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Abstract. Sketches in the form of line drawings are important illustrations to directly 
express the overviews of objects, especially mechanical objects. Numerous methods 
that automatically convert sketches into 3D models have been proposed. However, 
no practical system for conversion has been developed till now. Consequently, we 

developed a method for this conversion. In our SFBCM (Sketch Feature-Based 
Conversion Method), when a sketch is input, sketch features that indicate simple 

sketches of objects such as cubes, cylinders are detected and extracted as 3D 
features step by step. Consequently, a 3D model can be obtained by combining them 
based on the sketch. However, the implementation of SFBCM has remained an 
important issue. In this paper, an algorithm for the implementation of SFBCM is 
proposed. For a simpler implementation, this algorithm applies human perception. 
For example, people prefer to draw isometric and symmetric sketches of objects. 

Consequently, various types of sketches can be handled in this algorithm. The 
effectiveness of revised SFBCM with this algorithm is demonstrated with three 
complex examples, and the limitations and issues are discussed in detail. 
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1 INTRODUCTION 

Sketches in the form of line drawings are commonly observed in magazines, books, manuals, etc. 
Sketches are also important for designers, especially mechanical designers, when they invent new 
ideas of products and their parts. The automatic conversion of sketches into 3D models will be 
advantageous for several applications. Moreover, it is expected that robots will be able to understand 
sketches by their converted 3D models in the future. In the last fifty years, numerous methods to 

automatically convert sketches into 3D models have been considered and developed. However, no 
real system for the conversion has been developed till now. We have been developing a method for 
the conversion of sketches to 3D models for approximately seven years. Consequently, we proposed 

a fundamental algorithm to achieve this conversion [23-24]. However, the implementation of this 
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algorithm has been ignored owing to is significant complexity. Therefore, this is an important 
challenge in our method. 

Recently, when we retrieved various types of sketches from several websites, we identified an 
important cue for the implementation. Let us assume that there is a pole. When a person draws its 

sketch on a paper, he/she will draw a sketch as shown in Fig. 1(a) rather than a sketch as shown in 
Fig. 1(b), because he/she wants to emphasize that the object is long. Therefore, people generally 
prefer drawing isometric sketches of objects. Fig. 2 shows three sketches of a cube. Fig. 2(a) shows 
a precise sketch, which is a copy of a screen in a solid modeler (SolidWorks). Fig. 2(b) shows an 
isometric sketch. Fig. 2(c) shows a sketch that is not precise but understandable for people. These 
three sketches will be recognized as the same cube by people because cubes are more familiar 
structures than rhombus-shaped objects. In addition, it can be assumed that people generally 

consider most isometric objects as 2D pictures, except when they are placed before their eyes. For 

example, Fig. 3 shows pictures of a cardboard box. In Fig. 3(a), we captured a picture using a 
camera. In Fig. 3(b), the edges of Fig. 3(a) are colored. Although the correct lengths of the red, 
blue, and green lines are 275, 205, and 80 mm, respectively, certain limitations in this figure are 
obvious; for example, the lengths of the three red lines are different, and two blue lines are not 
parallel. Generally, people seldom look at a box, as shown in this figure. In Fig. 3(c), we captured a 

picture when the camera is placed at a distance of 1000 mm from the box. In this figure, it can be 
observed that the box appears to be similar to a cuboid. Moreover, it is a normal canonical view (e.g. 
[10],[18]). In addition, it can be assumed that people can watch televisions and movies as 3D worlds 
on 2D screens. We observed that such human perceptions can aid in achieving an easy 
implementation of our method. 

 

 

Figure 1: Two sketches of a pole: (a) Isometric sketch and (b) Perspective sketch. 

 

 
 

Figure 2: Three sketches of a cube: (a) Precise sketch, (b) Isometric sketch, and (c) Another sketch. 

 

 

 

Figure 3: Three pictures of a cardboard box: (a) Box is positioned in front of the camera, (b) 
Comparison of the edges for the image illustrated in (a), and (c) Normal view. 

 
In this paper, an algorithm for implementing the proposed method is proposed. This algorithm is 
based on the aforementioned concept of human perception. In Section 2, the related works are 

presented. In Section 3, the principle of this algorithm is explained. In Section 4, this algorithm is 
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explained in detail with three examples. In Section 5, the effectiveness and limitations of this 
algorithm are discussed.    

In this algorithm, sketches are drawn using 2D CAD systems and/or graphics processors on 
tablets, laptop PCs, etc. The process required to handle sketches drawn on paper is separated from 

this algorithm because it is an issue in image processing. Although rough sketches may be handled 
in future works, only accurate sketches are handled in this paper. For example, a parallelogram must 
form two pairs of lines whose lengths are the same and are parallel, and there are four vertices. It 
is to be noted that, in this paper, a 2D closed contour that contains no lines is called a region and a 
3D contour is called a face. A sketch feature converted into a 3D model is called a 3D feature. 

2 RELATED WORKS 

There are numerous papers on the automatic recognition of sketches in the form of line drawings 

and/or their conversion into 3D models. Their classification is presented in [5]. The original line 
labeling technique was developed as Huffman-Clowes labeling, [4],[13]. In this labeling process, the 
objects of the sketches were limited to opaque trihedral polyhedrons, and a sketch was an orthogonal 
projection of an object viewed from a general position. Each line segment of a sketch was labeled as 
“+” (convex line), “-” (concave line), or with an arrow (occluding line). From the labeling, the vertices 
were classified into the following four types of junctions: L, W, T, and Y-junctions. This naming was 

derived from the shapes of the alphabets, i.e., “L,” “W,” “T,” and “Y,” respectively. The relationships 
between the labeling and the junctions were summarized as a junction dictionary. Fig. 4 shows a 
sample of line labeling. Fig. 4(a) shows a sample sketch of polyhedrons. In Fig. 4(b), each line 
segment is labeled. Arrowed, “+,” and “-“ lines are colored blue, red, and green, respectively. From 
this figure, each junction can be recognized, as shown in Fig. 4(c), by using the junction dictionary. 
The three red points are Y-junctions, and two of them express convex corners because each of them 

consists of only “+” lines, and the other is a concave corner. Five green points, six blue points, and 

a brown point express W-, L-, and T-junctions, respectively. 
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L

L

L

L

L
L

W
W W

W
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Figure 4: Sample of line labeling: (a) Sample sketch, (b) Line labeling, and (c) Junctions. 

 

Kirousis [16] indicated the computational complexity of line labeling and presented the following 
proposition, “If a sketch is realizable, then it is labelable.” Moreover, Varley et al. [27] handled high-
order junctions such as K- and X-junctions. Although these labeling techniques were applied to 
sketches consisting of only straight lines, Malik [17] created a junction dictionary for curved lines in 
sketches. For a practical conversion, classically, skewed symmetry theory proposed by Kanade [15] 
and linear equations-based technique proposed by Sugihara [21] are important. These techniques 
are applied for practical conversion, as demonstrated in [8]. Moreover, Varley et al. [27] identified a 

“cubic corner” based on [19], which is effective for practical conversions. Ribs, pockets, and fillets in 
sketches were researched in [6],[20]. 

In recent years, Company et al. [7] investigated techniques to detect junctions from sketches 

using human perception. From this analysis, it can be determined that human perception is important 
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for conversion, which is incorporated in this algorithm. Interactive or semiautomatic systems for 
conversion were previously proposed, [1],[30]; however, there are no fully automatic systems for 
conversion. Further, 3D sketching systems were also developed [11-12]. Although these systems 
might be useful for beginners, they are only a few types of solid modelers, for example, CATIA and 

SolidWorks. Fundamentally, sketches in the form of line drawings are perceived as freehand drawings 
of objects for people rather than for systems. Neural network techniques have also been actively 
used for conversion [2-3],[9],[14],[26],[28-29]. However, a learning process is required for 
conversion in these techniques. The learning is suitable for known objects such as tables, chairs, 
cups; however, this technique is not suitable for different types of mechanical and creative objects 
because each of them must be learned individually and repeatedly for different cases. Therefore, the 
learning of these objects is wasteful. In summary, although all the studies described above are 

effective for conversion, the types of convertible objects are strictly limited. Our proposed algorithm 

in this paper aims to extend the limitation of convertible objects significantly more than conventional 
techniques. 

3 PRINCIPLE OF THE PROPOSED ALGORITHM 

3.1 Sketch Features and Example 1 

In our method, all primitive sketches are initially defined as “sketch features.” Here, sketch features 
are different from “machining features” because our idea of sketch features is based on the 
automatic conversion of orthographic views into 3D models, as presented in [22]. Therefore, we 
have not referred to machining features and their recognition techniques. This is because 
determining several more sketch features for conversion is a more important problem than 
recognizing them in the present step of our method. Fig. 5 shows three basic sketch features that 

indicate a cuboid, cylinder, and round hole. Most people can recognize and draw these sketches 
because they are familiar and commonly drawn figures. In our method, a sketch is converted into a 
3D model by extracting sketch features sequentially from the sketch. Further, a sketch is an 
orthogonal and opaque projection of a 3D object placed in a general position. Each sketch consists 
of ellipses, elliptical arcs, and straight lines. 

 

Figure 5: Basic three sketch features: (a) Cuboid, (b) Cylinder, and (c) Round hole. 

 

Here, our method is explained simply using Example 1, as shown in Fig. 6(a). When Example 1 is 

input, first, straight lines are divided at their intersections. Second, additional lines are drawn as 
dotted lines. They can be drawn from T-, W-, and L-junctions, such as extending their lines within 
the input sketch. If a curved line is an element of a T-junction, it is extended in a manner similar to 
forming an oval. If an additional line cannot become a part of a closed loop of lines, it is cut until 
the loop is formed. In Fig. 6(b), an additional line (green) is drawn from a T-junction. Third, a basic 
sketch feature can be detected, such as a cylinder in Fig. 6(c). In this figure, the detected cylinder 

is blue and the hidden arc is in green. Fourth, the cylinder is extracted as a 3D cylinder from the 
input sketch, as shown in Fig. 6(d). In this algorithm, hidden line(s) become additional line(s) after 
a 3D feature is extracted. After the extraction, an additional arc in the remaining sketch can be 
extended to make an (pink) ellipse. The ellipse can become the contact face to the bottom (pink) 
face of the 3D cylinder, as shown in this figure. Subsequently, a sketch feature of a cuboid can be 
detected as a 3D cuboid, as shown in Fig. 6(e). Then, if any sketch features cannot be detected, a 

restoration process is executed to create a sketch feature using this algorithm. A solid model of 

Example 1 can be obtained by combining the 3D cuboid and 3D cylinder at their contact face. A 
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detailed explanation of this process is provided in the next subsection. Fig. 7 shows a summarized 
flowchart of the method described above. Here, we call our method SFBCM (Sketch Feature-Based 
Conversion Method). In this figure, Step 6 implies that each additional line forming a T-junction is 
removed because the line must be occluded from the other line(s) so that it cannot form any sketch 

features. A detailed explanation of the flowchart can be obtained in [23-24]. 

 

 
(a)                       (b)                       (c)                               (d)                        (e) 

Figure 6: Example 1: (a) Example 1, (b) Additional line is drawn, (c) Cylinder is detected, (d) 

Cylinder is extracted as a 3D cylinder and a contact face is drawn, and (e) Cuboid is detected. 

 

Input a sketch

1) Recognize each line segment

2) Draw additional lines

yes

3) Recognize each region of lines

5) Can restore the sketch to

make a sketch feature?
4) Can detect a sketch

feature?

yes

no

7) Draw hidden lines of the sketch feature

6) Remove useless addtional lines

9) Decide the 3D coordinate system from 7)

11) Combine all extracted

3D features

12) Output a 3D model

10) Are there any lines

in the sketch? no

yes

no

8) Extract the sketch feature as a 3D feature

 

 

Figure 7: Flowchart of our method. 
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3.2 Relationship between Sketch Features and Their 3D Models 

When a sketch of a cuboid is provided, it is difficult to determine the depth or height of each vertex 

to make a 3D model. A “cubic corner” (refer [27]) is effective for overcoming this challenge. Fig. 8 
illustrates a cubic corner. A Y-junction of three lines (VA, VB, and VC) is drawn in the x-y coordinate 
system. E, F, and G indicate angles BVC, AVC, and AVB, respectively. If the Y-junction forms a cubic 
corner in 3D space, the z-coordinate value of A (ZA) can be calculated using the following equation. 
 

A B

C

V
F E

G

x

y

O
 

Figure 8: Explanation of “cubic corner.” 
 
 

|𝑍𝐴 − 𝑍𝑉| = 𝑚𝑉𝐴/√(tan𝐹tan𝐺) − 1                                                           (1) 

 
Here, the value of ZV can be zero. mVA is the length of VA. Similarly, ZB, ZC, mVB, and mVC can be 

calculated. Thus, a 3D cuboid model can be obtained. Although the equation is precise and useful 
for the conversion of sketches into 3D models, there are certain problems. In Example 1, if the 

equation is applied, tan(π/2) is obtained; consequently no values can be calculated. However, people 
can observe the cuboid sketch in Example 1 because of the concept of human perception described 
in Section 1. Moreover, people prefer symmetrical drawings to asymmetrical ones. For example, Fig. 
9 shows three sketches of a cylinder on a plate, similar to Example 1. They are copies of a screen in 

a solid modeler (SolidWorks). In Fig. 9(a), a cylinder stands vertically on a plate. In Fig. 9(b), a 
cylinder appears to lean to one side; however, the object appears similar to the sketch in Fig. 9(a) 
when the 3D model of Fig. 9(b) is rotated in the solid modeler, as shown in Fig. 9(c). In general, 
people view Figs. 9(a) and 9(c) identically, and they seldom consider that Fig. 9(c) is another view 
of Fig. 9(b). In addition, the manufacturing processes of symmetrical 3D objects are familiar, 
especially machining and assembly, and the sketch features of such mechanical objects are 
commonly observed. Consequently, we handle sketches of only mechanical objects for the 

conversion and review if each sketch is isometric and basically symmetric. 

 

 

Figure 9: Three sketches of a cylinder on a plate: (a) Vertical cylinder on a plate, (b) Cylinder 
leaning to one side, and (c) Another view of (b). 

 
Therefore, in this algorithm, the definition of a cuboid sketch considers that three parallelograms 

share three edges that form a Y-junction. Therefore, the “cubic corner” is not applied, and the lengths 
of three lines forming the Y-junction are regarded as the correct lengths of three edges in the 3D 
model of the cuboid sketch. In our experimental system, when a sketch of a cuboid is input, as shown 
in Fig. 10(a), a 3D cuboid model is obtained as shown in Fig. 10(b). As a result, our SFBCM becomes 

simpler in the aspect of implementation than conventional methods such as “cubic corner.” Moreover, 
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for simpler positioning of the 3D cuboid, a 3D coordinate system is placed as shown in Fig. 11(a) 
based on Fig. 8 by using three edges to form a cubic corner. In this figure, Point C in Fig. 8 
corresponds to the origin. Further, VA, VB, and VC are parallel to the y-, x-, and z-axes, respectively. 
Therefore, the orthographic view of the cuboid can be drawn as shown in Fig. 11(b). This coordinate 

system enables a clearer handling of 3D objects consisting of multiple 3D features. In Example 1, a 
cylinder stands on a plate vertically according to human perception. Therefore, the axis of the 3D 
cylinder model can be regarded to be parallel to the z-axis. In addition, the height of the cylinder 
can be regarded to be identical to its sketch, and its diameter can be regarded to be identical to the 
longer axis of the ellipse in the sketch. Moreover, the positioning of the 3D cylinder on the 3D plate 
can be regarded as the center of the plate from Fig. 6(a). Consequently, the 3D form of Example 1 
can be obtained as shown in Fig. 12(a) and the orthographic view of can be drawn as shown in Fig. 

12(b). 

 
 

 

 

Figure 10: Automatic conversion in our experimental system: (a) Input cuboid sketch and (b) 
Converted 3D cuboid from (a). 
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Figure 11: 3D coordinate system of a cuboid sketch formed based on the flowchart in Fig. 7: (a) 
Overview and (b) Orthographic view. 
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Figure 12: 3D coordinate system of Example 1: (a) Overview and (b) Orthographic view. 
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4 PROPOSED ALGORITHM 

4.1 Extension of Sketch Features 

Although three sketch features are illustrated in Fig. 5, to handle sketches that are more complex 
than Example 1, more sketch features are necessary. In our present step, eight sketch features are 
added; moreover, eight regions are defined for these features. Fig. 13 shows the regions, which 
consist of the following: parallelogram, ellipse, triangle, curved parallelogram, concave 
parallelogram, polygon, multi-region shape, and piped region. For example, the cylinder sketch 
shown in Fig. 5(b) can be defined as an ellipse with a curved parallelogram sharing half of the ellipse. 

Fig. 14 shows the eight sketch features. Fig. 14(a) shows a polygonal extrusion. It consists of a 
polygon and multiple parallelograms. Each line segment of the polygon becomes a line segment of 
a parallelogram, and two adjacent parallelograms share a line segment. Fig. 14(b) shows a shape 

with multiple extrusions. It consists of a multi-region shape and parallelogram(s) and curved 
parallelogram(s) similar to the polygonal extrusion. Fig. 14(c) shows a rib that consists of a triangle 
and parallelogram. Fig. 14(d) shows a round rib that consists of a triangle and concave parallelogram. 
Fig. 14(e) shows a type of pipe. There are several types of pipe sketches. Although this figure 

consists of a pipe face and an ellipse, the ellipse can be a half-elliptical arc. In mechanical objects, 
fillets are often applied to sharp corners. Thus, three types of fillets are defined as follows. Fig. 14(f) 
shows a front fillet. It consists of four straight lines and two curved lines, each of which contacts 
tangentially, as shown in this figure. From the four tangent points of these lines, two green dotted 
lines can be drawn as additional lines, each of which is effective for detecting the regions shown in 
Fig. 13. Moreover, the four green extension lines from the four straight lines can be drawn as shown 
in this figure. In addition, a red line can be drawn between two intersections of the four green lines. 

Consequently, a front fillet sketch can be changed into a polygonal corner. Fig. 14(g) shows a side 
fillet. Fig. 14(h) shows a hidden fillet. Both these fillets can be changed into polygonal corners using 

the same method used with the front fillet. We determined these sketch features from the operations 
in solid modelers. 

 

 
(a)                 (b)              (c)           (d)              (e)              (f)             (g)                  (h) 

 

Figure 13: Eight regions: (a) Parallelogram, (b) Ellipse, (c) Rectangle, (d) Curved parallelogram, 
(e) Concave parallelogram, (f) Polygon, (g) Multi-region shape, and (h) Piped region. 

 

 
(a)              (b)           (c)             (d)              (e)                 (f)                (g)              (h) 

 

Figure 14: Eight sketch features: (a) Polygonal extrusion, (b) Shape with multiple extrusions, (c) 
Rib, (d) Round rib, (e) Pipe, (f) Front fillet, (g) Side fillet, and (h) Hidden fillet. 

4.2 Three Examples 

From the definitions of sketch features shown in Fig. 14, our proposed algorithm of SFBCM can be 
applied to more complex sketches. In this subsection, three complex examples are presented. Fig. 
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15(a) shows Example 2, which is a wire bracket. When the sketch is input to this algorithm, first, 
straight lines are cut at their intersections. In Fig. 15(b), the 10 red points indicate L-, W-, or T-
junctions and are used to draw additional lines. The 18 blue points in this figure are tangent points 
between straight lines and curved lines. Some of them can be used to draw additional lines as border 

lines between the parallelograms and curved parallelograms. In Fig. 15(c), 13 additional lines are 
drawn as dotted green lines from those points. From this figure, two round holes (blue) can be 
detected, as shown in Fig. 15(d). In Fig. 15(e), they are extracted as f1 and f2. In this figure, pink 
ellipses are considered as the contact faces, similar to the process performed with Example 1. 
Further, based on human perception, it is determined that the axes of the holes must be parallel to 
the z-axis, such as the arrow of f2. Then, four fillets are detected as f3, f4, f5, and f6 in Fig. 15(f). In 
Fig. 15(g), these fillets are extracted as polygonal corners and then a cuboid sketch is detected. 

Further, in this figure, the x-y coordinate system can be defined from the cuboid. Therefore, in this 

algorithm, the 3D coordinate system of a sketch can be defined from a cuboid sketch. If there are 
no cuboid sketches in an input sketch, it would be difficult to perform this operation. In Fig. 15(h), 
the cuboid is extracted as f7. The contact face between f7 and the other 3D feature is indicated as a 
green parallelogram in this figure. After the extraction, a shape with multiple extrusions can be 
detected, as shown in Fig. 15(i). Although this feature consists of a parallelogram, a curved 

parallelogram, and three regions, when the feature is converted into a 3D feature, it can be 
confirmed that the existence of the three regions is correct. Consequently, after the combining 
process is executed from f8 to f1, a 3D model can be obtained as shown in Fig. 15(j). 
 

 

 

(a)                               (b)                               (c)                                 (d) 

z

x

y O

zf1

f2

f3

f4 f5

f6

 
(e)                                              (f)                                            (g) 

f8

f7

 

(h)                (i)           (j) 

 

Figure 15: Example 2: (a) Example 2, (b) Red and blue points that can form additional lines, (c) 
Additional lines, (d) Detection of two round holes, (e) Extraction and coordination of the holes, (f) 

Detection of four fillets, (g) Detection and coordination of a cuboid, (h) Extraction of the cuboid as 
f7, (i) Detection of a shape with multiple extrusions, and (j) Overview of the solution. 
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Fig. 16(a) shows Example 3, which is an eye plate. In Fig. 16(b), 11 additional lines are drawn as 
green dotted lines, and a pipe sketch can be detected. In Fig. 16(c), the pipe is extracted as f1, and 
two contact faces as pink ellipses are indicated. Here, the z-axis can be defined from its cylindrical 

parts. In Fig. 16(d), four round holes are detected. It is determined that each hole is in the form of 
a tapered hole because the sizes of the ellipses on both sides are different. The recognition of the 
taper sketch can be inferred easily from the defined sketch feature of cylinders, and it is determined 
that a sketch feature of the taper has to be defined in this algorithm. Similarity, new sketch features 
can be identified and defined from the handling of new complex sketches. In Fig. 16(e), the tapered 
holes (f2, f3, f4, f5) are extracted and the z-axis is defined in f2. Four pink ellipses indicate their 
contact faces. In Fig. 16(f), three fillets can be detected as f6, f7, and f8. In Fig. 16(g), they are 

extracted, and a cuboid sketch is detected as f9. The 3D coordinate system of Example 3 can be 

defined completely from the cuboid. Consequently, after the combining process is executed from f9 
to f1, a 3D model can be obtained, as shown in Fig. 16(h). In this model, although one corner of the 
plate is not round but polygonal, it would not be difficult for a user to form a fillet in the corner. In 
addition, it is natural that multiple solutions can be generated from a sketch because it is a general 
view of a 3D object. 

 

z
z

f1

 
(a)                            (b)                                      (c)                                     (d) 

 

z
f2

f3

f5

f4 f6

f7
f8 z x

y

O

f9

 
(e)                                     (f)                                    (g)                           (h) 

 

Figure 16: Example 3: (a) Example 3, (b) Additional lines and detection of a pipe, (c) Extraction 
and coordination of the pipe (f1), (d) Detection of four round holes, (e) Extraction and coordination 
of the holes, (f) Detection of three fillets, (g) Detection and coordination of a cuboid, and (h) 
Overview of the solution. 

 

Fig. 17 shows Example 4, which is an arm part of a mechanical product. This example was obtained 
from a textbook on AutoCAD and is shown in Fig. 17(a). However, we simplified it as shown in Fig. 
17(b) because there are unnecessary hidden lines, and too many fillets that are difficult to handle 
for this algorithm at the present stage. First, three round holes can be detected, as shown in Fig. 
17(c). In Fig. 17(d), they are extracted, and a round rib can be detected. When the rib is extracted, 

a shape with multiple extrusions can be detected, as shown in Fig. 17(e). In this figure, all additional 
lines are drawn to clarify this detection. After the extraction, a cylinder can be detected, as shown 
in Fig. 17(f). When it is extracted, the remaining lines can be expressed as shown in Fig. 17(g). In 

this figure, it is determined that all pink lines form T-junctions. Although it is impossible to detect 
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any sketch features in this figure, our automatic restoring system might make a rib, as shown in 
Fig. 17(h). When it is extracted, another shape with multiple extrusions might be detected, as shown 
in Fig. 17(i). Consequently, a 3D model of Example 4 can be obtained, as shown in Fig. 18(a). 
However, when the model is marginally rotated using a solid modeler, it can be observed that the 

restored parts are separated from another solid, as shown in Fig. 18(b). Fig. 18(c) clearly shows this 
gap. Despite this gap, our restoring system might extend the parts to the solid. Therefore, the 
solution of Example 4 can be obtained as shown in Fig. 18(d). Further, the two shapes with multiple 
extrusions are placed at a right angle to the axis of the cylinder, and their angle to the axis is also 
a right angle in 3D space because the x-y coordinates cannot be defined correctly from this example. 

 

 
(a)                                       (b)                              (c)                               (d) 

 

 

(e)                                 (f)                      (g)                 (h)                       (i) 

 
Figure 17: Example 4: (a) Original sketch, (b) Example 4, (c) Detection of three round holes, (d) 

Detection of a round rib, (e) Detection of a multiple extrusion, (f) Detection of a cylinder, (g) 
Extraction of the cylinder, (h) Restoration of a rib, and (i) Restoration of another multiple extrusion. 

 

 

(a)                                 (b)                              (c)                               (d) 

 

Figure 18: Final restoration in Example 4: (a) Solution created from Fig. 17, (b) Rotation of the 

solution, (c) Gap between two solids, and (d) Restoration of the gap. 

5 DISCUSSION 

This algorithm of SFBCM is based on familiar sketch features, especially for designers. We assumed 

that people prefer to draw isometric sketches. Therefore, symmetric sketches, such as those shown 
in Fig. 10(a), can be handled in this algorithm. If a cuboid sketch is detected in an input sketch, the 
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3D coordinate system of the sketch can be formed easily and it enables the combination of all 
detected 3D features to obtain the solution as a 3D model. However, there are several issues in 
developing an actual system for the conversion. For example, Fig. 17(a), which removes dotted 
lines, cannot be handled in this algorithm, but it is not difficult for skillful designers to draw this 

feature. The issues for our future work can be summarized as follows. 
(1) From an input sketch, the processes required to decide a 3D coordinate system, detect and 

extract sketch feature(s) including a procedure of extraction, and assemble 3D features have to 
be clarified. 

(2) A dictionary of sketch features must be organized. The dictionary should include the classification 
and more detailed definitions of sketch features for more valid detections of them from sketches. 
Further, the limitation of convertible sketches in our SFBCM is derived from whether an input 

sketch consists of only defined sketch features. Therefore, more necessary and sufficient sketch 

features must be obtained to expand the dictionary. 
(3) The automatic restoration system for forming sketch features is the weakest point in this 

algorithm. Based on our past research [25], we determined that although an inductive learning 
system was proposed, learning techniques were useless for developing an actual system for the 
conversion more quickly, such as recent works related to artificial intelligence techniques, as 

described in Chapter 2. Therefore, learning techniques are removed from SFBCM. 
(4) Rough sketches such as those shown in Fig. 17(a) can be handled for the varying requests of 

designers. 
(5) Although we have been developing a system for conversion based on the requirements of a 

company handling CAD systems, a more detailed search to identify actual needs for our system 
would be necessary. This search will be influential in solving the above issues more efficiently. 

6 CONCLUSION 

In this paper, an algorithm was proposed for the implementation of our method (SFBCM) that 
automatically converts sketches in the form of line drawings into 3D models. The results are 
summarized as follows: 
• Eleven sketch features (eight new and three basic features) were defined; moreover, eight regions 
were defined for the conversion. 
• The concept of human perception was introduced to simplify the implementation. In particular, it 
was assumed that people prefer to draw isometric and symmetric sketches as they can be more 

effective. In future, we plan to determine more useful assumptions in human perception. 

• It was determined that a 3D coordinate system can be fixed from a cuboid sketch. Therefore, 
combinations of detected sketch features could be easily converted. 

• Three complex examples were shown to indicate the effectiveness of this algorithm. 

• Five issues of this algorithm were discussed in detail in Section 5. 
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