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Abstract. The aim of this paper is to propose a feature extraction method that allows 
for the extraction of features that contain nonidentical geometries from a target 
shape, which are similar to that of a reference feature shape. In this method, the 
reference feature shape and target shape are represented by a set of shape 

descriptors defined in triangular meshes. The proposed similar feature extraction 
method was verified by some case studies in which the relationships between the 
reference shape and target shape were isotropic scaling, anisotropic scaling, and 
anisotropic scaling with distortion and complex deformation. In most cases, local 
regions having similarity to a reference feature could be successfully extracted from 
a target shape. The results show that the proposed shape descriptor-based feature 
extraction method effectively allows an engineer to identify where local regions, 

having similarity to a reference feature, are placed on a target shape. However, the 
estimated projective transformation in the method still includes non-negligible errors 
that are not good enough to fit the reference mesh model to the similar features 
extracted. This dilemma is seen as an appropriate avenue for future research. 
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1 INTRODUCTION 

Large-scale computer-aided engineering (CAE) has been significant in the ever-growing importance 

of its role as the digitalization of automotive manufacturing gains pace and as its development 
process becomes more streamlined. Finite element (FE) models that are used in large-scale CAE 
such as vehicle crash simulations, pedestrian impact simulations, noise vibration and harshness 
simulations, must be composed of high-quality FE meshes that comply with the in-house meshing 
specifications defined based on the design policies and past experiences of vehicle manufacturers. 
Moreover, not only the manufactures but also the third parties engaging in outsourcing FE analysis 

must respect the specifications when they create FE meshes in the FE-analysis. 
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Figure 1: Non-rigid transformation relationship mapping-type CAE model generation system: The 
first step is similar feature shape extraction of features containing nonidentical geometries similar to 

a reference feature shape from a target shape. The second step is applying meshes and CAE settings 
such as rigid constraints, to extracted feature region. 
 

In most of the FE meshing specifications, each specification is represented as a combination of a 
specific type of form features and the FE meshing pattern imposed on it. Typical examples are the 

following: (1) “when the FE mesh is created for a cylindrical boss feature, the node points of the 

elements must be placed concentrically around a medial axis of the boss at the specified regular 
angle intervals” or (2) “when the FE mesh is created for a rib feature, the nodes points must be 
arranged along a ridge curve on top of the rib at the specified regular length interval”. These are 
required because a boss or rib is a lightweight substructure which generally has a significant role in 

maintaining the strength and stiffness of the whole product and the load paths going through the 
feature should be estimated as accurately as possible so as to guarantee the accuracy of FE analysis. 
If the elements in FE meshes are not arranged neatly in these features, the simulated load path 
differs considerably from the reality, and it eventually causes fatal design errors in the product. To 

avoid this situation, every manufacturer set their in-house meshing specifications that prescribe how 
fine and neatly the node points or elements in a FE mesh should be arranged and what kind of 

qualities the mesh should fulfil for a specific type of form features.  

Of course, from the theoretical point of view in the analysis, the similarity of form features does 
not necessarily correspond to the similarity of physical behaviors estimated by FE analysis. However, 
from the communication point of view, the FE meshing patterns classified by the similarity of form 
features can offer a foolproof method to communicate the necessary conditions on FE meshing from 
the manufacturers to the outsourcers. By doing so, the engineers in the outsourcers can easily 
identify for which local regions in a product they should generate quality-assured FE meshes 

according to the specifications requested by the manufacturers. 

Features prescribed in the meshing specifications are not confined to bosses and ribs. There are 
many other feature types that FE meshing patterns should be assigned for, such as holes, embosses, 
fillets, joggles, hemming, and gradually changing plate thickness. Therefore, more generally 

speaking, a “feature” in the meshing specification can be defined as a local region on the CAD model 
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of a product in which the analysis accuracy tends to be sensitive to its meshing quality and has 
already been known to be critical to the analysis reliability from the manufacturer’s past experiences.  

However, automatic feature-compliant mesh generation is not fully supported in the current 
commercial CAE software, thus requiring many manual operations, which resulting in high person-

hour ratio in the whole CAE process. There are some reasons why this difficulty arises in the 
automatic feature-compliant mesh generation, which include the following: 

• Even if the native format file of a CAD model explicitly includes the form feature information 
for the analysis, the information usually cannot be exported to the standard exchange file 
format, and only a boundary representation (B-rep) solid model that does not include any 
feature information can only be imported to the CAE preprocessor for mesh generation. 
Therefore, the feature extraction from the CAD model is still needed for the mesh 
generation.  

• Unlike machining features [5], the features prescribed in the meshing specifications mainly 
consist of free-form surfaces, and their geometries are not uniquely shaped and are usually 
bounded by smooth and indistinct boundaries. Therefore, it is not so straightforward to 

design and implement procedure-oriented or rule-oriented feature extraction algorithms on 
the CAD model of a product.  

• There is a great diversity in the geometries of features for FE meshing. Even ribs and bosses 
vary substantially in shapes and boundary geometries. Moreover, the features are not 
limited to bosses or ribs but have many variations, such as holes, embosses, fillets, and 
joggles, because the analysis accuracy tends to be sensitive to the meshing qualities on 
these regions and the definition of the features for FE meshing differs manufacturer by 
manufacturer. Therefore, it is difficult to realize a versatile feature extraction algorithm 

applicable to all feature types especially in procedure-oriented or rule-oriented approach. 

Consequently, different extraction algorithms or rules must be designed and implemented 
for different feature types.  

• If the CAD model of a product includes product data quality (PDQ) problems, the models 
are would appear connected and watertight when they are practically disconnected and not 
watertight and have “holes” in the topological sense. In the mesh generation by CAE 
preprocessors, these defects eventually cause to generate poor-quality FE meshes, such as 
invisible holes, elements with infinitesimal sizes, and unacceptably distorted elements, or 
to fail the mesh generation at all. The elements with exceedingly small sizes force the solver 

to decrease the time step of the analysis and extremely increase the calculation time for 
keeping the stability of numerical calculation in case of dynamic analysis. Additionally, they 
make the simulation especially difficult to finish in realistic time. Moreover, the distorted 
elements also degrade the stability and accuracy of numerical calculation. In this way, the 
PDQ problems often cause difficulty to automatically generate FE meshes complying with 

the meshing specifications and analysis accuracy requirements. Similarly, the PDQ problems 
also cause difficulty for the feature extraction algorithm to automatically select the form 

features for FE meshing from the boundary faces of a CAD model by relying only on the 
topological connectivity among the faces. As a result, many manual efforts needed for fixing 
these poor-quality FE meshes involve substantial time and cost using CAE preprocessors. 

Therefore, an automated feature extraction technique that targets feature-compliant FE meshing is 
strongly required wherein the features on a target shape whose geometries are not necessarily 
identical but rather similar to those of a reference feature shape can be extracted from the target 

CAD model of a product. 

Researchers have proposed methods of extracting form features from a target CAD model to generate 
meshes of FE models [12][13][15]. However, in these studies, three main problems persist as follows: 
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• Feature extraction does not work robustly when a CAD model has PDQ issues, such as cracked 
or degenerated geometries, because extraction algorithms mainly rely on topological 
connectivity among the faces on a CAD model that is represented as a B-rep solid model. 

• Features that are surrounded by complex and smooth fillet-like boundaries, which are 
commonly found in the features for FE meshing, such as bosses and ribs in cast or forged 
parts, remain difficult to detect because the algorithms assume that the features to be 
extracted are bound by sharp and distinct edges.  

• A different extraction algorithm must be designed in an ad hoc way for different form feature 
types even if the features have similar shapes and the difference in shapes among them is 
little. Thus, it is difficult to reuse the previous methods for feature extraction from CAD 

models when developing feature-compliant FE meshing. 

So, as a solution to these main problems, an automatic feature extraction method that is aimed at 
FE meshing and that allows for the extraction of form features, whose shape has similarity 
relationship with a reference feature shape, from a target shape that is expressed by a B-rep CAD 
model was proposed. Figure 1 illustrates how the proposed feature extraction method is utilized as 
part of the FE meshing process. A set of reference feature models that is composed of a solid CAD 
model, an FE mesh model that corresponds to the CAD model and FE meshing specifications is 

archived in a database. The FE meshing specifications include FE meshing patterns for feature and 
analysis conditions, such as rigid constraints, like bolt connections imposed on a feature surface. 
Then, the proposed similar feature extraction method is used to find feature regions, whose 
geometries are similar to those of the reference feature models on the surface of the target CAD 
model. Finally, the feature-compliant FE meshing method is applied to the extracted feature regions 
to generate a partial FE mesh of the feature that complies with FE meshing specifications, such as 

mesh resolution, node placement constraints, and analysis conditions. However, this paper only 

focuses on how feature regions that are similar to a reference feature shape are extracted from a 
target CAD model. 

In the proposed method, the reference feature shape and target shape are represented by a set 
of shape descriptors defined in triangular meshes. Feature extraction is performed by first finding 
the correspondences between the descriptors of the reference feature shape and those of the target 
shape. Based on the correspondences, non-rigid transformation of the reference feature shape into 

the target shape is estimated and validated. If a valid non-rigid transformation is found, the 
corresponded feature regions on the target CAD model are outputted. Then, transformation is 
applied to the FE mesh model in the reference feature model where the reference FE mesh is 
deformed to fit with the shape of the extracted feature regions on the target CAD model. At the 
same time, the FE meshing specification linked to the reference feature model is automatically 
assigned to the deformed reference FE mesh. 

The advantages of the proposed similar feature extraction method are summarized as follows: 

• For feature extraction, solid models of a reference feature and a target shape are 
transformed into dense triangular meshes in advance. The shapes are represented by 

shape descriptors that are defined only at the dense vertices sampled on the meshes, and 
all we need for the feature extraction algorithm is the discrete point clouds independently 
sampled on triangles of the triangular meshes. Therefore, the extraction algorithm does 
not rely on any topological connectivity among the faces on the solid models. Consequently, 
even if the original solid model or triangular meshes have PDQ issues, such as cracked or 
degenerated geometries, the point sampling on each triangle can still work, and it only 

exerts little influence on the extraction process. It improves the stability of the feature 
recognition process for FE mesh generation. 

• Sometime, the analysis engineer is asked to perform FE analysis from B-rep models 
generated by reverse engineering of the low-level three-dimensional (3D) scanned point 

clouds or triangular meshes measured from physical products. In this case, the B-rep 
models tend to include more nonuniform rational basis spline (NURBS) surfaces with 
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valuable PDQ problems, such as fine cracks between surfaces, than the case that the 
models originally generated by CAD systems. However, the proposed recognition algorithm 
only relies on the sampled points on the tessellated meshes. Also, the processing stability 
of the point sampling on the triangles does not degrade whether the model is created by 

CAD systems or reverse engineering and whatever the surface type is.  

• The proposed extraction method is implemented based on the similarity-based part-in-
whole matching principle. According to the principle, the similarity between a reference 
feature and part of a product model is evaluated only by the similarity in curvature-based 
local shape descriptors sampled discretely on both surfaces. So the evaluation is only 
dependent to the spatial distribution of curvatures inside the feature surface. It means that 
the extraction does not greatly depend on the feature boundary shapes, and the extraction 
algorithm can work regardless whether the feature is composed of complex free-form 

features or not or whether it is bounded by sharp or smooth boundary edges. Therefore, 

the scope of the features that can be extracted is extensive. 

• A simple extraction algorithm needs to be implemented for any type of feature for FE 
meshing because the algorithm is based on the geometric similarities in descriptors 
between the reference feature and the target shape. Therefore, even if the types of features 
to be extracted are increased, we only have to change the reference feature shape and do 
not have to modify the extraction algorithm itself. Moreover, the algorithm can extract 
partial regions on a target shape not only identical to the reference feature but also similar 
to it. It means that the partial regions on the target shape that have a parametrically 

deformed relationship with the reference feature shape can be extracted. So, the compact 
set of the reference models only have to be archived in the database. As a result, the 
versatility of the feature recognition algorithm can be reinforced. 

Of course, our feature recognition algorithm from low-level tessellated geometry may introduce a 
certain amount of complication in the algorithm compared to the conventional recognition algorithm 
directly from a B-rep solid model. But given the above-described reasons, it can greatly improve the 
stability and versatility of the feature recognition for FE mesh generation.  

The latter part of the paper is organized as follows. In section 2, related works are reviewed and 
issues are clarified. In section 3, the details of the feature extraction algorithms are described. In 
section 4, the results of case studies are shown. Finally, in Section 5, the conclusion is presented. 

2 RELATED WORK 

This study is related to the research fields of form feature extraction in computer-aided design and 
computer-aided manufacturing (CAD/CAM), part-in-whole shape retrieval, and 3D object recognition. 
In this section, a related works in the field were reviewed, and the drawbacks will be discussed from 

the aspect of feature extraction for FE modeling. 

2.1 Form Feature Extraction in CAD/CAM 

So far, there has been considerable research on feature extraction techniques in traditional CAD and 
manufacturing area, which includes machining feature extraction from solid models that has been 

studied intensively since the 1990s. An overview of machining feature extraction techniques is well 
reviewed in [5]. However, the features that they deal with, such as slots and pockets, are bound by 
sharp and distinct edges. It could be difficult for these techniques to extract features that are 
surrounded by complex and smooth fillet-like boundaries, which are commonly found in bosses and 
ribs on cast or forged parts and are crucial features for FE meshing. 

Unlike machining feature extraction techniques, there are only few studies on the feature 
extraction aimed at FE meshing thus far. However, lately, there have been increasing studies 

[3][12][13][15][22][24]. In most of them, ribs and bosses are extracted from a solid model of a 
target shape. Graph-based and rule-based approaches are used to derive features from a solid model 
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[3][12][15][22]. However, in both approaches, the extraction algorithms or rules are elaborated for 
specific feature types, and a new algorithm or rule must be designed if a new feature type to be 
extracted has to be added. 

On the other hand, feature extraction and volume decomposition methods are developed to 

automatically generate feature-oriented FE meshes [13][24]. Rule-based approach is used to extract 
swept features and volumes from a solid model, whose shapes are suitable for automatic hexahedral 
FE meshing. However, extraction rules are specifically designed for a swept feature and hexahedral 
meshing and highly rely on topological loop patterns and local geometric relationship with a solid 
model. Therefore, the extraction algorithm lacks flexibility and does not work robustly if the CAD 
model has PDQ issues.  

The recognition of geometric similarity between a reference feature shape and local regions of a 

target shape is another useful technique in automated FE meshing and modeling. Based on the 

concept, recently, a similar subpart search technique for FE meshing on a solid model has been 
proposed [15]. In the technique, subparts on the target shape that are similar to the archived 
subparts of proven FE models are extracted from a newly designed CAD model of the target shape. 
The similarity among the subparts is evaluated from topological graphs with face geometry attributes 
of both the solid models. However, the approach strongly relies on the topological graphs of a solid 

model and does not work robustly when a CAD model has PDQ issues. The approach might also fail 
if two subparts are geometrically similar to each other but have different topological structures 
because of non-uniqueness of the boundary representations of the object. 

2.2  Part-in-Whole Shape Retrieval 

Recently, there has been a great deal of research on 3D shape retrieval techniques, which is mainly 

in the field of computer graphics and 3D mesh processing. Detailed reviews are presented in [10] 

and [20]. Part-in-whole shape matching is among these techniques, which deals with essentially the 
same task as our feature extraction where local regions on a target shape that best matches a 
reference shape are found. 

Part-in-whole matching among noisy triangular meshes is proposed in [9] wherein the local 
region of a target shape that best matches a reference shape is found. In their approach, feature 

point similarity and segment similarity are evaluated and integrated, and a probabilistic framework 
is introduced to enhance or moderate the certainty of feature point similarity. The method is effective 
in finding artifacts on a building that is congruent to a given artifact in the domain of archeology. 
However, it does not necessarily work if the region of a target shape to be found is not congruent to 
the artifact and has a parametrically deformed relationship with the reference shape. It is also not 
effective in the domain of FE modeling automation for industrial product design. 

Attene et al. [2] proposed a part-in-whole matching schema called Fast Reject for efficient 

detection of local regions on a target 3D model that matches a reference shape, Furthermore, they 

implemented the scheme on the voxel-based raster representation of objects. The schema can 
extract the local region on a target shape that is sufficiently similar to the reference shape based on 
the similarity in shape descriptor. However, the degree of similarity could only be controlled by the 
threshold distance among the descriptors, and it is difficult to extract only the region on the target 
whose with the reference shape is parametrically deformed. 

 Hidaka et al. [7] developed a surface reconstruction system to create product models of civil 

structures from laser-scanned point clouds. Part-in-whole matching in point clouds was performed 
to find a set of representative parts that define major civil structures, such as bridge piers. However, 
this investigation is only focused on civil structure objects—so the target shapes could be 
represented by cuboids or cylinders—and is much simpler than the industrial products that we have 
to deal with in FE meshing. 

Recently, some researchers have proposed a deep learning method for part segmentation of 3D 

point clouds wherein the point cloud of a whole shape is automatically partitioned into several 

semantic parts, as in [18] and [26]. Deep learning is a novel and attractive approach for feature 
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extraction, but so far, simple and distinct semantic parts can only be segmented, and the accuracy 
of segmentation still remains modest. Perpetrating the task of a large training set is also an issue 
from a practical aspect. 

2.3 3D Object Recognition 

In 3D computer vision and robotics, many 3D object recognition techniques wherein object instances 
of a given reference model were identified and extracted from a 3D measured point cloud have been 
developed. In recognition, key point matching with shape descriptors has a crucial role in finding 
object instances. Shape descriptor refers to a description method that utilizes a numeric descriptor 

called feature vector to characterize and encode a shape uniquely [10]. 

For example, Osada et al. [16] introduced the global shape descriptor, which is called shape 
distributions, of a whole object to content-based 3D shape retrieval wherein the histogram of 

distances between two randomly chosen points on a mesh surface yielded a robust shape descriptor. 
Furthermore, Ankerst et al. [1], Ip et al. [8] and Wohlkinger et al. [23] also proposed other 
histogram-based shape descriptors that are similar to that presented in [16]. However, these 
approaches are only aimed at evaluating the global similarity between two whole shapes using global 

descriptors and do not fit with the similar feature extraction problem we are dealing with. 

On the other hand, for object recognition in robotics, Tombari et al. [21] proposed a shape 
descriptor called signature of histograms of orientations (SHOT). The descriptor represents local 
curvature distribution of a local shape in a key point as a histogram and encodes it using a high-
dimensional vector and thus is rotationally and translationally invariant. The descriptor exhibits high 
performance in 3D object detection from a 3D measured point. Shape descriptors similar to SHOT 
have also been proposed and utilized in robotic object recognition [4][6]. However, the objective of 

descriptor-based object recognition is to find the local regions of a measured point cloud that exactly 

matches a reference shape and it is not necessarily aimed at finding regions similar to the reference 
shape like our objective. 

The shape classification of free-form features for FE meshing based on point feature histogram 
(PFH) and thickness histogram descriptor is also proposed in [19], and complex free-form feature 
shapes represented by triangular mesh can be accurately classified into boss or rib features using 

two shape descriptors and a machine learning classification technique. However, a huge number of 
training samples are needed for classification. Moreover, they do not propose any method for 
extracting a feature shape from a target shape. 

As part of shape descriptors, shape index (SI) is proposed as a local signature that represents 
local curvature distributions at a key point, but unlike [4][6][20], SI is scale-invariant [11]. 
Therefore, the local regions of a measured point cloud that have an isotropic scaling relationship 
with the reference shape can be detected. Itskovich et al. [9] proposed a part-in-whole detection 

method of archeological artifacts based on the similarity in SI descriptors at salient points. SI 

descriptors is also applied to medical science field. Techniques for the automatic detection of polyp 
candidates from computed tomography (CT) volume data are proposed based on the curvature 
analysis in [17][25]. In these techniques, SI is used for the classification of polyp shape candidates. 
However, the techniques in these references assume that the relation between the reference shape 
and local region shape in a whole object is limited to an isotropic scaling. Moreover, feature 
extraction techniques that only use SI do not work if the local regions of a measured point cloud 

have an anisotropic scaling relationship with a reference shape. 

3 PROPOSED SIMILAR FEATURE EXTRACTION METHOD 

3.1 Basic Concept 

The proposed similar feature extraction method exhaustively finds local regions on a target shape 

represented by a solid model whose shape and size are similar to those of the reference feature 
shape prespecified by a user. The intended features include, but are not limited to, ribs and bosses 
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in cast or molded parts. This methodology aims to solve the three mainly identified issues via the 
approaches described in the succeeding text. 

• Representations of the target shape and reference feature shape are converted from solid 
models into triangular meshes, which will be used for extracting similar features. This 

enables stable feature extraction even if a solid model has PDQ-degraded geometries and/or 
if the feature shape boundaries are ambiguous. 

• Shape descriptors defined on a triangular mesh are applied in feature extraction. This 
approach has demonstrated to have aided in object recognition and similar shape retrieval 
in meshes and point clouds. Using this descriptor-based approach, an extraction algorithm 
can be unified even with different feature types or features with similar shapes. 

• Local regions that have a projective transformation relationship with the reference feature 

can be extracted from a target shape. It allows for the extraction of feature shapes that have 

a parametric deformation relationship with the reference feature shape. 
 

 
Figure 2: Procedure for proposed similar feature shape extraction. Steps 1–3 create shape 

descriptors of target and reference feature shapes. Steps 4–6 search for feature shapes similar to 

the reference shape. 
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3.2 Similar Feature Shape Extraction Procedure 

The proposed similar feature extraction method is comprised of six steps and is summarized in Figure 

2. Steps 1–3 create the shape descriptors of the target and reference feature shapes. Steps 4–6 
search for feature shapes that are similar to the reference shape. 

3.3 Step 1: Generating Triangular Meshes from Solid Model 

Dense triangular mesh 𝑀𝐷
𝑇 = 〈𝑉𝐷

𝑇 , 𝑇𝐷
𝑇〉 (where 𝑉𝐷

𝑇 and 𝑇𝐷
𝑇 are vertex and triangle set, respectively) and 

sparse triangular mesh 𝑀𝑆
𝑇 = 〈𝑉𝑆

𝑇 , 𝑇𝑆
𝑇〉 are generated from one solid model 𝑆𝑇 of the target shape using 

a CAE preprocessor. Similarly, triangular meshes 𝑀𝐷
𝑅 = 〈𝑉𝐷

𝑅, 𝑇𝐷
𝑅〉 and 𝑀𝑆

𝑅 = 〈𝑉𝑆
𝑅 , 𝑇𝑆

𝑅〉 of the reference 

feature shape to be extracted are also generated. 

Dense triangular meshes are necessary to calculate a feature shape descriptor with high 

accuracy. On the other hand, sparse triangular meshes are necessary to select a small number of 

distinctive feature key points with low calculation cost. It is not required that the vertices of the 
sparse mesh are the subset of those in the dense mesh and that the dense and sparse meshes are 
not conformal with each other, since the distinctive feature key points are used to estimate the 
transformation between a reference feature shape and a target shape, while the shape descriptors 
are used to validate the shape similarities between them. However, if the calculation cost is not 
significant, it is also possible to use the dense triangular meshes as a sparse triangular mesh. 

3.4 Step 2: Generating Shape Descriptors 

SI descriptor 𝑓𝑆𝐼,𝑖
𝑇  [9][11][17][25] and SHOT descriptor 𝑓𝑆𝐻𝑂𝑇,𝑖

𝑇  [21] are calculated at each vertex 

𝑣𝑆,𝑖
𝑇 (∈ 𝑉𝑆

𝑇) of sparse triangular mesh 𝑀𝑆
𝑇 to create SI descriptor set 𝐹𝑆𝐼

𝑇 = {𝑓𝑆𝐼,𝑖
𝑇 } and SHOT descriptor set 

𝐹𝑆𝐻𝑂𝑇
𝑇 = {𝑓𝑆𝐻𝑂𝑇,𝑖

𝑇 }, respectively. To reduce the scale dependency of the SHOT descriptor, each descriptor 

𝑓𝑆𝐻𝑂𝑇,𝑖
𝑇  is evaluated at 𝑣𝑆,𝑖

𝑇  using multiple radii of the support sphere. Similarly, descriptor sets 𝐹𝑆𝐼
𝑅 =

{𝑓𝑆𝐼,𝑖
𝑅 } and 𝐹𝑆𝐻𝑂𝑇

𝑅 = {𝑓𝑆𝐻𝑂𝑇,𝑖
𝑅 } of the reference feature shape to be extracted are created. 

SI descriptor 𝑓𝑆𝐼,𝑖 expresses the degree of curvedness of the local surface around vertex 𝑣𝑖 as a 

single scalar value and has scale and rotation-invariant property. SI descriptor 𝑓𝑆𝐼,𝑖 [9] is defined by 

the maximum and minimum principal curvatures λ1 and λ2 at 𝑣𝑖 as Equation (3.1): 
 

𝑓𝑆𝐼,𝑖 =
1

2
−

1

𝜋
𝑡𝑎𝑛−1 (

𝜆1 + 𝜆2

𝜆1 − 𝜆2
) . (3.1) 

 

In an exceptional case that the local shape is planar and λ1=0.0 and λ2=0.0, SI descriptor is not 

defined mathematically from Equation (3.1) but, in this case, we assign a special value to the 
descriptor to represent this planarity. As shown in Figure 2, by the value of 𝑓𝑆𝐼,𝑖, the curvedness of a 

local shape corresponds to the value of SI descriptor, for example, cup (𝑓𝑆𝐼,𝑖 = 0.0), rut (𝑓𝑆𝐼,𝑖 = 0.25), 

saddle (𝑓𝑆𝐼,𝑖 = 0.5), ridge (𝑓𝑆𝐼,𝑖 = 0.75) and cap (𝑓𝑆𝐼,𝑖 = 1.0). The SI descriptor value 𝑓𝑆𝐼,𝑖  is used for 

selecting the vertices with high distinct feature in Step 3.  
On the other hand, the SHOT descriptor is a 352-dimensional vector that encodes statistical 

distribution in a normal direction at the local vertices around 𝑣𝑖  and is rotationally invariant [21]. 

Since this descriptor has high shape representation capability, matching accuracy can be improved. 

3.5 Step 3: Selecting Key Points 

Key points are a subset of vertices on a triangular mesh where descriptor values for feature 
extraction are evaluated. The adoption of a small number of distinct feature key points has 
demonstrated to have increased object recognition and localization reliability and to have decreased 

processing time [14]. As such, when SI descriptor 𝑓𝑆𝐼,𝑖
𝑇  at vertex 𝑣𝑆,𝑖

𝑇 (∈ 𝑉𝑆
𝑇) of the target shape exhibits 

a surface with low distinct feature, that is, plane, rut, and ridge, that vertex is not selected as key 

point. Only the remaining vertices 𝑣𝑆,𝑖
𝑇  are adopted as key point set 𝐾𝑇 = {𝑘𝑖

𝑇}(⊂ 𝑉𝑆
𝑇). The SI and SHOT 
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descriptors at key point 𝑘𝑖
𝑇(∈ 𝐾𝑇) are adopted as feature descriptor sets 𝐹𝑆𝐼(𝑘)

𝑇 = {𝑓𝑆𝐼(𝑘),𝑖
𝑇 }(⊂ 𝐹𝑆𝐼

𝑇 ) and 

𝐹𝑆𝐻𝑂𝑇(𝑘)
𝑇 = {𝑓𝑆𝐻𝑂𝑇(𝑘),𝑖

𝑇 }(⊂ 𝐹𝑆𝐻𝑂𝑇
𝑇 ) , respectively. Similarly, key point set 𝐾𝑅 = {𝑘𝑖

𝑅}(⊂ 𝑉𝑆
𝑅)  and feature 

descriptor sets 𝐹𝑆𝐼(𝑘)
𝑅 = {𝑓𝑆𝐼(𝑘),𝑖

𝑅 }(⊂ 𝐹𝑆𝐼
𝑅 ) and 𝐹𝑆𝐻𝑂𝑇(𝑘)

𝑅 = {𝑓𝑆𝐻𝑂𝑇(𝑘),𝑖
𝑅 }(⊂ 𝐹𝑆𝐻𝑂𝑇

𝑅 ) are generated for the reference 

feature shape. 

3.6 Step 4: Finding Key Point Pair Sets Based on Descriptors 

For each SHOT descriptor 𝑓𝑆𝐻𝑂𝑇(𝑘),𝑖
𝑇 (∈ 𝐹𝑆𝐻𝑂𝑇(𝑘)

𝑇 )  at key point 𝑘𝑖
𝑇(∈ 𝐾𝑇)  on the target shape, N 

corresponding key points are searched from key point set 𝐾𝑅 = {𝑘𝑗
𝑅} on the reference feature shape 

according to the ascending order of distance ‖𝑓𝑆𝐻𝑂𝑇(𝑘),𝑗
𝑅 − 𝑓𝑆𝐻𝑂𝑇(𝑘),𝑖

𝑇 ‖, creating the nearest key point pair 

set with respect to SHOT 𝐶𝑆𝐻𝑂𝑇 = {(𝑘𝑗
𝑅 , 𝑘𝑖

𝑇)
𝑝

 | 𝑝 ∈ [1, 𝑁], 𝑘𝑖
𝑇 ∈ 𝐾𝑇}. Similarly, the nearest key point pair 

set with respect to SI 𝐶𝑆𝐼 = {(𝑘𝑛
𝑅, 𝑘𝑚

𝑇 )𝑞 | 𝑞 ∈ [1, 𝑀], 𝑘𝑚
𝑇 ∈ 𝐾𝑇}  is generated by evaluating distance 

‖𝑓𝑆𝐼(𝑘),𝑛
𝑅 − 𝑓𝑆𝐼(𝑘),𝑚

𝑇 ‖. 

As the SI and SHOT descriptors express local curvatures in different forms, key point pairs that 
have higher similarity are then selected from 𝐶𝑆𝐻𝑂𝑇. This is done by selecting key point pairs from 

𝐶𝑆𝐻𝑂𝑇 with high correspondence between the SHOT and SI descriptors, which means that there is at 

least one nearest key point pair in 𝐶𝑆𝐼 close to a given nearest key point pair 𝐶𝑆𝐻𝑂𝑇 within distance 

threshold 𝛿, that is, dist(𝑘𝑖
𝑇 , 𝑘𝑚

𝑇 ) < 𝛿 ∧  dist(𝑘𝑗
𝑅 , 𝑘𝑛

𝑅) < 𝛿, (𝑘𝑗
𝑅 , 𝑘𝑖

𝑇) ∈ 𝐶𝑆𝐻𝑂𝑇 , ∃(𝑘𝑛
𝑅, 𝑘𝑚

𝑇 ) ∈ 𝐶𝑆𝐼. If key point pair 

(𝑘𝑗
𝑅 , 𝑘𝑖

𝑇) in 𝐶𝑆𝐻𝑂𝑇 satisfies this condition, it will be stored in the new nearest key point pair set 𝐶𝑆𝑆 =

{(𝑘𝑗
𝑅 , 𝑘𝑖

𝑇)}(⊂ 𝐶𝑆𝐻𝑂𝑇). 

3.7 Step 5: Clustering Key Points 

Key points 𝑘𝑖
𝑇 ∈ (𝐾𝑆𝑆

𝑇 = {𝑘𝑖
𝑇| (𝑘𝑗

𝑅 , 𝑘𝑖
𝑇) ∈ 𝐶𝑆𝑆}) of the target shape included in key point pair set 𝐶𝑆𝑆 may 

be distributed to the multiple regions on the target shape that are similar to the reference feature 
shape. Thus, to increase the searching efficiency of the random sample consensus (RANSAC) 

algorithm that will be employed in Step 6, Euclidean clustering is applied to the key points in 𝐾𝑆𝑆
𝑇 . 

Additionally, close feature key point pair set 𝐶𝐸𝐶𝐸 =∪ 𝐶𝐸𝐶𝐸,𝑙 is generated to aggregate the key points 

that are close to each other into one cluster 𝐶𝐸𝐶𝐸,𝑙. Since the stability of the calculation algorithm for 

the projective transformation matrix depends on the distribution of vertices, the coordinates of the 
vertices of each cluster are normalized so that the mean is 0.0 and the standard deviation is 1.0. 

Similarly, the reference feature shape is normalized. 

3.8 Step 6: Extracting Similar Feature Shapes Using RANSAC Algorithm 

First, five key point pairs {(𝑘𝑖
𝑅𝐶 , 𝑘𝑗

𝑇𝐶)| 𝑘𝑖
𝑅𝐶 ∈ 𝐾𝑅𝐶 , 𝑘𝑗

𝑇𝐶 ∈ 𝐾𝑇𝐶}  from one key point cluster 𝐶𝐸𝐶𝐸,𝑙  are 

randomly selected. Projective 4x4 transformation matrix [𝐻], which transforms selected key point 

pairs 𝑘𝑖
𝑅𝐶 (∈ 𝐾𝑅𝐶 ) into 𝑘𝑗

𝑇𝐶(∈ 𝐾𝑇𝐶), is then estimated using Equations (3.2) and (3.3) via lower–upper 

decomposition. 
1

𝑤
[𝐻]{𝑄𝑅} − {𝑄𝑇} = {0}, (3.2) 

[𝐴]𝑇{𝐻} = {𝐵}, (3.3) 
 

where [𝐻] = [ℎ𝑖𝑗] is a 4×4 matrix with ℎ44 = 1; {𝑄𝑅} and {𝑄𝑇} are the 4×1 homogeneous coordinates 

of key points 𝑘𝑖
𝑅𝐶 and 𝑘𝑗

𝑇𝐶; 𝑤 is the fourth component of [𝐻]{𝑄𝑅}, that is ∑ ℎ4,𝑖𝑞𝑖
𝑅4

𝑖=1 ; {𝐻} is the 15×1 

column vector in which all components of matrix [𝐻] are arranged in a column vector; and [𝐴] and 
{𝐵} are the 15×15 matrix and 15×1 column vector calculated from the coordinates of 𝑘𝑖

𝑅𝐶 and 𝑘𝑗
𝑇𝐶, 

respectively. Second, the obtained projective transformation matrix [𝐻]  is transformed into an 

original coordinate system before normalization in Step 5 by Equation (3.4).  
 

[𝐻]𝑜𝑟𝑔 = [𝐷]𝑇[𝐻] (3.4) 
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where [𝐷] is the matrix that transformed from the normalized coordinate to the original coordinate, 

and [𝐻]𝑜𝑟𝑔  is the projective transformation matrix in the original coordinate system. Third, the 

transformed key point set 𝐾𝑅̃ is generated by applying transformation [𝐻]𝑜𝑟𝑔 to all key points except 

for the selected five in 𝐾𝑅𝐶. The distance between each transformed key point in 𝐾𝑅̃ and the closest 

vertex of 𝑀𝐷
𝑇  is then evaluated, so that the estimated transformation [𝐻]𝑜𝑟𝑔  could represent an 

appropriate one. For this judgment, we first search the nearest point of 𝑘𝑖
𝑅̃(∈ 𝐾𝑅̃) from 𝑉𝐷

𝑇 using the 

k-nearest neighbor (kNN) algorithm and calculate error ‖𝑘𝑖
𝑅̃ − 𝑣𝐷,𝑛𝑒𝑎𝑟𝑒𝑠𝑡

𝑇 ‖. Next, if maximum error 

𝛿𝑚𝑎𝑥 = max(‖𝑘𝑖
𝑅̃ − 𝑣𝑛𝑒𝑎𝑟𝑒𝑠𝑡

𝑇 ‖)
𝑘𝑖

𝑅̃∈𝐾𝑅̃  of 𝐾𝑅̃  is less than threshold 𝛿max_𝑚𝑖𝑛 , we will update 𝛿max_𝑚𝑖𝑛  and 

[𝐻]𝑜𝑟𝑔_𝑚𝑖𝑛 . If 𝛿max_𝑚𝑖𝑛  is not updated after specified iterations of the updates, the estimation of 

[𝐻]𝑜𝑟𝑔_𝑚𝑖𝑛  concludes. Finally, [𝐻]𝑜𝑟𝑔_𝑚𝑖𝑛  gives the best projective transformation matrix that 

transforms the reference feature shape into a similar feature shape portion on the target shape.  

The processes can be summarized in the following algorithm: 

(1) Select randomly five key point pairs {(𝑘𝑖
𝑅𝐶 , 𝑘𝑗

𝑇𝐶)} from one key point cluster 𝐶𝐸𝐶𝐸,𝑙. 

(2) Estimate a projective transformation matrix [𝐻] from {(𝑘𝑖
𝑅𝐶 , 𝑘𝑗

𝑇𝐶)} using Equations (3.2) and 

(3.3). 

(3) Transform the transformation matrix [𝐻]  to the one [𝐻]𝑜𝑟𝑔  with respect to the original 

coordinate system.  

(4) Transform all the key points except for the selected five in 𝐾𝑅𝐶 = {𝑘𝑖
𝑅𝐶}  using [𝐻]𝑜𝑟𝑔  to 

generate 𝐾𝑅̃.  

(5) Evaluate the maximum distance 𝛿𝑚𝑎𝑥  between each transformed key point in 𝐾𝑅̃  and its 

closest vertex in the dense mesh 𝑀𝐷
𝑇. 

(6) If 𝛿𝑚𝑎𝑥 <  𝛿max_𝑚𝑖𝑛 , update as 𝛿max_𝑚𝑖𝑛 ← 𝛿𝑚𝑎𝑥  and [𝐻]𝑜𝑟𝑔_𝑚𝑖𝑛 ←  [𝐻]𝑜𝑟𝑔 and return to (1). If 

𝛿max_𝑚𝑖𝑛 is not updated after the specified iterations or the iteration reaches the upper bound 

of iterations, go to (7). Otherwise, return to (1). 

(7) The output [𝐻]𝑜𝑟𝑔_𝑚𝑖𝑛 gives the best projective transformation matrix that transforms the 

reference feature shape into a similar feature shape portion on the target shape. 

4 VERIFICATION OF SIMILAR FEATURE EXTRACTION 

4.1 Matching with Deformed Ribs with Simple Shapes 

To verify the proposed method, feature matching was performed on deformed ribs with simple 
shapes. Three deformation variations are included: isotropic scaling, anisotropic scaling and 
anisotropic scaling with distortion.  

 
Figure 3: Matching results of deformed ribs 
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As a result, the deformed rib could successfully correspond with the reference rib, as shown in Figure 
3. So far, the maximum feasible scale range was 1.8x in all cases. Because the rib of the reference 
feature shape was symmetrical, the matching lines sometimes intersected, as shown in Figure 3.  

There is still room to expand the feasible scale range by optimizing the parameters and using a 

denser triangular mesh. However, in practice, even when the deformation ratio between the 
reference and target models exceeds 1.8, we can overcome this restriction of the scale range by 
preparing a few scaled versions of the original reference feature model beforehand. 

4.2 Extraction of Similar Ribs and Bosses with Simple Shapes 

Next, feature extraction was performed on a target flat-plate model that contains five similar ribs 
and bosses with simple shapes, as shown in Figure 4. In the five ribs and bosses, one was identical 
to the reference ribs and bosses, whereas the others were similar but had a top and bottom width 

different from the reference one. As the estimated projective transformation allowed for a high 
degree of freedom in deformation under original parameter settings, upon occasion, only a portion 
of the rib along the longitudinal direction was matched with the reference feature. To avoid a partial 
matching problem, the SI threshold was adjusted to allow the key points around the edge portions 

that exhibit strong geometric features to remain. Additionally, the upper and lower bounds of the 
volume expansion ratio, scale value and oblique distortion of projective transformation [𝐻] were 

defined. As a result, the five ribs were extracted correctly, as shown in Figure 5. 
 

 
 

Figure 4: Test models of extraction of similar ribs and bosses with simple shapes 
 

 
 

Figure 5: Extraction results of ribs with simple shapes 
 

However, the bosses could not be extracted under the same settings because the local feature 

shapes are axially symmetrical in a circumferential direction. It increased the number of matching 
pairs that do not have projective transformation relationship with the boss shape. Consequently, it 
made the feature extraction by RANSAC difficult. This problem could have been avoided by limiting 
the intersection between matching pairs (intersection at each projection plane). However, there were 
actually few perfect axisymmetric shapes in the boss shape of industrial product parts. Therefore, 
this time, verification was performed by adding a small dummy shape in the circumferential direction 
of the boss to the reference shape and the target shape. As a result, four of the five bosses could 

be extracted successfully, as shown in Figure 6. However, one boss was not extracted to the last 

because the estimated deformation was too large. The aforementioned verification implies that 
adjusting the deformation threshold of [𝐻] to an appropriate range can make extraction possible. 
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Figure 6: Extraction results of bosses with simple shapes. 

4.3 Extraction of Complex Features with Anisotropic Scale 

A second verification procedure was performed to determine if a feature shape whose anisotropic 

scale is different from that of the reference feature could be extracted. A target shape close to a 

cast product with various feature shapes, as shown in Figure 7, was selected. A portion of the target 
shape was cut out and deformed by anisotropic scaling to create the reference feature shape. The 
similar feature shape was successfully extracted, as shown in Figure 7. However, the feasible scale 
range differed in directions. Features of up to 1.5 times width and 1.2 times length were extracted. 
The limitation was specified by the bounds of the distortion constraint in projective transformation. 
Thus, expanding the anisotropic scale range would require extending the bounds of the constraints 
in projective transformation. 

 
Figure 7: Extraction results of complex features with anisotropic scales (Red: key points of 
reference. Blue: reference. Black: target. Green: matching pairs.) 

4.4 Extraction of Multiple Similar Features 

A third extraction was performed to verify the extraction of multiple features with similar shapes on 

the same target shape, as shown in Figure 8. The reference feature shape was created by cutting 
out a local area in the target shape. Five of the six feature shapes were successfully extracted; the 
sixth could also be found by changing the mesh and the position of the reference feature. Thus, 

future work should aim to improve the robustness of extraction, possibly by increasing mesh density, 
equalizing sample density of key points between the reference feature and the target shape and 
finding the most suitable position of the reference feature shape for extraction. 

 
Figure 8: Extraction results of multiple similar features. (Red: key points of reference. Blue: 

reference. Black: target. Green: matching pairs.) 
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4.5 Fitting FE Meshes with Extracted Similar Features 

Finally, we tried to fit FE mesh models to the boss and rib features on the target shape that were 

extracted by the proposed method. The extracted projective transformation matrices were used for 
mesh fitting. The results are shown in Figure 9. As shown in the figure, the FE mesh model that was 
originally defined on the reference feature can be positioned approximately at the similar feature 
regions on the target shape. Therefore, the proposed method effectively allows an engineer to 
identify where local regions similar to a reference feature are placed on a target shape. 

On the other hand, as also shown in the figure, the FE mesh model does not exactly fit the shape 

of the local regions that are similar to the reference feature on the target model since the estimated 
projective transformation in the method still includes non-negligible errors for fitting the reference 
mesh model to the similar features extracted. Therefore, completion of feature-compliant FE 
meshing remains an open issue and should be solved in our future work. 

 
Figure 9: Results of applying extracted FE meshes: (a) applying FE meshes using extracted similar 
ribs and bosses with simple shapes and (b) applying FE meshes using extracted complex features 

with anisotropic scale and multiple similar features. 

5 CONCLUSIONS 

In this paper, we proposed a similar feature extraction to create an automatic feature-compliant FE 
meshing method focused in FE meshing that allows for extraction of form features, which have a 
shape similarity relationship with a reference feature shape, from a target shape. The method was 
based on a shape descriptor representation defined by a triangular mesh, matching operation 
between the reference feature shape and the target shape using descriptors and an estimation of 

projective transformation between them. 

The proposed similar feature extraction method was validated by some case studies wherein the 
relationships between the reference shape and the target shape were isotropic scaling, anisotropic 
scaling, and anisotropic scaling with distortion and complex deformation. In most cases, local regions 

that are similar to a reference feature could be successfully extracted from a target shape. The 
results show that the proposed shape descriptor-based feature extraction method effectively allows 
an engineer to identify where local regions similar to a reference feature are placed on a target 

shape. However, the estimated projective transformation in the method still includes non-negligible 
errors that are not good enough to fit the reference mesh model to the similar features extracted. 

In future works, we will attempt to solve the remaining issues, such as feature extraction 
technique for a boss with an axially symmetrical shape or a rib with the same cross section to 
longitudinal direction, to improve extraction accuracy. Furthermore, we will also focus in developing 
a method to assign appropriate FE meshing operations to extracted features in compliance with 

specifications. To do so, increasing the estimation accuracy of a projective transformation matrix 
that maps a reference feature to local regions on the target shapes by optimization is necessary. If 
the curvature of any point on the surface without topological connectivity of the solid model is 
obtained easily, it has the potential to obtain simpler, faster, and more accurate local descriptor 

calculation than the one proposed herein. This improvement remains as our future work.  
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