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Abstract. This paper focuses on the application of NURBS-based isogeometric analysis
to viscoplastic and creep problems, in the context of two dimensional small deformation.
Viscoplastic materials combining with von Mises yield function and Perzyna's �ow rule are
employed. The stress expression, stress-strain relationship matrix, isogeometric discrete for-
mulations and other important formulas of viscoplastic and creep problems are derived and
listed in detail. Several numerical examples are investigated to verify the proposed method
through comparing the results with that from commercial software ABAQUS as well as ex-
isting literatures.
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1 INTRODUCTION

Finite element analysis (FEA) has been used as a main numerical method to deal with engineering problems
[49], such as linear elasticity, transient problems, non-linear problems, contact and impact, applications in �uid
dynamics and so on, for many years. Geometrical models are usually discretized into mesh models for FEA,
which not only introduces approximation error in the discretization process but also loses certain geometrical
information. The gap between CAD and CAE is expected to be bridged by using isogeometric analysis (IGA),
proposed by Hughes et al. [11, 23], where the same spline functions are used for both the geometry description
in CAD and the analysis model in CAE. In addition, IGA possesses great advantages such as avoiding tedious
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meshing processes, realizing adaptive mesh re�nement and obtaining more accurate results. And NURBS-
based isogeometric analysis has been successfully applied to various engineering practical problems such as
structrual shape optimization [45, 40], free vibration [41, 27], plate and shell element [7, 44], �uid-structure
interaction analysis [6, 5], even the simulation of non-conforming multi-patch [14, 47, 15] and so on. As
for the applications in materials with di�erent constitutive relations, extensive studies on elastic deformation
and elastoplastic deformation have been developed. Lorenzis et al. [13] proposed large deformation frictional
contact formulation between two 2D elastic bodies. Kiendl et al. [25] explored the large deformation problems
of compressible and incompressible hyperelastic thin shells. Nguyen et al. [33] exploited NURBS-based
isogeometric approach in solving elastoplastic problems. Benson et al. [8] and Ambati et al. [3] explored
elastoplastic deformation of Reissner-Mindlin shell and Kirchho�-Love shell respectively.

Elastoplastic deformation commonly referred to as plastic deformation, is characterised by irreversiblity and
time independence. Permanent deformation will occur in elastoplastic materials once the yield stress point
is passed. Note that some materials in life or engineering applications will present a certain degree of time
dependency [32, 34]. For example, metal materials under higher temperatures, usually exhibit the phenomena
of viscoplasticity and creep simultaneously. The former is a common time dependent plastic deformation
and the latter performs the strain-time relationship. The main point of this paper is to derive NURBS-based
formulations of viscoplasticity in the small strain range and the calculation of creep deformation can be regarded
as a special case of viscoplasticity. Most of the time-dependent models developed so far were applications
and extensions of the theory presented by Perzyna [35, 36]. This thoery is so-called overstress model in which
the stress is allowed to be outside of the yield surface. Simo and Hughes presented an exhaustive derivation
and employed the return mapping algorithms in the strain hardening case [42]. Owen explored the calculation
process of �nite element analysis for viscoplastic problems [34] and some other researchers [20, 46, 21, 18, 4]
have given the summary and application of the relevant FEA formulas. While considering the lack of time-
dependent plastic formulas based on isogeometric analysis compared to FEA in the existing literatures and the
bene�ts, i.e. precise geometry representation and higher-order element continuity, of IGA in model construction
and calculation, it is a signi�cant and interesting topic to investigate the application of isogeometric analysis
on viscoplastic and creep problems.

In this paper, NURBS-based isogeometric analysis is adopted to simulate two dimensional small deformation
viscoplastic and creep problems. In Sec. 2, the viscoplastic and creep problems are illustrated and a brief review
of NURBS is given. Section 3 describes the formulation of the time-dependent problem using von Mises yield
function and Perzyna's �ow rule for both viscoplastic and creep deformation. The discretization formulation
is presented in detail in Sec. 4. Finally, in Sec. 5 some numerical examples are demonstrated and their results
are analyzed and discussed. In addition, the isogeometric analysis for the examples in this paper is based on
the NLIGA open source library [16].

2 PRELIMINARIES

2.1 Problem Description

Assume that a body as given in Fig. 1 is in static equilibrium under the applied body force f b and the surface

traction, t̂
(n)

, where t̂
(n)

= σ · n expresses the stress projection on the surface [10].
Let Ω and Γ denote the domain occupied by the body and the corresponding boundary, respectively. The

balance of the linear moment can be stated as∫∫
Ω

f bdΩ +

∫
Γ

t̂
(n)
dΓ = 0 (1)

Considering the expression of t̂
(n)

and the de�nition of divergence, the second term in the above equation can
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Figure 1: A body in static equilibrium under the applied body force and the surface traction

be converted into the integral over the domain and the above equation can be rewritten as∫∫
Ω

f bdΩ = −
∫

Γ

σ · ndΓ = −
∫∫

Ω

∇ · σdΩ (2)

and then we obtain ∫∫
Ω

(
∇ · σ + f b

)
dΩ = 0 (3)

Assume that the whole boundary Γ can be decomposed into, ΓD, called Dirichlet boundary condition, and
ΓN , called Neumann boundary condition, which satis�es Γ = ΓD+ΓN and ΓD∩ΓN = ∅. Considering a body
with viscoplastic deformation, the displacement of the structure is prescribed with û ( or �xed with û = 0 )
on the boundary ΓD. In addition, the surface traction is applied on the boundary ΓN and the body force is
distributed in the domain Ω. The purpose of the problem is to �nd a displacement u that satis�es

∇ · σ + f b = 0 , x ∈ Ω

u = û , x ∈ ΓD

σ · n = t̂
(n)

, x ∈ ΓN

(4)

To describe the mathematical model of the viscoplastic problems graphically, we compare the mechanical
response of the simple one-dimensional models for time-independent and time-dependent problems, respec-
tively, which are described in detail in reference [42] and now illustrated in Fig. 2.
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(a) Time-independent problem
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(b) Time-dependent problem

Figure 2: One-dimensional plastic models

Let σ be the applied stress on the devices and ε is the total strain in the devices. Both the devices in 2a
and 2b initially possess unit length and consist of a spring with elastic constant E and a Coulomb friction
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element with constant σy > 0. The only di�erence is that a dashpot, with constant η which is the viscosity
parameter symbolized time dependency, is in parallel with the frictional device as shown in Fig. 2b.

With viscoplastic materials assumption [34] here, the devices' total strain, ε, can be separated into elastic,
εe, and viscoplastic, εvp, components

ε = εe + εvp (5)

where εe is the strain in the spring, so the stress can be expressed as

σ = Eεe = E (ε− εvp) (6)

For two dimensional case discussed in this paper, equation (6) can be written as

σ = Dεe = D (ε− εvp) (7)

in which D is the elasticity matrix and can be written in plane stress element and plane strain element [26] as

D =
E

1− v2


1 v 0

v 1 0

0 0 1
2 (1− v)

 or D =
E

(1 + v)(1− 2v)


1− v v 0

v 1− v 0

0 0 1
2 − v

 (8)

where E is the Young's modulus and v is the Poisson's ratio.

total strain


elastic strain

e

ttime

primary secondary tertiary

Figure 3: Period of creep

Creep is a slow continuous time-dependent deformation that can be depicted through observing the change
in strain over time by applying the load for a long period of time under constant stress and constant room
temperature [31]. In general, it can be described, by analyzing the results of creep test on specimens, in terms
of three di�erent stages [12] illustrated in Fig. 3. The creep strain rate decreases with increasing time in
the initial stage, or primary creep, to a minimum and tends to be a constant which is the beginning of the
secondary creep. So the second stage is usually known as the steady-state creep. In tertiary creep, the strain
rate increases with time and eventually leads to fracture of the specimen, which is not discussed here [9]. In
this paper, the primary and secondary creep stage problems in two-dimensional analysis are in consideration.
The related formulas in creep deformation obtained a similar expression by replacing the superscript vp in
viscoplastic formulations with c.
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2.2 NURBS

The rational representation in Non-uniform Rational B-splines (NURBS) is associated with projective geometry.
Except for the coordinates in the physical space, the additional dimension coordinate is called weight, denoted
by ω. A NURBS surface can be represented by

S(ξ, η) =

∑n
i=0

∑m
j=0Ni,p(ξ)Nj,q(η)ωijP ij∑n

i=0

∑m
j=0Ni,p(ξ)Nj,q(η)ωij

(9)

which is also written as

S(ξ, η) =

n∑
i=0

m∑
j=0

Rp,qi,j (ξ, η)P ij (10)

Rp,qi,j (ξ, η) =
Ni,p(ξ)Nj,q(η)ωij∑n

k=0

∑m
l=0Nk,p(ξ)Nl,q(η)ωkl

(11)

where P ij and ωij represent the coordinates of control points and the corresponding weights respectively. n
and m are the number of control points in the two directions subtracting 1 respectively. Ni,p is the p-th B-
splines basis function which can be de�ned with an open knot vector Ξ = {ξ0, ξ1, . . . , ξn+p+1} by Cox-deBoor
recursive formulas as

Ni,0(ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise

Ni,p(ξ) = ξ−ξi
ξi+p−ξiNi,p−1(ξ) +

ξi+p+1−ξ
ξi+p+1−ξi+1

Ni+1,p−1(ξ) p ≥ 1

(12)

For more details about NURBS we recommend the literature [37].

3 FORMULATION

3.1 Basic Formulations of Time-dependent Deformation

According to the relevant literature [35, 36, 39, 29, 48, 43, 17, 2, 30, 20, 46, 21, 18, 4] in which previous
researches have given formulas for solving viscoplastic problems based on �nite element analysis, we derived
and sorted out the following viscoplastic formulas which are applied to isogeometric analysis in our paper.

Considering the time-dependency property of the viscoplastic materials, it is now necessary to determine a
�ow rule de�ning the viscoplastic strain rate and to obtain the stress by Eq. (7) further. The stress rate can
be expressed as

σ̇ = Dε̇e = D (ε̇− ε̇vp) (13)

An explicit form is one, simpli�ed from the viscoplastic theory proposed by Perzyna [35], in which the vis-
coplastic strain rate depends only on the current stresses, so that

ε̇vp =
1

η
〈f(σ)〉∂f(σ)

∂σ
(14)

where η is the viscosity parameter as shown in Fig. 2b and the notation 〈 〉 implies the ramp function

〈x〉 = x+|x|
2 . In addition, f(σ) = ‖s‖ −

√
2
3σy is the yield function in von Mises type wherein s is the

deviatoric stress and σy is the initial yield stress of the plastic material.
It is obvious that "time" is one of the most important parameters in the time-dependent problem and we

divided the total time T into �nite time intervals denoted by t =
[
t0, t1, · · · , tend

]
, where t0 = 0 is
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the initial time and tend = T is the �nal time. In addition, tn(n = 0, 1, · · · , end) is called time tn and for
two adjacent times tn−1 and tn there exists tn = tn−1 + ∆tn. The time interval ∆tn can be calculated in
von Mises material as

∆tn ≤ k∆tn−1 and ∆tn ≤
4(1 + v)σy

3E/η
(15)

wherein k = 1.5 is suitable from experiences [34]. With the implicit time integration scheme, the viscoplastic
strain increment ∆εvpn generated in time interval ∆tn = tn − tn−1 can be calculated as

∆εvpn = ∆tn
[
(1− θ)ε̇vpn−1 + θε̇vpn

]
(16)

in which θ = 1
2 represents the so-called 'implicit trapezoidal' time integration scheme since the viscoplastic

strain increment is generated by conditions at time tn−1 and tn. If θ = 0, it is called fully explicit scheme
and θ = 1 corresponds to the so-called fully implicit scheme. The strain increment for these two schemes can
be determined by the strain rate at the start and the end of the time interval, respectively. The viscoplastic
strain rate ε̇vpn−1 at time tn is computed from Eq. (14) with σ = σn−1. While ε̇vpn is unknown at time tn and
can be obtained according to Taylor's formula as

ε̇vpn = ε̇vpn−1 +

(
∂ε̇vp

∂σ

)
n−1

∆σn = ε̇vpn−1 +Hn−1∆σn (17)

where Hn−1 =
(
∂ε̇vp

∂σ

)
n−1

is the derivative of the viscoplastic strain rate with respect to the stress at time

tn−1 and will be presented later. Thus the expression of viscoplastic strain increment in Eq. (16) can be
rewritten as

∆εvpn = ∆tn
[
(1− θ)ε̇vpn−1 + θ

(
ε̇vpn−1 +Hn−1∆σn

)]
= ∆tnε̇

vp
n−1 + θ∆tnHn−1∆σn = ∆tnε̇

vp
n−1 +Cn−1∆σn

(18)

in which Cn−1 = θ∆tnHn−1 if θ 6= 0 and ∆σn is the stress increment at the time interval ∆tn which can
be calculated analogously with Eq. (7) as

∆σn = D (∆εn −∆εvpn ) (19)

Substituting Eq. (18) and ∆εn = ε (∆un), which will be discussed in the next section, into Eq. (19), the
expression of stress increment with respect to the unknown displacement increment can be rewritten as

∆σn =
(
D−1 +Cn−1

)−1 (
ε (∆un)−∆tnε̇

vp
n−1

)
= Dn

(
ε (∆un)−∆tnε̇

vp
n−1

)
(20)

where Dn =
(
D−1 +Cn−1

)−1
is the matrix of stress-strain relationship at time tn.

Creep strain appears even in the elastic stage for creep problems. So the creep strain rate can be expressed
by assigning the initial yield stress to zero [22, 28] in Eq. (14). In secondary creep the strain rate is a constant
and can be written without time as

ε̇c =
1

η
‖s‖∂‖s‖

∂σ
(21)

In primary creep problem, the creep strain rate is regarded as the function of time and equation (21) can be
rewritten as

ε̇c =
1

η
‖s‖∂‖s‖

∂σ
· tm (22)

where m is a given constant number ranges (−1, 0] and if m = 0 this problem becomes the secondary creep
problem. The rest calculation of the primary and secondary creep problem is similar with viscoplastic problem.
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3.2 The Weak Form of Governing Equations

With the strong form of the aforementioned governing equations (1), (2), (3), the weak form of governing
equations can be obtained. Then the potential energy Π(u) of the viscoplastic structure can be expressed as
the di�erence between the strain energy W int(u) and the work W ext(u) done by the applied loads, written
as

Π(u) = W int(u)−W ext(u) (23)

where

W int(u) =
1

2

∫∫
Ω

σ : εedΩ =
1

2

∫∫
Ω

σ : (ε− εvp) dΩ (24)

W ext(u) =

∫∫
Ω

u · f bdΩ−
∫

Γ

u · t̂(n)
dΓ (25)

The unknown variable of the total potential energy is the nodal displacement of the structure. According
to the principle of minimum potential energy and the variational principle, the minimum potential can be
obtained when the �rst variation of the total potential energy equal to zero, as

δΠ(u, δu) = δW int(u, δu)− δW ext(δu) (26)

which is called the variational equation of the structural problem under consideration [38]. The �rst term is
obtained from the de�nition of W int(u) and stress-strain relation as

δW int(u, δu) =

∫∫
Ω

ε(δu) : D : (ε− εvp) dΩ = a(u, δu) (27)

where a(u, δu) is called the energy form. The second term is the variation of the work done by the applied
load and can be written as

δW ext(δu) =

∫∫
Ω

δu · f bdΩ−
∫

Γ

δu · t̂(n)
dΓ = l(δu) (28)

where l(δu) is called the load form. Only conservative loads are considered such that l(δu) is independent of
displacement u. Thus, the equations of equilibrium, Eq. (26), can be written at any instant of time tn as∫

Ω

BT
nσndΩ = fn (29)

in which Bn is the strain-displacement matrix which will not vary during the solution of small deformation
[11] and it can be equivalent to B omitting the subscript and introducing in the subsequent chapter. fn is

equivalent nodal loads due to the applied surface traction t̂
(n)

and the body force f b. Linearizing the weak
form of governing equations, the incremental form during the time interval ∆tn can be written as∫

Ω

BT
n∆σndΩ = ∆fn (30)

and substituting for ∆σn from Eq. (20) the above equation becomes∫
Ω

BTDnB∆undΩ =

∫
Ω

BTDn∆tnε̇
vp
n−1dΩ + ∆fn (31)
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Considering the nonlinearity of the viscoplastic problem and the viscoplastic strain rate was approximately
calculated at time tn by Taylor's formula, the residual is inevitable and can be given by

R = l(δu)− a(u, δu)⇒ Rn =

∫
Ω

BT
nσndΩ− fn (32)

The complexity caused by the Newton-Raphson iteration can be avoided e�ectively by adding the residual to
the incremental equilibrium equation at the next time interval ∆tn+1 as∫

Ω

BTDn+1B∆un+1dΩ =

∫
Ω

BTDn+1∆tn+1ε̇
vp
n dΩ + ∆fn+1 +Rn (33)

The discretized isogeometric equations derived for small strain viscoplastic problem can be written as

Kn+1∆un+1 = F n+1 (34)

Then the displacement increment un+1 at time interval ∆tn+1 can be obtained by solving the above equations
and the total displacement can be obtained by adding the displacement increment at each time interval. The
representation of the strain-displacement matrix B, the sti�ness matrix Kn+1 and the residual force F n+1

will be discussed in the next section.

4 ISOGEOMETRIC DISCRETIZATION

For the numerical studies based on isogeometric analysis in this paper, the displacement, u(ξ, η), of an
arbitrary point on a NURBS surface can be interpolated by the displacement of related control points and its
corresponding basis functions [23, 37] as

u(ξ, η) =

n∑
i=0

m∑
j=0

Rp,qi,j (ξ, η)uij (35)

Considering the convenience of calculation and storage in program, rearrange the basis functions Rp,qi,j (η, ξ) =[
Rp,q0,0(η, ξ), Rp,q0,1(η, ξ), · · · , Rp,q0,m(η, ξ), Rp,q1,0(η, ξ), Rp,q1,1(η, ξ), · · · , Rp,q1,m(η, ξ), · · · , Rp,qn,0(η, ξ), · · · , Rp,qn,m(η, ξ)

]
of the surface into Ri(η, ξ) = [R0(η, ξ), R1(η, ξ), · · · , Rncp(η, ξ)] and the above equation (35) can be rewritten
as

u(ξ, η) =

ncp∑
i=0

Ri(ξ, η)ui (36)

where ncp equals the number of control points subtracting 1. The parameter (ξ, η) will be omitted in the
following descriptions for simplicity. In two dimensional problems, the matrix expression of the displacement
can be written as

u =

[
u

v

]
= Rū (37)

with

R =

[
R0 0 R1 0 · · · Rncp 0

0 R0 0 R1 · · · 0 Rncp

]
(38)

ū =
[
u0 v0 u1 v1 · · · uncp vncp

]T
(39)
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where the superscript T denotes the transpose of matrix or vector. According to the strain-displacement
relationship, the total strain in small deformation of the plane strain element can be calculated by the partial
derivative of the displacements versus coordinates [11] as

ε = Bū =
[
ε11 ε22 ε12

]T
(40)

with the strain-displacement matrix

B =


∂R0

∂x 0 ∂R1

∂x 0 · · · ∂Rncp

∂x 0

0 ∂R0

∂y 0 ∂R1

∂y · · · 0
∂Rncp

∂y
∂R0

∂y
∂R0

∂x
∂R1

∂y
∂R1

∂x · · · ∂Rncp

∂y
∂Rncp

∂x

 (41)

As for the plane stress element, the total strain can be written as

ε
4×1

=
[
ε11 ε22 ε12

... ε33

]T
(42)

in which the �rst three terms can be obtained similarly from Eq. (40) and the fourth component can be
calculated by ε33 = − v

1−v (ε11 + ε22). The increment of strain ∆ε used in the above equations can be
obtained by adding an incremental symbol ∆ before the strain ε.

The deviatoric stress s in the yield function can be expressed as

s =


s11 s12 0

s21 s22 0

0 0 s33

 =


2
3σ11 − 1

3σ22 σ12 0

σ21
2
3σ22 − 1

3σ11 0

0 0 − 1
3σ11 − 1

3σ22

 (43)

for plane stress element. For plane strain element there exists σ33 = v(σ11 + σ22) and the deviatoric stress
can be given by

s =


s11 s12 0

s21 s22 0

0 0 s33

 =


2
3σ11 − 1

3σ22 − 1
3σ33 σ12 0

σ21
2
3σ22 − 1

3σ11 − 1
3σ33 0

0 0 2
3σ33 − 1

3σ11 − 1
3σ22

 (44)

The von Mises equivalent stress, ‖s‖, can be calculated as

‖s‖ =
√
σ2

11 + σ2
22 − σ11σ22 + 3σ2

12 (45)

and

‖s‖ =
√
σ2

11 + σ2
22 + σ2

33 − σ11σ22 − σ22σ33 − σ33σ11 + 3σ2
12 (46)

for plane stress element and plane strain element, respectively.
The sti�ness matrix Kn+1 at time tn+1 is calculated by

Kn+1 =

∫
Ω

BTDn+1BdΩ =

∫
Ω

BT
(
D−1 +Cn

)−1
BdΩ =

∫
Ω

BT
(
D−1 + θ∆tn+1Hn

)−1
BdΩ (47)

in which Hn =
(
∂ε̇vp

∂σ

)
n
is related with the variables at time tn and the matrix H for any given subscript n

can be written as
H = c1S1 + c2S2 (48)
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where c1 and c2 are scalars with forms

c1 =
3

2η
× f(σ)× 1

‖s‖
and c2 =

9

4η
× 1

‖s‖2
×
(

1− f(σ)

‖s‖

)
(49)

For the plane stress element

S1 =


2
3 − 1

3 0

− 1
3

2
3 0

0 0 2

 and S2 =


s11

2 s11s22 2s11s12

s11s22 s22
2 2s22s12

2s11s12 2s22s12 4s12
2

 (50)

and for the plane strain element

S1 =


2
3 − 1

3 0 − 1
3

− 1
3

2
3 0 − 1

3

0 0 2 0

− 1
3 − 1

3 0 2
3

 and S2 =


s11

2 s11s22 2s11s12 s11s33

s11s22 s22
2 2s22s12 s22s33

2s11s12 2s22s12 4s12
2 2s12s33

s11s33 s22s33 2s12s33 s33
2

 (51)

The fourth row and fourth column in Eq. (51) are not considered in the actual calculation and it can also be
written as Eq. (50).

The residual force F n+1 is calculated by

F n+1 =

∫
Ω

BTDn+1∆tn+1ε̇
vp
n dΩ + ∆fn+1 +Rn (52)

where Dn+1 is the same as in Eq. (47).
Based on the above formulas, the essential steps for solving viscoplastic problems by isogeometric analysis

can be summarised. Considering the initial state at time t0 is static elasticity and of course viscoplastic
deformation has not occurred and the viscoplastic strain has εvp0 = 0. Assuming that the variables such as
ūn, εn, σn, ε

vp
n , ε̇vpn and the residual Rn at time tn are known and the variables at time tn+1, which satis�es

tn+1 < tend = T simultaneously, can be calculated as follows:

1. Suppose the state is viscoplastic and satis�es the governing equations at time tn+1 and the matrices
depend on the variables at time tn can be obtained

Hn =

(
∂ε̇vp

∂σ

)
n

, Cn = θ∆tn+1Hn, Dn+1 =
(
D−1 +Cn

)−1
, Kn+1 =

∫
Ω

BTDn+1BdΩ

(53)

2. Compute the displacement increment ∆ūn+1 according to Eqs. (34) and (52) as

∆ūn+1 = K−1
n+1F n+1 (54)

3. Compute the stress increment ∆σn+1 as

∆σn+1 = Dn+1 (B∆ūn+1 −∆tn+1ε̇
vp
n ) (55)

4. The total displacement and stress at time tn+1 can be obtained as

ūn+1 = ūn + ∆ūn+1, σn+1 = σn + ∆σn+1 (56)
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5. Compute the viscoplastic strain rate ε̇vpn+1 as

ε̇vpn+1 = ε̇vpn +Hn∆σn+1 (57)

6. The residual needs to be considered now and it can be calculated like Eq. (32) as

Rn+1 =

∫
Ω

BT
n+1σn+1dΩ− fn+1 =

∫
Ω

BTσn+1dΩ− fn+1 (58)

Then the residual force for the next time intervial can be obtained by simple addition in Eq. (52)

7. Determine the next time interval ∆tn+2 by the following inequality

∆tn+2 ≤ k∆tn+1 and ∆tn+2 ≤
4(1 + v)σy

3E/η
(59)

or if tn+2 = tn+1 + ∆tn+2 > tend = T , ∆tn+2 can be determined as

∆tn+2 = T − tn+1 (60)

8. Check whether the current state is still viscoplastic, in other words, whether the viscoplastic strain rate
ε̇vpn+1 is nonzero at a certain Gauss integral point.

8.a) If so return to step 1 and repeat the above steps.

8.b) If ε̇vpn+1 at all Gauss integral points is extremely close to zero, a steady state is considered to be
reached and it is time to end the algorithm. Then the �nal state is the steady state at time tn+1.

5 NUMERICAL EXAMPLES

5.1 Viscoplastic Deformation of A Plate with A Hole
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û

bf

N

D

2x

3x

1x

1u

3u

2u

ˆnt

û
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û

bf

(b) Symmetric modeling (c) Mesh of the model

Figure 4: Problem description and simpli�ed model for the plate with a hole. (a) the plate with a hole, (b)
the material and boundary condition of the simpli�ed model, (c) the mesh of the model.

A plane strain plate with a hole, see Fig. 4a, has been simulated because it is a problem previously discussed
in the literatures [19, 2]. The geometry is a square plate with a hole in its center. Due to the symmetry of
the problem it is equivalent to consider only a quarter of the sample and the simpli�ed conditions are imposed
as illustrated in Fig. 4b. The solutions of the viscoplastic problem are developed on a NURBS model with
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(a) IGA result (b) ABAQUS result (c) Comparison

Figure 5: von Mises stress (units: N/mm2) result in comparison. (a) the result from IGA program, (b) the
result from ABAQUS, (c) comparison of maximum von Mises stress-elements curves between IGA and FEA.

12× 11 elements and 3× 3 degrees as given in Fig. 4c. Meanwhile, this problem was solved in ABAQUS with
3541 nodes and 1130 CPE8R elements where CPE8R denotes an 8-node biquadratic plane strain quadrilateral
elements with reduced integration [1].

Figure 5 presents the results of the von Mises equivalent stress denoted by S,Mises based on the IGA
model and FEA model, where the distributions of S,Mises obtained from isogeometric analysis and ABAQUS
by using �nite element method are given in Figs. 5a and 5b, respectively. As expected, it can be seen that the
distributions of von Mises stress calculated from IGA and ABAQUS agree very well. As shown in Fig. 5c, the
maximum von Mises stress under viscoplastic deformation of a plate with a hole are obtained on biquadratic
plane strain quadrilateral elements by using IGA and ABAQUS, respectively. The horizontal axis denotes the
number of elements and the vertical axis denotes the maximum value of von Mises stress on the plate with
a hole. It can be found that the maximum von Mises stress-elements curves obtained by using two di�erent
methods converge to a very close result. In other words, at the same biquadratic elements the maximum von
Mises stress are asymptotic as the number of elements increases. Note that the NURBS model in isogeometric
analysis with fewer number of elements can converge to the stable value faster than FEA.

5.2 Viscoplastic Deformation of A Thick Cylinder
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(a) Problem description (b) Mesh of the model

Figure 6: Problem description and simpli�ed model for the thick cylinder. (a) the material and boundary
condition of the underside of the simpli�ed model, (b) the mesh of the model.

Similar to the simpli�cation principle of the previous example, the underside of a quarter of the thick
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cylinder subjected to a constant internal pressure as given in Fig. 6a was previously studied in [24] by using the
�nite element method and is also investigated here by employing the isogeometric method. Figure 6b shows
the NURBS model with 11× 11 elements and degrees 3× 3. As for the solution in ABAQUS, 2295 nodes and
940 CPE8R elements are used and von Mises yield criterion is considered.

(a) IGA result (b) ABAQUS result (c) Comparison

Figure 7: von Mises stress (units: N/mm2) result in comparison. (a) the result from IGA program, (b) the
result from ABAQUS, (c) comparison of von Mises stress-elements curves between IGA and FEA.

Figure 7a shows the contour of the von Mises stress based on the IGA method. For the comparison, the
problem is also simulated in ABAQUS [1] and the stress result is provided in Fig. 7b. We can see that the
distributions of von Mises stress in the quarter cylinder calculated by the two methods are in good agreement.
The curves in Fig. 7c show the relationship between the von Mises stress of the inner ring of the cylinder
and the number of elements at the same degree, i.e. the number of biquadratic elements. We can see that
the stress tends to be the same as the number of elements increases and the result in isogeometric analysis
reaches the stable value faster.

The above two examples in Sec. 5.1 and Sec. 5.2 show that it is feasible and e�cient to calculate the two
dimensional small deformation of viscoplastic problem with isogeometric analysis method.

5.3 Creep Deformation of A Square Plate

As for the example of creep, we are going to study the creep deformation problems of a square plate with length
100× 100 under various combinations of boundary conditions, element types and creep stages. The results of
magnitude displacement are calculated by ABAQUS and our IGA program for three cases, respectively. These
three cases are described as follows:

1. Case 1: As shown in Fig. 8a, the left boundary is clamped and the right boundary is subjected to
a prescribed traction force with σ1 = 200N/mm2. Plane stress element is assumed to simulate the
secondary creep. Figures 8b and 8c present the displacement contours obtained by using IGA and
ABAQUS.

2. Case 2: As given in Fig. 9a, the bottom and left boundaries are clamped. The right and the top
boundaries are subjected to a prescribed traction force with σ1 = 200N/mm2. Plane stress element is
used to simulate the primary creep. The displacement contours are provided in Figs. 9b and 9c.

3. Case 3: As given in Fig. 10a, the bottom and left boundaries are clamped. The right and the top
boundaries are subjected to a prescribed traction force with σ1 = 200N/mm2 and σ2 = 100N/mm2.
Plane strain element is used to simulate the secondary creep. The displacement results are given in
Figs. 10b and 10c.
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Figure 8: Problem description and displacement (units: mm) result in comparison in Case 1. (a) the
description and boundary condition of the square plate, (b) the result from IGA program, (c) the result from
ABAQUS.
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Figure 9: Problem description and displacement (units: mm) result in comparison in Case 2. (a) the
description and boundary condition of the square plate, (b) the result from IGA program, (c) the result from
ABAQUS.
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Figure 10: Problem description and displacement (units: mm) result in comparison in Case 3. (a) the
description and boundary condition of the square plate, (b) the result from IGA program, (c) the result from
ABAQUS.
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Material properties including Young's modulus E = 2.0× 105N/mm2, Poisson ratio ν = 0.3 and m = −0.5
are used. The total creep time for these tests is set as 1000 hours.

From the comparison of the displacement contours given in Figs. 8, 9 and 10, it can be found that the
IGA results agree very well with that of ABAQUS. As shown in Fig. 11, the relationships between time and
the magnitude of displacement for the above creep examples are compared between using IGA and FEA in
ABAQUS,respectively. It can be found that for each example, the displacement-time curves obtained by using
di�erent methods agree well with each other. Note that the curve in Fig. 11b agrees with the Eq. (22) which
expresses the non-linear relationship between the creep strain rate and time. While the curves in Figs. 11a
and 11c re�ect the linearity of the Eq. (21).

(a) Creep problem in Fig. 8 (b) Creep problem in Fig. 9 (c) Creep problem in Fig. 10

Figure 11: The displacement-time curve for the three creep cases obtained by IGA and FEA in ABAQUS. The
horizontal axis denotes time (units: sec) and the vertical axis denotes the magnitude of displacement (units:
mm) on the top right corner of the square plate.

6 CONCLUSIONS

In practical engineering, some mechanical parts are always working under high temperatures, e.g., aeroengine
gas turbines. The simulation of such cases should consider the viscoplasticity of the materials and the high
temperature creep problem, which may result in severe consequences if such deformations are ignorant by the
service maintainers. To cope with this, the monitoring strategy needs a highly �exible pattern and in the real
operation, fast measurement as well as rapid analysis are of priority. The isogeometric analysis will be an
ideal tool for such scenarios, for its advantages of single model representation and more simplifying overall
process. More speci�cally, �nite element analysis needs to discrete CAD spline models into mesh models to
carry out the simulation, which is time-consuming and introduces operations of model �xing, thus in�uences
the analysis e�ciency. In addition, since no lengthy mesh generation procedure is needed, the rapid response
of isogeometric analysis plays a potentially important role in the development of digital twin concept and
the simulation is pivotal for the ful�llment of e�ective digital twin deployment especially in the service stage
of some complex products. So it's of long-term bene�ts to assess the capability of IGA for viscoplasticity
and creep phenomena. In this paper, isogeometric analysis has been detailedly formulated and successfully
employed for the simulation of viscoplasticity and creep problems. Several classical benchmark examples are
investigated by using IGA and FEA to verify the proposed approach. Start from the numerical results already
obtained, which prove the IGA as e�ective as FEA, future works will focus on the isogeometric analysis of
more practical problems based on complexgeometric models and near real working conditions.
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