alter k within an interval around

⌈
n
2

⌉
. Fig. 5 (a) depicts an example with n = 5

in which k = 3 and 4 are tested. Two rightmost rectangular images of this �gure show that the layout of the
two cases share a very similar structure. Two more examples are presented in Fig. 5 (b) (n = 10, k = 3, 5, 7)
and (c) (n = 15, k = 5, 6, 7, 8), respectively. Su�cient experimental results manifest that when the size k of
KNN neighborhood is near half of the number of keyframes, the similarity between keyframes can be captured
well. This motivates us to set k =

⌈
n
2

⌉
during the dimensionality reduction stage in all experiments.
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5.1 The impact of KNN size on the projections 

To observe the influence of the KNN size on the projection layout, we perform the LLE 
projection on three sets of animation (denote the set size by ݊) with different number of 
neighbors (denote by ݇). Considering that ݊ is usually small in practice, we alter ݇ within 

an interval around ඃ೙
మ
ඇ. Figure 6(a) depicts an example with ݊ ൌ 5 in which ݇ ൌ 3 and 4 are 

tested. Two rightmost rectangular images of this figure show that the layout of the two cases 
share a very similar structure. Two more examples are presented in Figure 6(b) (݊ ൌ 10,	 ݇ ൌ

3,5,7) and Figure 6(c) (݊ ൌ 15,	 ݇ ൌ 5,6,7,8), respectively. All results manifest that changing 
size ݇ of the KNN neighborhood has little impact on the structure of the projection. This 

motivates us to set ݇ ൌ ඃ೙
మ
ඇ during the dimensionality reduction stage in all experiments.  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

 
 
 
 
 
Figure 6. The size of the KNN neighborhood has little impact on the structure of LLE projections: (a) left: ݊ ൌ 5 
human key poses; right: the two LLE projections for ݇ ൌ 3 and 4 respectively; (b) upper: ݊ ൌ 10 cat poses; 
lower: projections for ݇ ൌ 3, 5	 and 7, respectively; (c) upper: ݊ ൌ 15 human poses; lower: projections for ݇ ൌ
5, 6, 7, and 8 respectively. Note that stars mark the location of projections and numbers index keyframes. 
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Figure 5: The impact of the KNN neighborhood size on the structure of LLE projections: (a) left: n = 5
human key poses; right: the two LLE projections for k = 3 and 4 respectively; (b) upper: n = 10 cat poses;
lower: projections for k = 3, 5 and 7, respectively; (c) upper: n = 15 human poses; lower: projections for
k = 5,6,7, and 8 respectively.

5.3 Visual Results

This section presents some examples to illustrate the visual e�ect of interpolating sequences by our approach.
We �rst show some sequences by drawing di�erent paths on the projection domains of two sets of keyframes
and then present two examples with large deformation between adjacent keyframes.

5.3.1 Smoothness of Sequences

Fig. 6 and 7 depict the frame transition smoothness of sequences by Kilian et al. [16], Heeren et al. [11],
Xia et al. [33] and our approach via stacking up the frames together. Except for the result of the geodesic
interpolation approach [16], the sequences of the latter three methods look visually smooth enough. We will
further present quantitative analysis in the next subsection about this performance.

5.3.2 Sampling Arbitrary Sequences on Subdivision Manifolds

Compared to previous methods that create only a clip of animation, our approach is able to generate in�nite
sequences theoretically. To generate a sequence, we �rst need to de�ne the sequence path. The path is a
cubic B-spline curve whose actual control points come from the frames selected by the user. Fig. 8 shows
two examples on the same shape subdivision manifold interpolating �ve keyframes of an elephant, the orange
points in shape subdivision manifold indicate the selected-frames by users, and the numbers near the points
indicate the sequence of the selected-frames with 0 is the �rst selected-frame. The generated curve is shown
by the yellow line. The results show that drawing di�erent paths on the projected domain of the subdivision
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Figure 7. Comparison of the shape completion sequences by Kilian et al. (2007), Heeren et al. (2016), Xia et al. 

(2019) and our approach, respectively. The input keyframes are shown in the rightmost column. For each approach, 

top, front and right views are illustrated. Key and intermediate frames are separately visualized in orange and yellow.  
 
 
 

 

 

 

 

Figure 8. Comparison of the shape completion sequences by Kilian et al. (2007), Heeren et al. (2016), Xia et al. 

(2019) and our approach, respectively show in right four columns. The input keyframes are shown in the left three 

columns. Key and intermediate frames are separately visualized in orange and yellow. 

 

Sampling arbitrary sequences on subdivision manifolds. Generating a larger shape 

space than previous methods is one of the advantage of our approach. Figure 9 and Figure 

10 respectively shows two examples on the same shape subdivision manifold interpolating 5 

keyframes of an elephant. The results show that drawing different paths on the projected 

domain of the subdivision manifold can yield completely different shape sequences. Figure 

11 depicts another example in which a sequence is generated by drawing a spline on a 

projected domain of the subdivision manifold interpolating given keyframes. 

Sampling keyframes with large deformation. In this experiment, we show some 

interpolating sequences (Figures 12-13) by sampling keyframes such that there is a large 

deformation between two adjacent ones in which the rotation of some triangles is more than 

180° or even 360°. 

  

Keyframes Kilian et al.  Heeren et al.  

Xia et al.  Ours 

Figure 6: Comparison of the shape completion sequences by Kilian et al. [16], Heeren et al. [11], Xia et
al. [33] and our approach, respectively. The input keyframes are shown in the leftmost column. For each
approach, top, front and right views are illustrated. Key and intermediate frames are separately visualized in
orange and yellow. Our method is smoother than [16], and comparable to [11] and [33] on the visual e�ect.

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Comparison of the shape completion sequences by Kilian et al. (2007), Heeren et al. (2016), Xia et al. 
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keyframes of an elephant. The results show that drawing different paths on the projected 

domain of the subdivision manifold can yield completely different shape sequences. Figure 

11 depicts another example in which a sequence is generated by drawing a spline on a 

projected domain of the subdivision manifold interpolating given keyframes. 

Sampling keyframes with large deformation. In this experiment, we show some 

interpolating sequences (Figures 12-13) by sampling keyframes such that there is a large 

deformation between two adjacent ones in which the rotation of some triangles is more than 

180° or even 360°. 

  

Keyframes Kilian et al.  Heeren et al.  

Xia et al.  Ours 

Keyframes Kilian et al.  Heeren et al.  Xia et al.  Ours 

Figure 7: Comparison of the shape completion sequences by [16], [11], [33] and our approach, respectively
show in the right four columns. The input keyframes are shown in the left three columns. Key and intermediate
frames are separately visualized in orange and yellow.
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manifold can yield completely di�erent shape sequences. Users can use any number of frames with any pose
to get the desired model sequence. Fig. 9 depicts another example with more (ten) keyframes.

 
  
 
 
 
 
 
 
 
 
 
 
Figure 9. Shape sequence interpolating 4 selected frames (orange) on the projected domain. 3 frames (yellow) 
between two adject keyframes are generated in the example. The editing interface is shown in the bottom-right corner.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 10. Shape sequence with a more complex path than that of Figure 9. 5 frames are selected (orange) on the 
projected domain and also 3 frames (yellow) are generated between two contiguous selected frames. The editing 
interface is shown in the bottom-right corner. 
    
    
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Shape sequence with 10 keyframes (green) and 4 frames are selected (orange) on the projected domain 
and 3 frames (yellow) are generated between two contiguous selected frames. The right shows the editing interface. 
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Figure 8: Arbitrary shape interpolation sequence of elephant model. (a): Interpolating four selected frames
(orange) on the shape manifold blended by �ve keyframes (right), where three intermediate frames (yellow)
are generated between each two adjacent selected frames. (b): A more complex interpolation sequence path
with several intersections.

Figure 10. Shape sequence with a more complex path than that of Figure 9. 5 frames are selected (orange) on the projected domain and also 3 frames 
(yellow) are generated between two contiguous selected frames. The editing interface is shown in the bottom-right corner. 
     
    
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 11. Shape sequence with 10 keyframes (green) and 4 frames are selected (orange) on the projected domain and 3 frames (yellow) are generated 
between two contiguous selected frames. The right shows the editing interface. 
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Figure 9: Shape sequence by specifying four actual control points on the shape manifold blended by ten
keyframes.

5.3.3 Sampling Keyframes with Large Deformation

In this section, we sample and display some interpolation sequences with large deformation between adjacent
keyframes. Fig. 10 and 11 show the sequence of large deformation shapes generated from �ve helix shapes
and three human dance postures respectively, some of which rotate more than 180◦ or even 360◦.

 
 

 
 

Figure 12. Large deformation shape sequence generated from 5 helix shapes. Two frames (yellow) are inserted 
between two successive keyframes (orange).  
 

 
 
 
 
 

Figure 13. Large deformation shape sequence generated from 3 human dancing poses. Four intermediate frames 
(yellow) are created between each pair of adjacent keyframes (orange). 

5.3 Numerical comparison 

Variation of edge length. In shape interpolation, not only semantic parts of the motion 
subject are not desirable to move abruptly (Heeren et al. 2016) but also geometric primitives 
such as vertices and edges in mesh frames are expected to change smoothly (Chen et al. 2013, 
Zhang et al. 2015). Here we measure the edge variation across the generated sequence with 
respect to edge length obtained by linearly interpolating edge lengths of adjacent keyframes 
(Chen et al. 2013). As comparison, we also do the same analysis on the approaches in Heeren 
et al. (2016) and Xia et al. (2019). The top row in Figure 14 shows the maximal deviation in each generated 

frame while the bottom row illustrates the average deviation of edge lengths for each generated frame. Both 

images demonstrate that our approach is slightly better than the two previous methods in two cases.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
Figure 14. Variation of edge length across the generated sequence with respect to linear change: maximum (top) 
and average (bottom) are estimated for the approaches in Heeren et al. (2016), Xia et al. (2019) and this paper. A 
set of cactus models are used in this experiment and 17 fixed keyframe poses are shown in gray. Horizontal axis 
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Figure 10: Sequence of large deformation shape generated from �ve helix shapes. Two frames (yellow) are
inserted between two successive keyframes (orange).

Computer-Aided Design & Applications, 18(3), 2021, 486-501
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


497

 
 

 
 

Figure 12. Large deformation shape sequence generated from 5 helix shapes. Two frames (yellow) are inserted 
between two successive keyframes (orange).  
 

 
 
 
 
 

Figure 13. Large deformation shape sequence generated from 3 human dancing poses. Four intermediate frames 
(yellow) are created between each pair of adjacent keyframes (orange). 
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Figure 14. Variation of edge length across the generated sequence with respect to linear change: maximum (top) 
and average (bottom) are estimated for the approaches in Heeren et al. (2016), Xia et al. (2019) and this paper. A 
set of cactus models are used in this experiment and 17 fixed keyframe poses are shown in gray. Horizontal axis 
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Figure 11: Sequence of large deformation shape generated from three human dancing poses. Four intermediate
frames (yellow) are created between each pair of adjacent keyframes (orange).

5.4 Numerical Comparison

5.4.1 Variation of Edge Length

In shape interpolation, not only semantic parts of the motion subject are desirable to move smoothly but
also geometric primitives such as vertices and edges in mesh frames are expected to change without extra
�uctuation. Here we measure the variation of edge across the generated sequence with respect to edge length
obtained by linearly interpolating edge lengths of adjacent keyframes. As a comparison, we also do the same
analysis on the approaches in Heeren et al. [11] and Xia et al. [33]. The top row in Fig. 12 shows the maximal
deviation in each generated frame while the bottom row illustrates the average deviation of edge lengths for
each generated frame. Both images demonstrate that our approach is slightly better than the two previous
methods in two cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 14. Variation of edge length across the generated sequence with respect to linear change: maximum (top) 

and average (bottom) are estimated for the approaches in Heeren et al. (2016), Xia et al. (2019) and this paper. A 

set of cactus models are used in this experiment and 17 fixed keyframe poses are shown in gray. Horizontal axis 

represents frame indices and vertical axis stands for edge length deviation. 

 
Smoothness of shape sequence. We examine the smoothness of sequences created by 

our method in Figures 15 and 16. As comparison, we also present the results by the isometric 

shape space (Kilian et al. 2007), the splines in shell space (Heeren et al. 2016) and B-spline 

interpolation (Xia et al. 2019) approaches described in Kilian et al. (2007), Heeren et al. (2016) 

and Xia et al. (2019). Here, the smoothness is measured by the second order difference 

(curvature) on the vertex trajectories of the reconstructed sequence. The smaller is the 

curvature, the smoother is the trajectory. Both examples demonstrate that our method 

achieves the best performance among the four approaches. 

 

 

 

Figure 15. Smoothness comparison on face expression sequences by the isometric shape space (Kilian et al. (2007)), 

the splines in shell space (Heeren et al. (2016)) and B-spline interpolation (Xia et al. (2019)) and our methods. 
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Figure 12: Variation of edge length across the generated sequence with respect to linear change: maximum
(top) and average (bottom) are estimated for the approaches in Heeren et al. [11], Xia et al. [33] and this
paper. A set of cactus models is used in this experiment and 17 �xed keyframe poses are shown in gray. The
horizontal axis represents frame indices and the vertical axis stands for edge length deviation.

Computer-Aided Design & Applications, 18(3), 2021, 486-501
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


498

5.4.2 Smoothness of Shape Sequence

We examine the smoothness of sequences created by our method in Fig. 13 and 14 . As a comparison, we
also present the results of the isometric shape space [16], the splines in shell space [11] and cubic spline
interpolation [33]. Here, the smoothness is measured by the second-order di�erence (curvature) on the vertex
trajectories of the reconstructed sequence. The smaller the curvature, the smoother the trajectory. Both
examples demonstrate that our method achieves the best performance among the four approaches.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 14. Variation of edge length across the generated sequence with respect to linear change: maximum (top) 

and average (bottom) are estimated for the approaches in Heeren et al. (2016), Xia et al. (2019) and this paper. A 

set of cactus models are used in this experiment and 17 fixed keyframe poses are shown in gray. Horizontal axis 

represents frame indices and vertical axis stands for edge length deviation. 
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Figure 15. Smoothness comparison on face expression sequences by the isometric shape space (Kilian et al. (2007)), 

the splines in shell space (Heeren et al. (2016)) and B-spline interpolation (Xia et al. (2019)) and our methods. 
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Figure 13: Smoothness comparison on face expression sequences by the isometric shape space [16] (Kilian et
al.), the splines in shell space [11] (Heeren et al.), cubic spline interpolation [33] (Xia et al.) and our methods.

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Smoothness comparison on body shape sequences by the isometric shape space (Kilian et al. (2007)), 

the splines in shell space (Heeren et al. (2016)) and B-spline interpolation (Xia et al. (2019)) and our methods. 

 

Mesh quality. The quality of a mesh is usually measured by the regularity of its triangles. 

We therefore compare the distribution of the smallest inner angles of all triangles of the 

generated meshes by three approaches. Concretely, we count the number of the smallest 

inner angles falling into intervals (0°, 15°], (15°, 30°], (30°, 45°] and (45°, 60°] respectively, 

and illustrate the percentage in Figure 17. The histograms of four examples demonstrate that 

our approach is slightly superior to the two approaches in Heeren et al. (2016) and Xia et al. 

(2019) because more inner angles fall into (45°, 60°] in our generated sequences. 

 

 
 
 
 
 
 
 
 
 
 
Figure 17. Quality of triangles of generated models. Model (F, K) means we evaluated K shapes of model with 

10.5k triangles of each shape. From left to right, the models are cactus (10.5k, 170), body (13.8k,100), face(14k,80) 

and horse(16.9k,200) respectively, using method of Heeren et al. (2016) (color in blue), Xia et al. (2019) (color in 

orange) and this paper (color in gray). Horizontal axis represents percentage of minimum angle in corresponding 

range and vertical axis indicates the angle range of triangle. 
 

Timings. Our approach is rather efficient. Table 1 lists timings by performing three methods 

on four sets of keyrames. It is easy to see from the three 𝑡𝑂 columns that our approach is 

usually much faster than the two approaches in Heeren et al. (2016) and Xia et al. (2019). In 

order to improve the efficiency, both Heeren et al. (2016) and Xia et al. (2019) conduct their 

shape interpolation on the simplified keyframes to obtain a sequence of coarse animated 

meshes and then use deformation transfer to yield a sequence of detailed animated meshes. 

We also implement our method with strategy. In this case, our approach slower than that of 

Xia et al. (2019) but still faster than that of Heeren et al. (2016). 
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Figure 14: Smoothness comparison on body pose sequences by the isometric shape space [16] (Kilian et al.),
the splines in shell space [11] (Heeren et al.), cubic spline interpolation [33] (Xia et al.) and our methods.

5.4.3 Timings

Table 1 lists timings by performing three methods on four sets of keyframes. Generate an animation curve
with K frames with each frame having |V | vertices, and γ indicates the vertex percent after decimation;
tir(interpolation and reconstruction on decimated key frames), tts (detail transfer), tt (the total runtime), to
(interpolate one shape without using ghost). It can be seen from the three to columns that our approach is
much faster than the two approaches from [11] and [33], where to indicates the time for yielding a frame on
the original data. In order to improve the e�ciency, both [11] and [33] conducted their shape interpolation on
the simpli�ed keyframes to obtain a sequence of coarse animated meshes and then use deformation transfer
[8, 27] to yield the �nal detailed animated meshes. We also implemented our method with the simplifying
strategy. In this case, our approach is slower than that of [33] but still faster than that of [11]. Nevertheless,
the �rst three data rows of Table 1 demonstrate that the running time of the approach in [33] increases faster
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than that of our approach with the number of mesh vertices growing, and exceeds that of our approach in
some moment. So to sum up, our approach is quite e�cient.

Table 1: Timings for three approaches (Unit: second).

Model (|V |,K,γ) Heeren et al. Xia et al. Ours

tir tts tt to tir tts tt to tir tts tt to

Cactus (5.2k, 20, 5%) 1.7 1.7 3.4 83 0.16 1 1.16 4.35 0.43 0.9 1.33 0.72

Cactus (5.2k, 20, 30%) � � � � 1.79 2.15 3.94 4.35 2.86 1.94 4.8 0.72

Cactus (5.2k, 20, 60%) � � � � 7.57 54.51 62.08 4.35 7.24 49.06 56.3 0.72

Cactus (5.2k, 170, 5%) 22 14 36 762 0.31 3.2 3.51 23.9 4.41 2.86 7.27 0.58

Horse (8.5k, 40, 10%) 22 5 27 238 0.35 2.2 2.55 11.4 1.73 1.93 3.66 0.87

Armadillo (166k, 50, 0.6%) 80 200 280 � 1.34 47.2 48.54 258.6 3.56 41.53 45.09 1.56

6 CONCLUSIONS

A shape subdivision manifold is proposed for shape sequence generation from a set of keyframes. It is suitable
for triangular meshes with the same number of vertices and connection relations. By progressive interpolating
the loop subdivision surface of keyframes, the shape subdivision manifold about the keyframe collection is
constructed, and the cubic B-spline curve which throughs all the selected-frames pointed by users is generated
by using the interactive system we designed, so as to realize user to obtain arbitrary C2 continuous and
high-quality 3D mesh interpolation sequence quickly. Speci�cally, we view a keyframe as a point in the high
dimensional shape space, which is composed of its edge lengths and dihedral angles, and constructs the control
mesh with keyframes as vertices by projecting the keyframes onto a planar space using Delaunay triangulation.
The triangulation is then embedded back to the high dimensional space and a subdivision manifold is therefore
obtained by conducting the Loop progressive interpolation on embedded mesh. To navigate on the manifold, we
design a concise interface to sample animation sequences by interactively drawing splines on the corresponding
2D projection.

Experiments are intended to evaluate the performance of the proposed approach. Compared to the state-
of-the-art approaches, our method de�nes a 2D manifold interpolating given keyframes instead of a 1D curve,
and therefore greatly extends shape space. The generated sequences by our method have better smoothness,
higher mesh quality and higher e�ciency for complicated models.

As a future work, the generated sequences can be optimized by the AIAP shape interpolation described in
[35] in order to further reduce the variation scale of edge lengths and dihedral angles. It is also possible to
enhance real-time performance based on GPU acceleration. In the current implementation, the triangulation
of the LLE projections has not been optimized. It is also worthwhile to clarify whether we can gain more
bonuses from interactively modifying the position of projections.
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