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and Its Application to the Isogeometric Analysis

Xiaoxiao Du1,a , Gang Zhao2,a,b , Wei Wang3,a , Mayi Guo4,a , Ran Zhang5,a , Jiaming Yang6,a

aSchool of Mechanical Engineering and Automation, Beihang University, Beijing, PR China,
bBeijing Engineering Technological Research Center of High-E�cient & Green CNC Machining Process,

Beijing, PR China,
1Beihang University, duxiaoxiao@buaa.edu.cn

2Beihang University, zhaog@buaa.edu.cn
3Beihang University, jrrt@buaa.edu.cn

4Beihang University, windowsgmy@126.com
5Beihang University, feliciamail@buaa.edu.cn
6Beihang University, williamyjm@163.com

Corresponding author: Wei Wang, jrrt@buaa.edu.cn

Abstract. Isogeometric analysis on complex geometries built with trimmed NURBS patches
has always been regarded as a laborious challenge for practitioners. In this paper, trimmed
NURBS surfaces are converted into mixed-Bézier meshes consisting of tensor-product (rect-
angular) Bézier patches and triangular Bézier patches for isogeometric analysis. It provides
an advisable method to analyze topology-complex geometries with an isogeometric approach.
The converted model is watertight and keeps the original surfaces unchanged except the nar-
row areas along the trimming curves. Several numerical examples including 2D elasticity,
free vibration of plate and static bending of shell are investigated to verify the validity of the
proposed method.

Keywords: trimmed NURBS surfaces, mixed Bézier elements, watertight model, isogeomet-
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1 INTRODUCTION

In traditional engineering product development process, design is ful�lled in CAD systems and analysis is
implemented in FEA frameworks. Since FEA emerged before CAD, mesh structures have been employed
in FEA to represent geometries and drive analysis, even though afterwards NURBS has been widely used
and gradually became the foundation of geometrical modeling in CAD systems. Therefore, CAD geometries
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should be converted into analysis-suitable mesh models for �nite element analysis and this conversion process
consumes up to 80% of the overall analysis time and thus is considered to be a major impediment to the
integration of CAD and FEA [5]. As a consequence, the e�ciency of engineering product development process
is dramatically reduced. Under these circumstances, isogeometric analysis (IGA) is proposed by Thomas J. R.
Hughes aiming to realize the in-depth integration of CAD and FEA through employing the basis functions in
CAD geometries to interpolate �eld variables in FEA [13].

NURBS uni�es conic and free-form geometrical representation and is equipped with a series of elegant
properties and powerful algorithms, thus holds a dominant position in CAGD �eld [22]. NURBS surfaces are
based on a tensor-product structure and the intersection of two surfaces is very complex. Therefore, it also has
drawbacks, e.g., interface gap and local re�nement, which have always been tolerated due to the irreplaceable
position of NURBS in geometrical representation. The capacity of representing complex geometries is restricted
by the tensor-product topological structure of NURBS. Designers usually glue multiple surfaces and trim o�
unwanted parts to construct complicated geometries in CAD systems. As shown in Fig. 1, an automobile fender
model consists of 462 NURBS surfaces where 253 surfaces are trimmed. Figure 1(a) shows the transparent
rendering of the initial 462 NURBS surfaces without trimming. Figure 1(b) presents the rendering of the
resulted trimmed surfaces and untrimmed surfaces in CATIA. Solid lines denote the boundaries of trimmed
and untrimmed surfaces while dashed lines denote screened boundaries. Blown-up views present the detailed
trimming information in red boxes. However, trimming and gluing in CAD models may introduce drawbacks
like gap, overlapping and non-conforming, between di�erent patches. Here the defect of non-conforming means
that the adjacent boundary curves with the same geometrical shape have di�erent degrees or knot vectors.
These drawbacks will place obstacles in the way of downstream applications including computational analysis,
numerical control machining, geometrical rendering, 3D printing. For example, non-conforming problems will
a�ect the sti�ness matrix assembling and patches coupling, which means extra works are required to solve
these problems [6, 7, 39]. In this paper, we focus on isogeometric analysis of complicated CAD geometries
built with trimmed multi-patch NURBS surfaces, as a general way to optimize the trimmed model for IGA's
exertion, or as the �rst step for using IGA in occasions demanding more faithful shape �delity, like in sheet
metal forming simulation's contact calculation.

(a) Original model (b) Trimmed model rendering

Figure 1: Automobile fender model is built with 462 NURBS surfaces where 253 surfaces are trimmed.

Isogeometric analysis of trimmed geometries is a valuable topic and full of challenges, due to the fact that
trimming features are widely used but extremely sophisticated. The �rst work on isogeometric analysis of 2D
trimmed NURBS surface is presented by Kim et al. [15, 16], who employed NURBS-enhanced integration
scheme [28] for integration of trimmed NURBS elements. A similar problem is also investigated in [33] for
compound B-spline surfaces based isogeometric analysis. Schmidt et al. [26] reconstructed the trimmed
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element with a tensor-product Bézier patch and established the transformation matrix between the control
points of untrimmed surface and the reconstructed Bézier patch through the selected sampling points. The
so-called nested Jacobian approaches (NEJA) are proposed by Breitenberger et al. [2] from the same team to
parameterize the trimmed domain which is decomposed into several subsets for isogeometric analysis of shell
structures [21]. Beer et al. [1] presented a double mapping method for analysis of trimmed CAD surfaces by
establishing the mapping from the trimming domain to a rectangular parametric element. Ruess et al. employed
�nite cell method (FCM) to deal with the trimming problem [24, 25]. Nagy and Benson [20] approximated
the trimmed element with re�ned control polygons of its boundary curves and established a quadrature rule
on the approximated polygon. Marussig et al. gave an excellent review of isogeometric analysis of trimmed
CAD models and divided the current approaches into global and local [18]. A concept of extended B-splines is
developed to provide a stable basis for isogeometric analysis of trimmed geometries [19]. Zhu et al. developed
a so-called B++ splines to represent the trimmed NURBS for isogeometric analysis [40]. Xia and Qian [34, 35]
converted trimmed CAD surfaces into watertight geometry represented by rational triangular Bézier splines
(rTBS) for the subsequent volumetric discretization process. Xu et al. improved the method proposed by
Kim [16] to solve trimmed problems more e�ciently [38]. Bu�a et al. proposed a stabilized approach for
isogeometric analysis of trimmed geometries [3]. Thomas et al. developed a so-called, U-splines, to construct
spline basis on the unstructured mesh and expected to bypass the limitation of traditional trimmed geometries
in the analysis [29].

Considering the whole process of product development, the geometrical defects will a�ect the downstream
applications (e.g., CAM, 3D printing) that need the use of geometries. Therefore, converting a trimmed CAD
geometry into a watertight geometry without drawbacks of non-conforming, gap and overlap seems to be a
superior approach for isogeometric analysis and other applications. In this paper, a novel method is proposed
to solve the trimming problems by converting the trimmed NURBS surface geometry into watertight geometry,
which is comprised of tensor-product Bézier patches and triangular Bézier patches. Most area of the trimmed
surface is exactly preserved and only the narrow area along the trimming curves is approximated. It is easy to
deal with multiple trimmed NURBS surface models without additional processing on nonconforming problems.
Moreover, compared with the method proposed by Xia [34], trimming curves can be explicitly expressed so
that boundary conditions could be expediently enforced. The order of the converted watertight model could
keep consistent with the order of the original trimmed model.

The paper is organized as follows. Section 2 begins by reviewing Bernstein-Bézier foundations. Section 3
presents the de�nition and generation of trimming surface. The detailed process of converting trimmed NURBS
surfaces into mixed Bézier patches is described in Section 4. Elasticity governing equations and isogeometric
discretizations are brie�y introduced in Section 5. Several numerical examples including 2D elasticity problems,
plate and shell problems are investigated in Section 6 to verify the proposed method. In section 7, a short
conclusion and outlook for future works are presented.

2 PRELIMINARIES ON BERNSTERIN-BÉZIER REPRESENTATION

Bernstein polynomial basis was �rstly proposed by Sergei Natanovich Bernstein in 1912 to approximate the
continuous functions by polynomials, even though it has been proved to be versatile in interactive design
of polynomial functions after several decades [12]. The univariate Bernstein basis functions of degree n on
t ∈ [0, 1] are given as

Bni (t) =

(
n

i

)
ti(1− t)n−i, i = 0, 1, · · · , n. (1)

By de�ning u = t, v = 1− t, it can also be rewritten as

Bnij(u, v) =
n!

i!j!
uivj , 0 ≤ i, j ≤ n, i+ j = n, (2)
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where u, v are called barycentric coordinates. The multivariate extension is obvious and natural with the
de�nition of univariate Bernstein basis in Eqs. (1) and (2). The barycentric coordinates version of Bernstein
basis can also be extended and used in triangular Bézier patch. A polynomial of Bernstein form associated
with arbitrary coe�cients ci, i = 0, 1, 2, · · · , n is de�ned by

fn(t) =

n∑
i=0

ciB
n
i (t), t ∈ [0, 1]. (3)

The Bernstein-form polynomials inherit some attractive properties from Bernstein basis functions such as
symmetry, non-negativity, partition of unity, recursion and numerical stability. Meanwhile, some concise and
e�cient algorithms of Bernstein basis like degree elevation, derivatives, integrals and arithmetic operations will
bring conspicuous convenience of calculation to polynomials in Bernstein form, thus they have been widely
applied in CAGD, computer graphics and �nite element analysis.

The univariate Bernstein basis function in Eq. (2) can be extended to bivariate function de�ned over the
triangle T as

Bnijk(u, v, w) =
n!

i!j!k!
uivjwk, 0 ≤ u, v, w ≤ 1, u+ v + w = 1 (4)

with 0 ≤ i, j, k ≤ n, i+ j+k = n. Given a set of vector-valued control points bijk, a triangular Bézier surface
T in physical domain mapping from the parametric domain T , can be written as

T(u, v, w) =
∑

i+j+k=n

bijkB
n
ijk(u, v, w). (5)

Besides triangular Bézier surface, tensor-product Bézier surface is another popular surface based on Bernstein
basis function and can be de�ned as

S(u, v) =

n∑
i=0

m∑
j=0

Bni (u)Bmj (v)bi,j , 0 ≤ u, v ≤ 1, (6)

where Bni (u) and Bmj (v) are the univariate Bernstein basis functions in two directions,m,n denote the degrees,
bi,j are the surface control points. As an example, �gure 2 shows basis functions and control nets of a cubic
triangular Bézier surface and a bi-cubic tensor-product Bézier surface. For more details about Bernstein basis,
triangular and tensor-product Bézier surfaces, we refer readers to [22].

(a) 9 basis functions (b) Triangular Bézier (c) 16 basis functions (d) Rectangular Bézier

Figure 2: Basis functions and control nets of a cubic triangular Bézier surface and bi-cubic tensor-product
Bézier surface.
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3 TRIMMING PROBLEMS

3.1 Trimming Surface De�nition

The rectangular topology structure of NURBS has limited its capacity on representing complicated geometries.
To simplify the representation of NURBS-based complex geometries, trimming surface is de�ned on NURBS
parametric space by specifying a valid domain Ωv, which is constituted by a closed outer boundary curve and
several closed inner boundary curves. Assuming that the domain enclosed by outer boundary curve is denoted
by Ωout and the i-th domain enclosed by inner boundary curve is denoted by Ωiin, then

Ωv = Ωout −
∑
i

Ωiin.

In the de�nition of trimming surface, the left side of trimming boundaries is assumed as valid. Therefore,
the outer trimming boundary is de�ned as counter-clockwise and inner trimming boundaries are clockwise. An
example of trimming surface is given in Fig. 3. Red curve Cpin(t̄) and blue curve Cpout(t̄) in Fig. 3(b) denote the
inner trimming boundary curve and outer trimming boundary curve in parametric space, respectively. Csin(t)
and Csout(t) in Figs. 3(c) denote the related mapping curves in physical space. Substituting the parametric
curve Cp(t̄) into the surface S(u, v), the mapping curve Cs(t̄) can be expressed as Cs(t̄) = S(Cp(t̄)). Assuming
that the degrees of the surface S(u, v) are (du, dv) and the degree of the parametric curve Cp(t̄) is dt̄, then
the degree of the resulted curve Cs(t̄) is up to (du + dv)dt̄ [23]. So an approximated low-degree curve Cs(t)
is usually preferred to replace the exact high-order curve Cs(t̄). Unless otherwise instructed, t and t̄ hereafter
denote the parameter of trimming curve in physical domain and parametric domain. u and v denote the
two parameters of NURBS surface. Superscripts s and p denote the trimming curves in physical domain and
parametric domain, respectively.

(a) Untrimmed NURBS surface

( )p
out tC

( )p
in tC

(b) Trimmed parametric domain

( )s
in tC

( )s
out tC

(c) Trimmed surface

Figure 3: Trimmed NURBS surface. (a) initial untrimmed NURBS surface, (b) trimmed parametric domain
and (c) the resulted trimmed surface mapping from the valid parametric domain.

3.2 Surface to Surface Intersections

Trimming is closely linked to the surface to surface intersection (SSI) problem as illustrated in the Fig. 4(a).
NURBS surface S1(u, v) is rendered in cyan and S2(u, v) is rendered in yellow. S1(u, v) and S2(u, v) intersect
and result in a NURBS curve Cs(t). The resulted object in Fig. 4(b) is obtained by deleting the upper part
of S2(u, v) and the o�-paper part of S1(u, v). In practice, exact calculation of the intersection curve Cs(t) is
computationally expensive and numerically unstable because the order of the resulted curve might be extremely
high and could not be easily processed in CAX systems. For example, two bi-cubic surfaces will result in a
curve of degree 324 [27]. Therefore, the intersection curve is usually approximated by a reasonable low-order
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(a) Initial two surface (b) Resulted object

1 ( )
p tC

(c) parametric domain of S1(u, v)

2 ( )
p tC

(d) parametric domain of S2(u, v) (e) blown-up view

Figure 4: Surface to surface intersection. (a) initial two untrimmed surfaces and their intersection curves,
(b) resulted object after trimming, (c) and (d) two independent parametric domains of S1(u, v) and S2(u, v),
(e) blown-up view of the selected domain marked with black box in (b).

curve. To de�ne the trimmed surfaces S1(u, v) and S2(u, v), Cs(t) is reversed into the parametric domain of
S1(u, v) and S2(u, v). Then the trimming parametric curves Cp1 (t̄) and Cp2 (t̄) are approximately calculated
as shown in Figs. 4(c) and 4(d). Since the intersection curve Cs(t) and parametric curves Cp1 (t̄) and Cp2 (t̄)
are approximate, overlap and gap, as presented in Fig. 4(e), will be introduced along the interface of surfaces
S1(u, v) and S2(u, v). It may not be di�cult to comprehend why SSI problem is a basic problem in CAGD.

4 MIXED BÉZIER DISCRETIZATION

4.1 NURBS Elements Classi�cation

According to the positional relationship between NURBS elements and trimming curves, NURBS elements
on trimmed surface can be classi�ed into valid elements, invalid elements and trimmed elements. Valid and
invalid element are completely located within the valid domain or invalid domain of trimmed surface without
intersecting with any trimming curves. Trimmed element indicates the element intersecting with trimming
curves. As shown in Fig. 5(a), A, B and C denote valid element, invalid element and trimmed element,
respectively. Here element includes parametric element and physical element, where parametric element
denotes the grid generated by the knot lines and physical element is the resulted surface element mapping
from parametric element.

As for trimmed elements, four common cases are considered as indicated in the left column of Fig. 5(b).
These four cases can be extended to 16 templates as given in right four columns of Fig. 5(b). Each template
corresponds to two di�erent trimmed elements because trimming curve has two opposite directions and only
the left-side domain of trimming curve is valid. Note that besides these four common cases, some rare cases
will be found in some CAD models. For example, the trimming curve will be tangent to the boundaries of the
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trimmed element. These cases should be treated specially and will not be detailedly described in this paper.

A

B

C

(a) Bernstein basis functions (b) Control net

Figure 5: NURBS elements classi�cation and templates of trimmed elements. (a) NURBS elements are
classi�ed into three categories: A-valid element, B-invalid element and C-trimmed element. (b) Trimmed
elements further extend to 16 possible templates.

4.2 Trimmed Elements Detection

The category of the elements can be decided by the type of corresponding parametric element. Intersections
between parametric trimming curves and parametric elements are computed to classify the elements. The
detection of trimmed elements contains two tasks: �rst, the actual detection based on the knot lines and
trimming curve Cp intersections in the parameter space and second, the detection of the related curve segment
of Cs together with the projection of its knots ts to the parameter space. Considering the example depicted
in Fig. 4 the process of trimmed elements detection is described in detail as follows.

Step 1: Compute the intersection points P(up1, v
p
1) between knot lines and parametric trimming curve

Cp(t̄) in parametric domain. As illustrated in Figs. 6(a) and 6(c), red hollow dots denote the intersection
points.

Step 2: Project the segment end points of Cs(t) to parameter space. As presented in Figs. 6(b) and
6(d), blue square points denote the projected parameter points (up2, v

p
2) in parametric domain. Assume that

parameter points (up, vp) consist of (up1, v
p
1) and (up2, v

p
2).

Step 3: Determine the relationships between parameter points (up, vp) and elements' parametric domain.
If two or more than two parameter points (up, vp) are on the border of an element or within an element, the
element can be considered as a trimmed element.

All trimmed elements can be detected with the above three steps. It should be noticed that for the
convenience of converting trimmed elements into mixed-Bézier patches, we also build the relationship between
curve segments of physical trimming curve Cs(t) and trimmed element. The trimming curve parameters ts

obtained from the projection of surface points S(up1, v
p
1) to Cs(t) are inserted into Cs(t)'s de�nition domain.

The parameter points (up, vp) are sorted according to the direction of Cs(t).
Valid elements and invalid elements can be distinguished by counting the number of intersections between

a ray and trimming boundaries including outer trimming boundary curves and inner trimming boundary curves.
In this paper, center point of the element and x-axis forward direction are selected as the start point and the
direction of the ray. If the number of intersections is odd and the element is not a trimmed element, then the
element can be considered as a valid element. Otherwise it is an invalid element. So far all elements might
be classi�ed.

Computer-Aided Design & Applications, 18(4), 2021, 738-759
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


745

(a) Intersections in S1(u, v) (b) Inversions in S1(u, v) (c) Intersections in S2(u, v) (d) Inversions in S2(u, v)

Figure 6: Trimmed elements detection in parametric domain. Red dots denote the intersections between knot
lines and parametric trimming curves. Blue square points indicate the inversion points of segment points of
physical trimming curve Cs in parametric domain.

4.3 Interface Conforming

Multiple trimmed NURBS surfaces are frequent in engineering model and the interfaces between adjacent
surfaces are always inconsistent. Therefore, conforming problem has become a challenging and interesting
problem in context of isogeometric analysis, and is widely investigated by using di�erent methods to glue
multiple untrimmed patches and trimmed patches [4, 6, 24, 39]. In this paper, the relationships between
adjacent trimmed or untrimmed surfaces are analyzed �rstly and then adjacent boundaries are conformed to
build a watertight model. The algorithm of conforming operation can be depicted as follows.

Step 1: Iterate each boundary curve of trimmed surfaces and untrimmed surfaces to �nd the adjacent
boundary curves. As illustrated in Fig. 7(a), Cs1(t) and Cs2(t) are two adjacent boundary curves.

Step 2: Compute all points corresponding to the parametric knot values of each curve and project them to
current curve's adjacent curve. Record the parameters of the projected points and perform the knot insertion
algorithm at the projected points.

Step 3: Replace the curve Cs1(t) by Cs2(t) to make sure the adjacent boundaries of adjacent surfaces are
unanimous.

The conforming operation is naturally the knot insertion of adjacent curves and can make sure that the
resulted model is watertight and favorable for the IGA application.

1 ( )s tC

2 ( )s tC

1 ( )s tC

2 ( )s tC

1 ( )s tC
2 ( )s tC

1 ( )s tC

2 ( )s tC

(a) Search adjacent boundary curves

1 ( )s tC

2 ( )s tC

1 ( )s tC

2 ( )s tC

1 ( )s tC
2 ( )s tC

1 ( )s tC

2 ( )s tC

(b) Project knot points on adjacent curve

1 ( )s tC

2 ( )s tC

1 ( )s tC

2 ( )s tC

1 ( )s tC
2 ( )s tC

1 ( )s tC

2 ( )s tC

(c) Replace one curve with the other

Figure 7: Boundary conforming operation. Cs1(t) and Cs2(t) are two adjacent boundary curves. Circular dots
and square dots denote the physical points on boundary curves corresponding to the parametric knot values.
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b2.
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d2.

a3.

b3.

c3.

d3.

a4.

b4.

c4.

d4.

Figure 8: Conversion of a planar trimmed element into mixed Bézier patch. White dots denote the boundary
control points which can be exactly extracted from existing boundaries of rectangular Bézier patch and physical
trimming curves. Blue dots and red dots denote the approximated boundary control points and inner control
points of converted Bézier patch, respectively. The degrees of surface and trimming curves are assumed to be
3.

4.4 Bézier Elements Conversion from Trimmed Elements

In the process of converting trimmed NURBS surface to mixed Bézier patches, NURBS surface is �rstly
extracted as tensor product Bézier piecewise patches by using knot insertion algorithm. Bézier patches corre-
sponding to valid elements are preserved and the patches related to invalid elements are removed. Now the
problem is simpli�ed as how to convert trimmed elements to mixed Bézier patches, which can be divided into
two parts: boundary curves construction and inner control points generation.

4.4.1 Construction of boundary curves

With algorithm of detecting the trimmed elements in previous subsection, it is easy to determine the relationship
between Bézier segment curves on trimming curve and parametric points (up, vp), which can be sorted by the
direction of the original trimming curves. The construction of boundary curves is performed in the physical
space and a planar example is illustrated in Fig. 8 where four types of trimmed elements are considered.
The valid domain in trimmed element can be directly substituted by one Bézier patch or further divided into
sub-patches based on the distribution of trimming Bézier curve and parametric points (up, vp) relevant with
this element. For convenience of expression, red, blue and white circular dots denote the control points of
the converted sub-patches in physical space, where white dots denote the boundary control points which can
be exactly extracted from the existing boundaries of rectangular Bézier patch and physical trimming curves,
blue dots and red dots denote the approximated boundary control points and inner control points of converted
Bézier patch, respectively. The boundary curves of the sub-patches are �rstly constructed and inner control
points are subsequently generated.
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Here a1 and a2 in type a are used as examples to portray the construction process of boundary curves. In
case of a1, there is only one Bézier curve P̃2P1 included in the element. Bézier curve and element boundaries
intersect at points P2 and P1. Inserting parameters up or vp of P1 and P2 into Bézier boundary curves ÃB
and B̃C, we can obtain Bézier curves P̃1B and B̃P2. Then the three boundary curves P̃2P1, P̃1B and B̃P2 will
be employed as three edges of a triangular Bézier patch. It should be noticed that if the surfaces or trimming
curves are rational, the weights of the control points corresponding to the intersected point P1 (or P2) in

Bézier curves P̃1B (or P̃2B) and P̃2P1 may be di�erent and cannot be replaced by each other, because they
are di�erent in homogeneous coordinates even though they are the same in Euclidean coordinates. Therefore,
we reparametrize the Bézier curve by changing the weights to obtain standard form of the Bézier curve. The
reparametrization can be realized as follows [11],

ω̄i =

(
ω0

ωn

) i
n ωi
ω0
, i = 0, 1, ..., n, (7)

where ωi and ω̄i denote the weights of i−th control points for original Bézier curve and standard form,
respectively. Then the weights of end control points ω̄0 = ω̄n = 1. After reparametrization, it is assured that
the end control points of each boundary curve can be replaced by the adjacent one according to a prescribed
error.

In case of a2, there are two Bézier curves P̃1P3 and P̃3P2 included in the element. The valid domain is
considered to be divided into two triangular sub-patches. We �rstly select some collocated parametric points on
the parametric line BP3 and compute the corresponding surface points, which are used to approximate a Bézier
curve B̃P3. Now two triangular Bézier patches will be constituted from the boundary curves P̃1B, B̃P3, P̃1P3

and P̃2B, B̃P3, P̃3P2. Similarly, a quadrilateral Bézier patch will be generated from four Bézier boundary
curves ÃB, B̃P2, P̃2P1 and P̃1A in case of d1. In the following, we will discuss how to construct triangular
Bézier patch and quadrilateral Bézier patch from the obtained boundary curves.

4.4.2 Inner control points generation

The construction of inner control points is based on the discrete Coons method proposed in [10], which is also
employed and extended to construct B-spline volume [36, 37], because of its simplicity and validity.

For triangular Bézier patch, the inner control points can be built by using a mask of the form [10]

α

β β

β • β

α β β α

(8)

with 3α+6β = 1 and α = − 1
6 is recommended in [10] and is also used in this paper. Then for cubic triangular

Bézier patch, the inner control point b111 can be expressed as:

b111 =
1

4
(b201 + b102 + b021 + b012 + b210 + b120)− 1

6
(b300 + b030 + b003), (9)

which is also employed to construct the Bézier surface from the mesh model, e.g., so-called curved PN triangles
[32]. For degree higher than cubic, the inner control points can be calculated by solving a linear equation
which is formulated by applying the mask given in Eq. (8) to each inner control point.
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For quadrilateral Bézier patch, the inner control points can be generated by [10]:

bij = (1− i

n
)b0j +

i

n
bnj + (1− j

m
)bi0 +

j

m
bim −

[
1− i/n i/n

] [b00 b0m

bn0 bnm

] [
1− j/m j/m

]
, (10)

where b0j ,bnj ,bi0,bim, i = 0, 1, ..., n, j = 0, 1, ...,m denote control points of four boundary curves. bij , 0 <
i < n, 0 < j < m denote the inner control points.

As shown in Fig. 9 The trimmed NURBS surface model given in Fig. 4 can be converted into congregation
of rectangular Bézier patches and triangular Bézier patches (simpli�ed as mixed-Bézier patches) by using the
above conversion methods. Figures 9(a) and 9(b) present converted mixed-Bézier model after conforming
operation as described in previous subsection, i.e., the insertion of the Bézier patches' vertexes into the
boundary curves and using the curves' Bézier knots as vertexes of new Bézier patches, then the interface
conforming of these curves.

(a) Conforming mixed Bézier patches (b) Conforming control points rendering

Figure 9: Conversion of trimmed NURBS models into mixed Bézier model. (a) The converted Bézier elements
and (b) corresponding control points.

The approximation error occurs here, but it can be decreased with the re�nement of the NURBS surface
and in this paper it will not be discussed in full detail to avoid deviation from the main point. We notice that
a Bézier projection method has been proposed to project any function including B-splines, NURBS, T-splines
onto a local basis [30] and has been successfully utilized to project the NURBS or T-spline surface onto a
collection of piecewise Bézier elements for further construction of geometrically exact volumetric Bézier mesh
[9]. It will be interesting and helpful in the future to introduce the Bézier projection method into the mixed
Bézier reconstruction from a trimmed Bézier patch.

4.5 Boundary Optimization

In practical engineering model, the trimming boundary curves may include a variety of inner knots which will
result in a lot of unwanted elements including some narrow elements. For example, as shown in Fig. 10(a),
a regular surface rendered in Rhino is trimmed from the center by a projected circle and 60 triangular Bézier
elements are generated as given in Fig. 10(b). It can be found that trimming curve includes an inner knots in
each trimmed elements except four smaller trimmed elements. To reduce triangular Bézier elements generated
by inner knots of a trimming curve, the trimming curve segments in any trimmed element are reparameterized
into a very few consecutive Bézier curves. If the trimming curve segments located in a trimmed element are
tangentially continuous, one Bézier curve is used for �tting. Otherwise the point where tangent vectors are
discontinuous is used to divide curve segment into two parts for separately �tting. It should be noted that
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one Bézier curve is usually enough to �t the curve segments in trimmed element since the element is relatively
small after re�ning the NURBS surface for IGA. The classical least-square �tting method is employed in this
paper. Figure 10(c) shows the converted mixed-Bézier model after boundary optimization. It can be found that
the triangular Bézier elements are signi�cantly reduced, which can alleviate the occurrence of ill-conditioned
sti�ness matrix in analysis. Improving the quality of generated triangular Bézier elements and meanwhile
reducing the error of shape approximation is still an open question and needs further investigation.

(a) Initial trimmed surface (b) Before optimization (c) After optimization

Figure 10: Initial trimmed NURBS surface and the converted mixed Bézier model before and after boundary
optimization.

4.6 Tank hanger example

A relatively complex model is presented here to verify the whole conversion process. As given in Fig. 11, a
sheet metal part, tank hanger, is built with 125 NURBS surfaces where 65 surfaces are trimmed. Figure 11(a)
presents the original model rendered in software Rhino and �gure 11(b) shows the conforming mixed Bézier
model obtained using our method. It can be found that there are several tiny and complex shaped surfaces
at the corners of the tank hanger. To generate the conforming mixed Bézier model for isogeometric analysis,
some surfaces are re�ned �rst to obtain suitable-size elements before the conversion. The mixed Bézier model
presented in Fig. 11(b) consists of 2029 rectangular Bézier patches and 5082 triangular Bézier patches.

(a) Original model (b) Mixed Bézier

Figure 11: Tank hanger. (a) The original model rendered in Rhino and (b) mixed Bézier model obtained
using our method.
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5 ISOGEOMETRIC FORMULATIONS

In this section, we will brie�y discuss the isogeometric formulations for 2D elasticity problems and Reissner-
Mindlin plate and shell elasticity problems, which will be addressed in the following numerical examples. Given
a domain Ω ⊂ R3 with boundary Γ = ∂Ω, assume that ΓD and ΓN denote the Dirichlet part and Neumann
part on the boundary. The strong form of governing equations in elasticity boundary value problem can be
expressed as:

∇σ + b = 0

u = ḡ

σ · n = h̄

(11)

where ḡ and h̄ denote the prescribed boundary displacement and traction, n is the outer normal of the
Neumann boundary and u represents the displacement �eld. Under the assumption of elastic conditions and
small displacement, the strain tensor ε is de�ned by the symmetric part of the displacement gradient as:

ε = 0.5(∇u +∇Tu) (12)

The stress tensor σ can be derived through the Hooke's law by:

σ = D : ε (13)

where D is the elastic tangent matrix. Substituting Eqs. (12)-(13) into Eq. (11), the variation of governing
equations in Eq. (11) can be rewritten in a weak form as follow:∫

Ω

δε : σdΩ =

∫
Ω

δu · bdΩ +

∫
ΓN

δu · h̄dΓ (14)

In this work, Bernstein polynomials in representing geometrical models are regarded as the shape functions
for isogeometric analysis. Hence, for each element the discretization of the geometry x and displacement u
can be expressed by:

x(u, v) =

ncp∑
i=1

Bi(u, v)Pi (15)

u(u, v) =

ncp∑
i=1

Bi(u, v)di (16)

where (u, v) are the parameter coordinates of a point mapping from parent space to the parameter space.
Parent space is developed from a generalized isoparametric element such as a square or a triangle. Bi(u, v)
denote the Bernstein polynomials. Pi and di denote the control points of the geometry and the displacement,
respectively. ncp is the number of the control points in an element which corresponds to a Bézier patch. For
triangular Bézier element (patch), the parent element is a right triangle with three vertices (0, 0), (0, 1), (1, 0).
For quadrilateral Bézier element (patch), the parent element is a standard isoparametric element with domain
[−1, 1]

⊗
[−1, 1]. The standard and collapsed Gaussian quadrature rules [17] are implemented for numerical

integration of quadrilateral and triangular Bézier patches.

6 NUMERICAL EXAMPLES

Two-dimensional elasticity problem, free vibration of Reissner-Mindlin plate and static bending of Reissner-
Mindlin shell are investigated to verify the accuracy, convergence and validity of the presented method in this
section. In two-dimensional models, the conversion is geometrically exact if we ignore the approximation error
of trimming curves, which always exists in the CAD model. All the geometries are built in Rhino platform and
exported as .igs �les for mixed Bézier discretizations.
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6.1 In�nite Plate with a Circular Hole

In the �rst example, a benchmark problem for stress distribution in an in�nite plate with a circular hole is
considered as illustrated in Fig. 12. The in�nite plate is subjected to a uniform tension of magnitude T in the
x-direction and a �nite quarter plate is constructed for simulation due to the symmetry property. The exact
solution of the stress tensor in a polar coordinate system (r, θ) is given by [31]:

σrr(r, θ) =
T

2

[
1− a2

r2
+

(
1 +

3a4

r4
− 4a2

r2

)
cos 2θ

]
σθθ(r, θ) =

T

2

[
1 +

a2

r2
−
(

1 +
3a4

r4

)
cos 2θ

]
σrθ(r, θ) = −T

2

(
1− 3a4

r4
+

2a2

r2

)
sin 2θ

(17)

where a denotes the radius of the circular hole. As illustrated in Fig. 12(b), displacement boundary condition
is symmetrically imposed on the left and bottom edges and traction boundary condition derived from exact
stress tensor is enforced on the right and top edges.
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(a) Problem de�nition
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(b) A �nite quarter plate

Figure 12: In�nite plate with a circular hole. (a) Problem de�nition and (b) a symmetric �nite quarter plate
for the problem.

(a) 2× 2 (b) 4× 4 (c) 8× 8 (d) 16× 16 (e) 32× 32

Figure 13: Mixed Bézier discretization from Trimmed NURBS with di�erent mesh size. Yellow element
denotes triangular Bézier patch and cyan element denotes tensor-product Bézier patch.
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(a) 34+ 3� (b) 14+ 15� (c) 54+ 60� (d) 94+ 243� (e) 174+ 974�

Figure 14: Stress σxx contour under di�erent mixed Bézier discretizations given in Fig. 13. 4 and � denote
the triangular Bézier patch and quadrilateral Bézier patch, e.g., 34+3� means the mixed Bézier mesh consists
of 3 triangular Bézier patches and 3 quadrilateral Bézier patches.
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Figure 15: Comparison of convergence behaviors in the stress L2-norm versus (a) the square root of number
of elements

√
elemN and (b) the number of degrees of freedom. Lowercase p in legends denote the degree

of elements (patches).

This problem is studied by using linear �nite element method, standard cubic NURBS-based IGA and
trimmed NURBS-based IGA. For �nite element method, plate is automatically meshed into composition of
triangles and quadrangles in ABAQUS. For standard NURBS-based IGA, plate is represented with only one
untrimmed NURBS patch and uniformly re�ned with h-re�nement strategy. Note that the standard NURBS-
based IGA could be implemented by using an open-source toolbox NLIGA [8]. For trimmed NURBS based
IGA, NURBS patch is constructed over the domain Ωinitial = {(x, y)|0 ≤ x ≤ L, 0 ≤ y ≤ L} and uniformly
discretized into 2×2, 4×4, 8×8, 16×16, 32×32 elements. To represent the plate model, a quarter of circle
over the domain Ωinvalid = {(x, y)|x ≥ 0, y ≥ 0, x2 + y2 ≤ a2} is trimmed o�. Lastly the resulted trimmed-
NURBS patch Ωresult (Ωresult = Ωinitial −Ωinvalid) is converted into mixed Bézier patches (composition of
triangular Bézier patches and quadrilateral Bézier patches), as presented in Fig. 13, where yellow elements
denote the triangular Bézier patches and cyan elements denote the quadrilateral Bézier patches. Figure 14
shows the stress distribution under di�erent mixed Bézier discretization given in Fig. 13. It can be found that
stress is discontinuous along the interfaces in a very coarse mixed-Bézier model, e.g., in Figs. 14(a) and 14(b),
and this discontinuity can be gradually alleviated with growth of Bézier patch number.
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Convergence behaviors in the stress L2-norm versus
√
elemN (the square root of number of elements)

and the number of DOF (degree of freedom) with di�erent mesh density are shown in Fig. 15. It can be
noticed that both standard untrimmed bi-cubic NURBS and trimmed bi-cubic NURBS plates can converge
with a same rate O(h3) as depicted in Fig. 15(a), since the convergence rate is determined by the degree.
The numerical results of trimmed NURBS are slightly more accurate than that of untrimmed NURBS when
the sum of elements is more than a certain number, e.g.,

√
elemN > 4 in Fig. 15(a). The reason is that, in

the same mesh density, the converted C0-continuity mixed Bézier patches from trimmed NURBS will produce
more control variables (or DOFs) than C2-continuity untrimmed NURBS. As plotted in Fig. 15(b), the results
obtained from untrimmed NURBS are more accurate than that of converted mixed Bézier patches in the same
number of DOFs as given in Fig. 15(b), even though they converge with almost the same rate. It can be
concluded that the higher smoothness of the untrimmed NURBS leads to a better/lower constant in the error
estimator, leading to the o�set in favor of the smooth discretization.

R

r

(a) Modeling (b) Nonconforming (c) Conforming (d) Control points

Figure 16: Annular plate modeling and discretization, r/R = 0.3. (a) Annular is trimmed from square plate
with a square hole constructed by four nonconforming NURBS patches. (b) and (c) are the nonconforming
and conforming discretization of the annular plate. (d) Control points of the conforming mixed Bézier model
are displayed.

1st  Mode 2nd  Mode 3rd  Mode 4th  Mode 5th  Mode

6th  Mode 7th  Mode 8th  Mode 9th  Mode 10th  Mode

Figure 17: The �rst ten Mode shapes of trimmed annular plate with both clamped inner and outer edges,
h/R = 0.1, r/R = 0.3.

6.2 Free Vibration of an Annular Plate Built with Four Trimmed Patches

In this example, we want to discuss the application of mixed Bézier discretization on trimmed multi-patch
NURBS objects. The annular plate is only built with a singular trimmed patch in previous example, while
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Table 1: Comparison of frequency parameters, $ = ωR2
√
ρh/D0, for thick annular plates with both clamped

inner and outer edges, h/R = 0.1 and r/R = 0.3, 0.5.

r/R Method
Mode types

(0,1) (0,2) (1,1) (1,2) (2,1) (2,2)

0.3 Irie [14] 39.40 95.59 40.37 96.99 43.98 101.43

Standard-IGA 39.4581 95.8365 40.4310 97.2368 44.0459 101.6798

Trimmed-IGA 39.4614 95.8597 40.4357 97.2640 44.0529 101.7169

0.5 Irie [14] 70.28 159.78 70.90 160.60 72.96 163.08

Standard-IGA 70.4426 160.3419 71.0711 161.1597 73.1354 163.6483

Trimmed-IGA 70.4537 160.5698 71.0838 161.3910 73.1513 163.8062
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Figure 18: Problem de�nition and modeling of the T-junction pipe.

(a) Mixed Bézier mesh (b) Control points

Figure 19: Discretizations of multi-trimmed T-junction pipe model.
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here it is built with four non-conforming trimmed patches. Just like the previous example, two radius-ratios
r/R = 0.3, 0.5 and thickness-span ratio h/R = 0.1 are considered. The original square plate with a small
square hole is �rstly modeled by four non-conforming NURBS patches and then is trimmed by two circles
with radius r and R as shown in Fig. 16(a). The nonconforming and conforming mixed-Bézier discretization
are given in Figs. 16(b) and 16(c) where conforming discretization consists of 189 triangular Bézier patches
and 60 rectangular Bézier patches for radius-ratio r/R = 0.3. Meanwhile, it consists of 173 triangular Bézier
patches and 48 rectangular Bézier patches for radius-ratio r/R = 0.5. Figure 16(d) shows control points for
the conforming mixed-Bézier discretization.

Inner and outer edges are both clamped as boundary condition for free vibration analysis. As listed in
table 1, the dimensionless frequency parameter $ = ωR2

√
ρh/D0 is calculated for the annular plate with

radius-ratios r/R = 0.3, 0.5. The existing results in [14] and the results obtained from an untrimmed annular
plate are also listed for comparison. It can be found that these results agree well with each other. In addition,
the �rst ten mode shapes of the annular plate with h/R = 0.1, r/R = 0.3 are plotted in Fig. 17.

(a) Displacement Ux using our method (b) Displacement Ux using ABAQUS

(c) Displacement Uy using our method (d) Displacement Uy using ABAQUS

(e) Displacement Uz using our method (f) Displacement Uz using ABAQUS

Figure 20: Displacement contours of T-junction-pipe shell under a uniform edge load P obtained by using
our method and ABAQUS.
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6.3 T-junction Pipe

In this example, we consider a multi-trimmed T-junction pipe shell problem based on the Reissner-Mindlin
shell theory. The T-junction pipe is built with two orthogonally intersected pipe and the interface of the pipes
is �lleted. Due to the symmetry property, a half of the T-junction pipe is modeled with three NURBS patches
as depicted in Fig. 18(a). The edges of the horizontal pipe are clamped and the top edge of the vertical
pipe is subjected to an edge load P . As illustrated in Fig. 18(b), a �llet surface R3 is generated from the
interface of the intersected semi-cylindrical patch 1 with radius R1 and semi-cylindrical patch 2 with radius
R2. It should be noticed that the �llet surface is tangent to both patch 1 and patch 2. Two boundary curves
of the �llet surface is also regarded as the trimming boundaries of patch 1 and patch 2. Therefore, both patch
1 and patch 2 are trimmed surfaces.

Multi-trimmed T-junction pipe model is discretized into 242 bi-cubic quadrilateral Bézier patches and 116
cubic triangular Bézier patches as shown in Fig. 19. The number of control points is 2821 in total. Two blown-
up views are given to show the local details of the discretization. Reissner-Mindlin shell theory is employed to
study the deformation of the pipe model. Material properties are E = 1× 105, ν = 0.3 and thickness h = 1.0.
Figure 20 presents the comparison of displacement in three directions between present results and that of
ABAQUS where the T-junction pipe is discretized into 22246 quadratic shell elements and 67309 nodes to
calculate the displacement results. To better visualize the displacement contour, a deformation scale factor
f = 2.8476 × 103 is applied on the deformed model. Gray grids on the contours denote the un-deformed
Bézier meshes. The present results are found in good coincidence with that of ABAQUS from the comparison.
In addition, the displacement of edges is projected to the y-z plane with x = 0.0, as plotted in Fig. 21,
to observe the deformation result di�erences between the present trimmed-IGA method and �nite element
method in ABAQUS.

−50 −40 −30 −20 −10 0 10 20 30 40 50
−20

−10

0

10

20

30

40

50
Undeformed
ABAQUS
Present

z

y

Figure 21: Projection of displacement on the boundaries to the y-z plane with x = 0.0. The results of present
method are compared with that of ABAQUS and the undeformed boundaries. The deformation scale factor is
2.8476× 103.

7 CONCLUSIONS

Various problems including enforcement of Dirichlet boundary conditions, conforming of trimming interfaces
and quadrature of trimmed elements will be encountered when implementing isogeometric analysis on trimmed
models which are ubiquitous in the �eld of computer-aided geometric design. To bypass these tricky problems,
in this paper, a novel approach is proposed to convert the trimmed surfaces into mixed Bézier patches for
isogeometric analysis. The converted models are watertight and can keep the original model geometrically
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exact except the parts along the narrow area of trimming curves, where the approximated error depends on
the �atness of the trimmed elements and can be reduced by re�ning the NURBS surface with knot insertion
algorithm. The comparison of presented results and that of ABAQUS or existing literatures shows the validity
of the proposed method. Though this method tends to result an increase of DOFs in the resulting simulations,
it intrinsically inherits the CAD structure of the original model so it's tightly compatible with the existing
CAD representations, and as a result, the Bézier patch model can avoid the heavy burden of mesh repair
work which is typical of FEA procedure and often arising from the damage of CAD information. Note that
only C0 continuity across boundaries of Bézier patches is preserved. Therefore, future works will focus on the
improvement of the continuity between Bézier patches especially the patches that are away from the narrow
trimming area.
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