
 

 

Computer-Aided Design & Applications, 18(4), 2021, 786-798 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

786 

 

Fast Dexelization of Polyhedral Models Using Ray-Tracing Cores of 

GPU 

Masatomo Inui1 , Kohei Kaba2  and Nobuyuki Umezu3  
 

1Ibaraki University, masatomo.inui.az@vc.ibaraki.ac.jp 
2Ibaraki University, 19nm425n@vc.ibaraki.ac.jp 

3Ibaraki University, nobuyuki.umezu.cs@vc.ibaraki.ac.jp 
 

Corresponding author: Masatomo Inui, masatomo.inui.az@vc.ibaraki.ac.jp 
 

Abstract. State-of-the-art GPUs are equipped with special hardware called RT 

cores dedicated to image processing for a type of 3D computer graphics called ray-
tracing. In this paper, we propose a novel method for fast dexelization of a complex 

polyhedral model using RT cores. NVIDIA Corporation provides an API library for 
ray-tracing computations named Optix. The function of an RT core is automatically 
available via the API function provided by Optix. In order to evaluate the 
effectiveness of the RT core in dexel processing, a dexelization software for 
polyhedral models was implemented using the API of Optix, and certain 

computational experiments were conducted. Via the experiments, the effectiveness 
of the RT core of GPU in dexel modeling was verified. 

 
Keywords: voxelization, RT core, Optix, parallel processing, GPU 
DOI: https://doi.org/10.14733/cadaps.2021.786-798 
  

1 INTRODUCTION 

Boundary representation (B-reps) is a standard method of solid modeling for CAD systems of 
mechanical products. In B-reps modeling, three-dimensional (3D) objects are represented as 
collections of interconnected closed surface elements. Operations related to B-reps models, e.g., 
Boolean set operation, require techniques like intersection calculation of the surface elements, 
trimming operation of the elements based on calculations, and reconstruction of adjacency 
relationships of the trimmed elements. These operations are computationally expensive, and the 

associated topological reconstruction process tends to be unstable owing to the existence of 
unavoidable floating-point errors in the intersection calculations.  

1.1 NC Milling Simulation Using Dexel Model 

Techniques using voxels, dexels [21], rays [16], or layered depth images (LDI) [18] based on the 
uniform decomposition of the 3D space have been widely used as solid modeling methods that do 

not suffer from the aforementioned problems. With the popularization of these methods, dexel-

http://www.cad-journal.net/
http://orcid.org/0000-0002-1496-7680
http://orcid.org/0000-0002-7873-7833
http://orcid.org/0000-0002-7873-7833
mailto:masatomo.inui.az@vc.ibaraki.ac.jp
mailto:19nm425n@vc.ibaraki.ac.jp
mailto:nobuyuki.umezu.cs@vc.ibaraki.ac.jp
mailto:masatomo.inui.az@vc.ibaraki.ac.jp


 

 

Computer-Aided Design & Applications, 18(4), 2021, 786-798 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

787 

based solid modeling is rapidly becoming a standard method to represent object shapes in NC 
milling simulation [7], [10], [20]. A milling operation is geometrically equivalent to a Boolean 
subtraction of the swept volume of a cutter moving along a cutter path from a geometric model 
representing the workpiece shape. In dexel modeling, the workpiece shape is represented by a 

bundle of Z-axis-aligned segments defined corresponding to each grid point of a square mesh in 
the XY plane (consult Figure 1(a)). As no topological information is used during model 
representation, Boolean operations in dexel modeling are much more robust than the operations 
used in B-reps modeling. 

During dexel modeling, near-vertical surfaces inevitably exhibit significant shape errors caused 
by finite grid resolution. The triple-dexel model was proposed to overcome this non-uniformity in 
shapes and to realize an accurate shape representation (consult Figure 1(b)) [1]. In this 

representation, besides being defined by a Z-axis-aligned dexel model, the 3D shape is also 

defined by an X-axis-aligned dexel model based on a square mesh in the YZ plane and a Y-axis-
aligned dexel model based on a mesh in the ZX plane. Thus, via triple-dexel representation, the 
object space can be divided into a set of cubic cells (voxels) defined by properly positioned X-, Y-, 
and Z-axis-aligned dexels (consult Figure 2). This makes triple-dexel modeling capable of 
representing the same 3D shapes with the same resolutions using less memory than voxel models.  

 
Figure 1: (a) The dexel model and (b) the triple-dexel model with X, Y, Z-axis-aligned dexels. 

 
Figure 2: Cubic cell (voxel) defined by properly positioned X-, Y-, and Z-axis-aligned dexels. 

 

In dexel (and triple-dexel) modeling, Boolean operations of 3D objects can be decomposed into 
simple Boolean computations using collinear dexel segments corresponding to each grid point. 

These computations are independent of segments lying on other lines. Thus, a dexel-wise Boolean 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(4), 2021, 786-798 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

788 

computation can be conducted in a parallel manner. Techniques using graphics processing units 
(GPUs) have recently become popular in the implementation of parallel computation software. 
Current GPUs are designed using thousands of streaming processors (SPs) on a single chip. In 
programming environments such as compute unified device architecture (CUDA) [3], this enables 

programmers to utilize GPUs as general-purpose parallel processors in which each SP executes a 
single unit computation (or thread), e.g., simultaneous Boolean operations on dexels.  

1.2 Conversion of a B-reps Model into a Dexel Model 

During dexel-based milling simulation, initial workpiece models are usually available as B-reps 

models. The simulation converts them to their equivalent dexel models during the initial step. The 
workpiece model is affixed to a table in the milling environment during the simulation. During 
conventional 3-axis machining, the orientation of the workpiece is changed after the machining for 

a certain side is finished, and it is remounted on the table to machine another of its sides. As the 
definition of the dexel model is based on a square mesh fixed in the coordinate plane, rigid body 
transformations, especially rotation of the object, are difficult. Therefore, it is necessary to initially 
convert the dexel model to a B-reps model, and revert it to a dexel model again following any 

necessary rigid body transformations.  

A dexel model can be converted into an equivalent polyhedral model using an algorithm called 
Quad Pillars, developed previously by the authors themselves [9]. As a triple-dexel model is 
equivalent to a voxel model, polyhedrization of the model is possible by employing surface 
extraction algorithms of cell structures, such as the marching cubes algorithm [15]. During the 
conversion of a B-reps model into a dexel model, the algorithm proposed in [16] is usually used. 
We refer to this algorithm as the “ray algorithm” in the following discussion. It defines a set of rays 

perpendicular to the coordinate plane corresponding to all grid points of the square mesh in the 
plane. The intersections between the rays and the B-reps model are computed, and subsequently 

converted into dexel segments.  

A B-reps model representing a resultant shape from a milling operation often comprises a high 
number of small polygons — sometimes exceeding even 50,000,000 polygons. This causes the ray 
algorithm to take upwards of 10 minutes to convert the model into an accurate dexel model 

defined based on a 5,000×5,000 resolution grid. Attempting to reduce of the conversion time has 
become a serious problem in milling simulation. State-of-the-art GPUs are equipped with special 
hardware named RT cores dedicated to image processing called ray-tracing in 3D computer 
graphics. It is expected that various types of dexel processing can be accelerated using RT cores. 
As an initial step in the application of RT cores in dexel modeling, we propose a novel method for 
fast dexelization of complex polyhedral models using RT cores in this paper.  

In the next section, algorithms for conversion of B-reps models to cell decomposition models, 

such as dexels and voxels, are briefly reviewed. Polyhedron-to-dexel conversion using the ray 

algorithm is discussed in the third section. Programming using RT cores and the implementation 
method of the ray algorithm using the RT core are illustrated in same section. Section 4 presents 
some results of the computational experiments that we conducted. Finally, concluding remarks are 
presented in section 5. 

2 RELATED WORKS 

In this section, existing studies related to model conversion of B-reps models into cell 

decomposition models are reviewed. 

A dexel model [21] and a ray representation [16] can be regarded as identical representation 
methods of a solid object, enabling the conversion of a B-reps model into a dexel model using the 
ray algorithm. Another method that can be used for B-reps-to-dexel conversion is depth peeling. 
Depth peeling was originally developed to achieve order-independent transparency [5], but it 

proved to be applicable for obtaining an LDI model from a B-reps solid model. LDI operates by 

recording depth values of surfaces of 3D objects from a certain viewpoint in a multiple-layer 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(4), 2021, 786-798 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

789 

system [18]. In the first layer, the depth of the nearest surface of the solid from the viewpoint is 
recorded corresponding to each pixel, and in the second layer, the depth of the next surface of the 
solid from the viewpoint is recorded. Depth peeling refers to the iteration of this process until all 
the surfaces of the solid have been recorded, and the result is an LDI of the object. If orthogonal 

projection is used to display a solid object, the measurements recorded via depth peeling are 
identical to those obtained from the ordered intersections between the solid and parallel rays 
corresponding to each pixel, enabling facile conversion of the LDI into an equivalent dexel model. 
Zhao et al. proposed a robust depth peeling method [23] and Wang et al. developed a GPU-
accelerated depth peeling algorithm [22].  

Conversion of B-reps models to voxel models has been extensively studied in the field of 
computer graphics. If a spatial cell structure containing a solid object within it is considered, the 

voxel model represents the object as a set of small cubes by replacing the cells that overlap the 

object with cubes. Three replacement criteria are used during this process — (1) replacement of a 
cell completely included in the object, (2) replacement of a cell partially overlapping the object, (3) 
replacement of a cell whose center point lies within the object. The last replacement criterion can 
be realized if a ray representation or a dexel model of the object is obtained. More sophisticated 
methods have also been proposed, e.g., subdivision of the solid object [13] or a method based on 

the computation of the distance between a cell and the object’s surface [11]. 

With the popularization of hardware equipped for graphics processing, various conversion 
techniques using hardware functions have been developed. Karabassi et al. developed a conversion 
algorithm using the depth buffer mechanism [12]. A slicing-based voxelization algorithm was 
proposed by Chen and Fang. Their method generates slices of the underlying model in the frame 
buffer by employing appropriate clipping planes and obtains the voxel model based on the image of 
the section [2]. Heidelberger et al. [6] presented an effective algorithm for rapid layered depth 

image generation that can be extended to voxelization.  

A voxelization algorithm developed by Dong et al. initially converts any solid object into a 
discrete voxel space. The resultant voxels are encoded as 2D textures and stored in three 
intermediate sheet buffers. Finally, these buffers are synthesized into one worksheet representing 
a voxel model [4]. Li and McMain proposed a GPU-accelerated voxelization algorithm in their 
Minkowski sum computation software [14]. Their method proceeds by generating possible surface 
elements corresponding to the Minkowski sum shape of two objects. Voxels corresponding to the 

Minkowski sum shape are then selected based on the identified surface elements. NVIDIA, a 
hardware developer of GPUs, posted a note explaining GPU-accelerated method to convert a 
polyhedral solid model into a voxel model [19]. 

 

Figure 3: Polyhedron-to-dexel conversion. 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(4), 2021, 786-798 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

790 

3 HARDWARE-ACCELERATED RAY ALGORITHM 

In this paper, we describe a method to accelerate the ray algorithm using RT cores of GPUs. Based 
on the obtained dexel model, the voxel model of the solid is easily obtained. By using RT cores, 
polyhedral models composed of a significant number of polygons can be converted into high-

resolution dexel models over considerably short durations. To the best of our knowledge, this is 
the first study investigating the computation of a dexel model using RT cores. 

3.1 The Ray Algorithm 

Figure 3 illustrates the fundamental processing steps involved in the ray algorithm to convert a 

polyhedral solid model into its equivalent dexel model. We assume that no gaps or overlaps exist 
between the surface polygons in the polyhedral model. Several polyhedral models — STL ones in 

particular — do not satisfy this condition. However, polyhedral models in boundary representations 
always satisfy this condition.  

Consider an axis-aligned regular square mesh on the XY-plane that contains the projection of 
the object onto the XY-plane. The appropriate resolution of the mesh is determined by considering 
the representation accuracy of the dexel model and the memory capacity of the computer. During 

NC milling simulation, the resolution is usually set to be approximately equal to or greater than 
5,000 × 5,000. Corresponding to each grid point, a ray perpendicular to the coordinate plane (XY 
plane) is extended along the Z-axis, and its points of intersection with the surface polygons of the 
object are computed. These intersection points are then sorted along the direction of the ray. By 
connecting odd-numbered intersection points with even-numbered intersection points using lines, 
a dexel model equivalent to the polyhedral model is obtained. If the dexel model is required along 
the X-axis or the Y-axis, the same computation is repeated for equivalent grids on the YZ-plane or 

the ZX-plane.  

The mutual independence of the computations corresponding to each grid point renders 
parallel processing effective in accelerating the ray algorithm. To further improve the conversion 
performance, the acceleration of the following two processes is necessary.  

1. Computation of the points of intersection between surface polygons of the polyhedron and a 
ray. 

2. Sorting of intersection points along the ray.  

 

Figure 4: Computation process during ray-tracing. 

3.2 Real-Time Ray-Tracing 

Ray-tracing is a computer graphics technique used to generate photo-realistic images. As depicted 
in Figure 4, this method transmits a ray of light passing through each pixel of the display from the 

viewing point. When the ray collides with a solid shape placed in a virtual space, it is divided into 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(4), 2021, 786-798 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

791 

two rays, one of which is reflected from the solid surface, and the other, which is refracted and 
advances into the solid's interior. This process is recursively repeated, and when any light source is 
reached, the corresponding color component is transmitted back to the viewing point along the 
reverse direction of the ray to generate a three-dimensional computer image. Although this 

technique is known to produce high quality images, its computational cost is very high and its use 
in applications requiring real-time performance is difficult. 

Most currently available GPUs adopt many core architectures and comprise several 
computational units, e.g., CUDA cores in NVIDIA’s GPUs. Among the GPUs supplied by NVIDIA, 
products whose names include the prefix, RTX-, comprise a set of processing cores specialized for 
ray-tracing computations. They are called RT (ray-tracing) cores. For example, RTX-2080 GPU 
comprises 46 RT cores in addition to 2944 CUDA cores. By using RT cores, ray-tracing images of 

complex 3D virtual environments including multiple polyhedral objects can be generated in real-

time (60 frames per second) for a full-HD display. 

During ray tracing, the following two operations are repeatedly executed. 

⚫ A straight line (ray) is extended through each grid point of the pixel-grid of a display. The ray 
can be set to be perpendicular to the display in the orthogonal projection. 

⚫ Corresponding to each ray, its point of intersection with the solid surface is computed. A part 

of the ray subsequently proceeds into the solid's interior, and the aforementioned intersection 
point computation with respect to the solid's surface is recursively executed. As a result, a 
series of ordered intersection points are obtained along the ray. 

These operations are almost identical to the ones necessary during the conversion of polyhedral 
models into dexel models using the ray algorithm. Therefore, fast dexelization of the polyhedral 
models is enabled by using RT cores.   

3.3 Optix, API for Ray-Tracing Computations  

NVIDIA Corporation provides an API library named Optix [17] for ray-tracing computations. The 
function of an RT core is automatically available through the API function of Optix. In order to 
evaluate the effectiveness of the RT core in dexel processing, a dexelization software of the 
polyhedral model was implemented using the API of Optix, and computational experiments were 

performed.  

Optix is implemented using C++ and it defines following three basic classes: 

⚫ Context class: A fundamental class for defining ray-tracing functions. Almost all events are 
defined as instances of this class. 

⚫ Geometry class: A class for defining geometric properties and operations, e.g., coordinates 
of polygons, a bounding box, and a function for intersection computations. We use geometry 
triangles class which is specialized for dealing with triangular polygons. 

⚫ Material class: A class that defines the reflectivity, refractive index and other material 
properties of a solid object.  

Though various functions can be implemented via Optix, the following three kinds of functions 
are used in our polyhedron-to-dexel conversion software. 

⚫ Ray-generation program: This is a function called by the launch function that starts Optix 
processing. Ray-tracing processing is initiated here. Functions in this program are defined in 
the context class. 

⚫ Closest hit program: This function is called when a ray collides with the nearest polygon 
during the ray-tracing process. Information about intersection points that is necessary in the 
polyhedron-to-dexel conversion is recorded by using this function. Functions in this program 
are defined in the material class. 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(4), 2021, 786-798 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

792 

⚫ Miss program: This function is called when a ray does not intersect any solids during the 
ray-tracing process. This function is used to terminate the ray-tracing operation. Functions in 
this program are defined in the context class. 

To initiate Optix processing, the launch function of the context class is invoked based on the 

number of rays. Functions of Optix can be used in the threads invoked in the CUDA environment. 
In this case, a function named rtTrace is called in each thread, together with the information of the 
polyhedral model and the corresponding ray.  

 

 

Figure 5: Polyhedron-to-dexel conversion process using Optix. 

3.4 The Ray Algorithm Using Optix  

The processing flow of our dexelization algorithm using Optix is as follows (consult Figure 5). In 
our implementation, the processing steps between Step 5 and Step 7 are executed by threads in a 
CUDA program, enabling the parallel computation of dexels for multiple rays. 

Step 1: A context is generated. Optix constants and buffer for I/O are defined, followed by the 

definition of the ray-generation program and the miss program. 

Step 2: Geometry triangles are generated. Following that, vertex data array of the triangles of 
the input model are transferred to the Optix buffer. 

Step 3: A material class is created to define a closest hit program. 

Step 4: The number of rays are specified to the launch function to initiate Optix processing. 

Step 5: A set of rays is defined to be used during the Optix processing. Grid points on the XY-

plane are indicated as starting points for the rays, and a direction perpendicular to the XY-plane is 

indicated as direction of the rays. These operations are simultaneously executed by multiple 
threads. 

Step 6: Ray-tracing computations are performed using the rtTrace function for each thread. 

Step 7: Information regarding the intersection points is stored using the closest hit program 
which is invoked whenever the intersection points are calculated (consult Figure 5(a)). The starting 
point of the ray is then updated to be the intersection point, and Step 6 is executed again (consult 
Figure 5(b)). If no intersection point is detected for a ray, the miss program is called and the exit 

flag is raised (consult the two lines at the left end in Figure 5(c)). In this case, the Optix process is 
terminated for the ray. 

Step 8: The obtained intersection points for the ray have already been sorted along the ray. 
For each ray, pairs of odd-numbered intersection point and even-numbered intersection point are 

checked, and then connected to obtain the dexels corresponding to the ray. 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(4), 2021, 786-798 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

793 

  

Figure 6: Sample models A, B, C and D. 

4 COMPUTATIONAL EXPERIMENTS 

To evaluate the performance of polyhedron-to-dexel conversion using RT cores, Step 1 to Step 7 
of the aforementioned algorithm are implemented using Optix. A polyhedral model in the STL 
format is taken to be the input. Our software generates a set of vertical rays starting from grid 
points of the square mesh placed on the XY-plane, and then computes all intersection points 
between the rays and the polyhedral model. The obtained points are already order along the rays 

during the ray-tracing process. The software was implemented using VisualStudio 2017, CUDA 
10.1, Optix 6.0, and Cmake 3.14. The specifications of the PC used in the experiment are CPU: 
Intel Core i9-9900 (3.60 GHz), RAM: 32GB, GPU: GeForce RTX-2080. 

Instead of the workpiece models representing the milling result, we use six polyhedral models 
(model A, B, C, D, E, and F) depicted in Figure 6, 7, 8 and 10 in our conversion experiments for 
the purpose of maintaining confidentiality. Number of polygons of the models and resolutions of 
the square mesh for the dexel representation are illustrated in the figures. Figure 7 shows the 

conversion results for four models given in Figure 6. In Figure 7, ordered intersection points 
between the vertical rays and the models are illustrated. By connecting odd-numbered intersection 
point and even-numbered intersection point with a line segment, dexel models equivalent to the 
models given in Figure 6 are obtained. The time required for the processing was 0.436 s for A, 
0.524 s for B, 0.554 s for C and 0.369 s for D. We have implemented another ray-algorithm-based 
conversion software. This software realizes the conversion using CUDA cores of the GPU. In the 

conversion, this software needs 7.26 s for model B and 1.95 s for model D.  The conversion 
software using RT cores is 13.9 times faster for model B and 5.3 times faster for model D. 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(4), 2021, 786-798 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

794 

 

Figure 7: Sorted intersection points obtained by our software for models given in Figure 6. 

 

Figure 8: Sorted intersection points obtained by our software for model E. 

 

Table 1: Necessary computation time for obtaining the conversion result for model E with different 
numbers of the cell of the square mesh.  

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(4), 2021, 786-798 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

795 

In the ray algorithm, the number of the cells of the square mesh is a critical factor for the 
performance of the software. Using a square mesh with a higher resolution, a more accurate dexel 
model can be obtained; however, the time and cost for the computation also increase. We 
executed experiments to investigate the relationship between the number of the cells and 

necessary conversion time. Table 1 shows the necessary computation time when the resolution of 
the square mesh varies and the number of the cells is increased. In the experiments, model E with 
2,700,707 polygons was used as shown in Figure 8. Figure 9 shows a graph representing the 
relationship between the number of the cells and the necessary conversion time. As can be 
observed from the graph, the necessary computation time is proportional to the number of the 
cells. It is found that the slope of the graph is gentle and the calculation time does not increase 
much with increasing the mesh resolution. Since the number of RT cores and CUDA cores is limited, 

it is not possible to process more rays in parallel. GPU has a scheduling function, and if more rays 

need to be processed, this function repeatedly executes the parallel computation on the limited 
number of rays until all the rays have been processed. The increase in processing time with the 
increase in the number of cells is considered to be a result of this scheduling function. 

 
Figure 9: A graph of the necessary computation time for obtaining the conversion result for model 
E with different numbers of the cell of the square mesh.  
 

 

Figure 10: Sorted intersection points obtained by our software for model F. 

 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(4), 2021, 786-798 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

796 

Another critical factor of the conversion is the number of the polygons of the input model. We 
executed experiments to investigate the relationship between the number of the polygons of the 
model and necessary conversion time. In this experiment, we prepare five polyhedral model 
(model F) of the same shape but with different number of polygons. The shape of the model and 

its conversion result is given in Figure 10. In the conversion, a square mesh with 4,000 × 4,000 
resolution was used for defining a dexel model. Table 2 shows the necessary computation time 
when the number of polygons varies. Figure 11 shows a graph representing the relationship 
between the number of the polygons and the necessary conversion time. As can be observed from 
the graph, the necessary computation time is also proportional to the number of the polygons, but 
the slope of the graph is gentle and the calculation time does not increase much. Based on these 
observations, it can be concluded that the use of RT core enables the rapid conversion of a 

complex polyhedral model comprising a high number of polygons into its equivalent dexel model of 

very high resolution.  

 

 

Table 2: Necessary computation time for converting model F with different numbers of the 
polygons.  

 

 

Figure 11: A graph of the necessary conversion time for model F with different numbers of the 

polygons.  

5 CONCLUSIONS 

State-of-the-art GPUs are equipped with special hardware called RT cores that are dedicated to 
ray-tracing. In this paper, we proposed a novel method for fast dexelization of a complex 
polyhedral model using RT cores. NVIDIA Corporation provides an API library named Optix for ray-
tracing computations. The function of the RT core is automatically available through the API 
function of Optix. In order to evaluate the effectiveness of the RT core in dexel processing, a 

dexelization software of polyhedral models was implemented using the API of Optix, and 
computational experiments were performed. Based on the experimental results, it was confirmed 
that the time required for the conversion to the dexel model was only increased slightly even if the 

resolution of the dexel model was increased, or if the number of the polygons of the input model 
was increased.  

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(4), 2021, 786-798 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

797 

We implemented a Minkowski sum computation software [8] and an NC machining simulation 
software using dexel representations of solid models. In our previous implementation, CUDA cores 
of GPUs had been used to realize parallel processing. We intend to re-implement the software for 
computation using RT cores. At present, it is necessary to mediate the API for computer graphics 

using systems such as Optix to use RT cores, and several restrictions remain on programming. For 
instance, the number of polygons that can be simultaneously handled in Optix is limited, and it is 
difficult to realize a computation using objects with more than hundred million polygons. We are 
currently investigating the problems and limitations of using RT cores and Optix, and examining 
their solutions.  

ACKNOWLEDGEMENTS 

This research was supported by the JSPS KAKENHI Grant Number 17K06075. 

 
 
Masatomo Inui, https://orcid.org/0000-0002-1496-7680 
Kohei Kaba, https://orcid.org/0000-0002-7580-4682 
Nobuyuki Umezu, https://orcid.org/0000-0002-7873-7833 

REFERENCES 

[1] Benouamer, M.O.; Michelucci, D.: Bridging the gap between CSG and Brep via a triple ray 
representation, Proceedings of ACM Symposium on Solid Modeling and Applications, 1997, 
68–79. https://doi.org/10.1145/267734.267755 

[2] Chen, H; Fang, S: Fast voxelization of 3d synthetic objects, ACM Journal of Graphics Tools, 
3(4), 1998, 33–45. https://doi.org/10.1080/10867651.1998.10487496 

[3] CUDA compute unified device architecture programming guide, 

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf, NVIDIA. 
[4] Dong, Z.; Chen, W.; Bao, H.; Zhang, H.; Peng, Q.: Real-time voxelization for complex 

polygonal models. 12th Pacific Conference on Computer Graphics and Applications, 2004, 
43–50. https://doi.org/10.1109/PCCGA.2004.1348333 

[5] Everitt, C: Interactive order-independent transparency, In Technical Report. NVIDIA 
Corporation, 2001. 
https://my.eng.utah.edu/~cs5610/handouts/order_independent_transparency.pdf 

[6] Heidelberger, B.; Teschner, M.; Gross, M.: Real-time volumetric intersections of deforming 
objects, Proceedings of Vision, Modeling, Visualization, 2003, 461–468.  

[7] Huang. Y.; Oliver, J.H.: NC milling error assessment and tool path correction, SIGGRAPH 

1994 Proc. 21st Annual Conference on Computer Graphics and Interactive Techniques, 1994, 
287–294. https://doi.org/10.1145/192161.192231 

[8] Inui, M.; Umezu, N.; Kitamura, Y.: Visualizing sphere-contacting areas on automobile parts 

for ECE inspection, Journal of Computational Design and Engineering, 2(1), 2015, 55-66. 
https://doi.org/10.1016/j.jcde.2014.11.006 

[9] Inui, M.; Umezu, N.: Quad Pillars and Delta Pillars: Algorithms for Converting Dexel Models 
to Polyhedral Models, Journal of Computing and Information Science in Engineering, 17(3), 
September 2017, 9 pages, https://doi.org/10.1115/1.4034737 

[10] Inui, M.; Kobayashi, M.; Umezu, N.: Cutter Engagement Feature Extraction Using Triple-
Dexel Representation Workpiece Model and GPU Parallel Processing Function, Computer-

Aided Design and Applications, 16(1), 2019, 89-102. 
https://doi.org/10.14733/cadaps.2019.89-102 

[11] Jones, M.W.; Bærentzen, J.A.; Sr´amek, M.: 3D Distance Fields: A Survey of Techniques and 

Applications, IEEE Transaction on Visualization and Computer Graphics, 12(4), 206, 881-599. 
https://doi.org/10.1109/TVCG.2006.56 

http://www.cad-journal.net/
https://orcid.org/0000-0002-1496-7680
https://orcid.org/0000-0002-7580-4682
https://orcid.org/0000-0002-7873-7833
https://doi.org/10.1145/267734.267755
https://doi.org/10.1080/10867651.1998.10487496
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://doi.org/10.1109/PCCGA.2004.1348333
https://my.eng.utah.edu/~cs5610/handouts/order_independent_transparency.pdf
https://doi.org/10.1145/192161.192231
https://doi.org/10.1016/j.jcde.2014.11.006
https://doi.org/10.1115/1.4034737
https://doi.org/10.14733/cadaps.2019.89-102
https://doi.org/10.1109/TVCG.2006.56


 

 

Computer-Aided Design & Applications, 18(4), 2021, 786-798 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

798 

[12] Karabassi, E.A.; Papaioannou, G.; Theoharis, T.: A Fast Depth-Buffer-Based Voxelization 
Algorithm, Journal of Graphics Tools, 4(4), 1999, 5-10. 
https://doi.org/10.1080/10867651.1999.10487510 

[13] Lai, S.; Cheng, F.: Voxelization of free-form solids represented by catmull-clark subdivision 

surfaces, Proceedings of the 4th international conference on Geometric Modeling and 
Processing (GMP'06), July 2006, 595–601. https://doi.org/10.1007/11802914_45 

[14] Li, W.; McMains, S.: A GPU-based voxelization approach to 3D Minkowski sum computation, 
Proceedings of the 14th ACM Symposium on Solid and Physical Modeling (SPM '10), 
September 2010, 31–40. https://doi.org/10.1145/1839778.1839783 

[15] Lorensen, W.E.; Cline, H.E.: Marching cubes: A high resolution 3D surface construction 
algorithm, Computer Graphics (Proceedings of ACM SIGGRAPH), 21(4), 1987, 163-169. 

https://doi.org/10.1145/37401.37422 

[16] Menon, J.; Marisa, R.J.; Zagajac, J: More powerful solid modeling through ray 
representations, IEEE Computer Graphics and Applications, 14(3), May 1994, 22-35. 
https://doi.org/10.1109/38.279039 

[17] NVIDIA OptiX™ Ray Tracing Engine, https://developer.nvidia.com/optix 
[18] Shade, J.; Gortler, S.; He, L.W.; Szeliski, S.: Layered depth images, Proceedings of the 25th 

annual conference on Computer graphics and interactive techniques (SIGGRAPH '98), July 
1998, 231–242. https://doi.org/10.1145/280814.280882 

[19] Takeshige, M.: The Basics of GPU Voxelization, https://developer.nvidia.com/content/basics-
gpu-voxelization 

[20] Tukora, B.; Szalay, T.: Multi-dexel based material removal simulation and cutting force 
prediction with the use of general-purpose graphics processing units, Advances in 
Engineering Software, 43(1), January 2012, 65-70. 

https://doi.org/10.1016/j.advengsoft.2011.08.003 
[21] VanHook, T.: Real-time shaded milling display, Computer Graphics (Proceedings of ACM 

SIGGRAPH), 20(4), 1986, 15-20. https://doi.org/10.1145/15886.15887 
[22] Wang, C.C.L.; Manocha, D: GPU-based offset surface computation using point samples, 

Computer-Aided Design, 45(2), 2013, 321–330. https://doi.org/10.1016/j.cad.2012.10.015 
[23] Zhao, H.; Wang, C.C.L.: Parallel and efficient Boolean on polygonal solids, The Visual 

Computer, 27, 507–517, 2011, https://doi.org/10.1007/s00371-011-0571-1 

 

http://www.cad-journal.net/
https://doi.org/10.1080/10867651.1999.10487510
https://doi.org/10.1007/11802914_45
https://doi.org/10.1145/1839778.1839783
https://doi.org/10.1145/37401.37422
https://doi.org/10.1109/38.279039
https://developer.nvidia.com/optix
https://doi.org/10.1145/280814.280882
https://developer.nvidia.com/content/basics-gpu-voxelization
https://developer.nvidia.com/content/basics-gpu-voxelization
https://doi.org/10.1016/j.advengsoft.2011.08.003
https://doi.org/10.1145/15886.15887
https://doi.org/10.1016/j.cad.2012.10.015
https://doi.org/10.1007/s00371-011-0571-1

