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Abstract. Remanufacturing has been considered as an eco-industry, 
demonstrating environmental and economic benefits. Damage feature inspection is 
a critical and step in remanufacturing, which establishes the connection between 

used part and process planning. However, the current inspection method for 
remanufacturing heavily relies on manual operations. In this study, a deep 
learning-based damage recognition and spatial localization method is developed. 
The damage recognition method is based on a Mask-RCNN model to output damage 
type, 2D damage segments. By mapping the 2D pixel coordinates to the 3D global 
coordinate system, the spatial coordinate of damage is calculated. With identifying 
and positioning damages, further automatic repairing/remanufacturing processes 

can be operated based on these results. 
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1 INTRODUCTION 

In contemporary manufacturing, the increasing developments and over-exploitation of resources 
result in numerous “end-of-life” products. However, the products have not been used thoroughly, 
and their product life-cycle can be extended by remanufacturing. Remanufacturing has been 
widely emphasized because it enables the remanufactured product to be sold as a new product 
and also maintains the intrinsic energy of the “end-of-life” product without creating redundant 
energy. In the concept of “product life cycle”, remanufacturing extends a product life before its 

final disposal, as illustrated in Figure 1. The end-of-life components can be re-used, recycled for 

parts or recycled for materials. It is reported that remanufacturing reduces cost by 50%, energy 
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by 60%, material by 70% and air pollution by 80% as compared to a conventional manufacturing 
process [21].  

Although significant benefits can be gained from remanufacturing/repair, there are still 
numerous challenges to implement it in the industry. One of the reasons is that, compared to the 

manufacturing process, stochastic returns of used parts and their uncontrollable quality condition 
result in a high degree of uncertainty for the remanufacturing process [16]. The uncertainty 
surrounding the return of the parts complicates the remanufacturing process. Recently, significant 
efforts have been devoted to the remanufacturing process plan optimization with uncertainties 
[25]. These optimization frameworks are initialized with characterized and quantified fault features 
(e.g. crack, dent, scratch, abrasion). The visual or manual inspection determines the fault feature 
characterization, which indicates damage type, damage location and damage degree. These three 

factors play a key role in generating an optimal process plan with different additive operations 

(e.g. chromium plating, arc welding, cold welding, laser cladding, thermal spraying) and 
subtractive operations (e.g. milling, grinding) with heuristic algorithms. The current visual or 
manual inspection methods require extensive human intervention, and the quality of the process is 
hard to be stable. Therefore, an automated inspection approach for remanufacturing is urgently 
demanded. For this reason, an increasing level of interest in research on the automated or semi-

automated inspection for remanufacturing or repair has been witnessed over recent years [4–6]. 
By summarizing these research results, to the best of the authors’ knowledge, an automatic 
approach that enables damage recognition and spatial localization simultaneously for 
remanufacturing has not been discovered. In this study, a deep learning-based damage 
recognition and spatial localization method is proposed, which can classify different damage 
features and localize in the global three-dimensional coordinate.  

To validate the efficiency of this methodology, this study is implemented in a case study of 

pipe damage visual inspection for oil industry. 
 

 
 

Figure 1: The concept of the product life cycle. 

2 LITERATURE REVIEW 

There are two categories of damage detections given in recent publication, through collecting point 
clouds by reverse engineering or images from the damage component. The related works of these 
two classes of methods are reviewed and summarized as follows.  

2.1 Reverse Engineering-based Damage Detection 

The reverse engineering techniques enable a quick and accurate acquisition of the three-

dimensional (3D) point clouds of the damaged components. Many current studies [28-31] have 
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introduced reverse engineering techniques in surface modelling to aid the remanufacturing/repair 
process of damaged parts. Commonly, the process is composed of three steps: 1. data acquisition; 
2. comparison of a nominal model and damaged model; 3. repair volume extraction. For data 
acquisition, a laser triangulation-based or structured light-based scanner device is used to capture 

the surface geometry of the damaged part in the form of 3D point clouds. The identification and 
localization of the damaged area are achieved by a registration operation by comparing the 
nominal CAD model with the model of the damaged part. However, in some cases, the nominal 
CAD model is not available due to confidentiality issues. A few studies have been focused on CAD 
free repairing. Wilson et al.[27], Goyal et al. [7], and Piya et al. [13] reconstructed the original 
turbine blade model by using a prominent cross-section (PCS) method. Li et al. [17] extended the 
PCS for the reconstruction of other industrial parts, such as a worn gear bracket. Zheng et al. [5] 

developed a nominal model reconstruction method that can be applied to all primitive-based 

geometries. After comparing the nominal CAD model and damaged, the repair volume can be 
extracted by a Boolean operation [17] or distance-based filtering operation [3]. It can be observed 
that these reverse engineering aided remanufacturing processes are straightforward but 
complicated and time-consuming. To facilitate the repair process, researchers have been studied 
on simplifying the damage detection process by segmenting the defective surface directly. 

Hitchcox and Zhao [12] have developed a quick and accurate surface defect segmentation method 
from 3D scan data with application to aerospace repair. Especially, the scanning of the entire 
damaged part can take a couple of hours. Jovančević et al. [14] introduced a novel automatic 
defect inspection method by analyzing 3D data collected with a 3D scanner. This method is based 
on estimating the curvature and normal information at every point from the point clouds to identify 
undesired defects as dents, protrusion or scratches. Borsu et al. [1] extracted the damaged region 
from input point clouds by estimating the standard deviation of the surface normal vector. 3D 

point clouds-based damage detection technologies have been widely implemented in other areas 
such as civil and plant facilities. Kashani & Graettinger [15] introduced a clustering-based feature 

segmentation method for light detection and ranging (LiDAR) point clouds and applied in detection 
damages for building roofs. Shinozaki et al. [22] developed an automatic detection method to find 
scaffolding and wearing on furnace walls from large-scale point clouds.   However, there are still 
some limitations of those methods, such as lacking a generalized algorithm to detect defective 
regions for all applications, disallowing to classify different classes of damages, performing at low 

speed due to the computational expense. 

2.2 Image-based Damage Detection 

Another damage detection method is based on analyzing the input data of images from the 
damaged components. Deep learning has achieved substantial development in object detection 

and classification from images in recent years, which uses a series of layers of nonlinear activation 
functions. With such structure, it enables to integrate feature extraction and classification by 

optimization, and outputs expected label in the last layer.  Benefiting from this effective method, 
some researchers have been implementing deep learning-based algorithms in defect inspection 
problems. Masci et al. [20] presented a Max-Pooling Convolutional Neural Network method for 
classification of 7 different steal defects; however, their work was limited to a shallow neural 
network. In a modern implementation of a convolutional neural network (CNN) in image 

classification, Wang et al. [26] presented a CNN-based vision inspection method to identify and 
classify defective product with high accuracy. However, image classification cannot meet the entire 
requirement of the task of defect inspection, lacking finding the position of the defect area.  Many 
state-of-the-art object detection methods have been developed using the region-based CNN (R-
CNN) architecture. Mask R-CNN as an extension of R-CNN enables simultaneously object detection 
and instance, segmentation [10]. It has two stages: 1. Images are scanned, and the proposal is 

generated; 2. The proposal is classified, and the bounding box and mask are generated. Instance 
segmentation features the potentials to address the localization problems of the defective area in a 

two-dimensional (2D) aspect. Ferguson et al. [4] introduced an automatic defect detection method 
to identify casting defects in X-ray images, based on the Mask R-CNN architecture. Zhang et al. 
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developed a vehicle-damage-detection segmentation algorithm based on transfer learning and an 
improved Mask RCNN. However, their method can only find the damaged area from the images 
directly in 2D which has a huge error matching to its position in the real world.  

With the development of the techniques of RGB-Depth sensors, the semantic segmentation has a 
great achievement in indoor scenes [5]. By adding the depth map, the RGB-D image gives the 
information of the distance of the objects to the camera. In addition, the RGB and depth map have 

the corresponding relations in pixels. Gupta et al. [8] developed a two-step method to apply 
different neural networks to RGB and depth map separately to extract the corresponding features 
separately and classify by support-vector machine (SVM) in the end. Song and Xiao [24] adopt a 
directional Truncated Signed Distance Function (TSDF) encoding method to train the RGB-D data in 
the CNN directly and outputs 3D object bounding boxes.  

In summary, the exiting image-based damage detection methods only focus on the object 
detection or semantic segmentation in 2D scenes. However, the localization of the damage area is 
significant task for repairing and remanufacturing purpose. The development of 3D semantic 
segmentation with RGB-D image has a great achievement recently. The idea of this study is 

inspired from these methods. However, most of the 3D semantic segmentation methods are 
applied for indoor objects. The great performances of these methods are relied on the large RGB-D 
training data [26]. To the authors’ best knowledge, there is no RGB-D database existing for the 
damage detection problem. It is also difficult to build a large RGB-D dataset for the damage part. 
Hence, the motivation of this study is developing a novel damage detection approach, which enable 
the model been trained on a small size RGB data and output the damage class and location.    

3 METHODOLOGY 

The main objective of this study is to automatically detect damages from a remanufacturing part. 
The study proposes a detection strategy based on a deep-learning technique to recognize and 
localize damages. The flowchart is shown in Figure 2. There are four main steps of the process: (1) 
Data acquisition for the RGB image and depth data by a depth camera; (2) the damage recognition 
and segmentation using a Mask-RCNN-based method, providing damage segments with recognized 
damage type; (3) the localization of the damage determined by the integration of damage 

segments and a point cloud from the depth data. 

 

 
 

Figure 2: The flowchart of the proposed method. 

3.1 Damage Recognition and Classification 

In this study, the damage recognition and segmentation method is based on a Mask-RCNN 

architecture [21]. The proposed damage recognition and segmentation method is illustrated in 
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Figure 3. As shown, it is composed of four modules: (1) Input the original image to be processed 
into a pre-trained convolutional backbone to extract features and to obtain a feature map; (2) the 
region proposal network (RPN) proposes region of interest (RoI) in the feature map with a set of 
rectangular object proposals; (3) each RoI generates a fixed size feature map by RoIAlign layer; 

(4) the fixed size feature map goes through two branches of layers for objective classification, 
frame regression and pixel segmentation. 

 
 

Figure 3: The neural network architecture of the proposed damage recognition and segmentation 

method. 

3.1.1 Convolutional backbone 

The convolutional backbone is composed of a series CNN to extract feature maps from the image. 

The properties of a neural network backbone are characterized by the selection and arrangement 

of different layers. Deeper networks generally allow to extract more complicate features from the 
input image, meanwhile stacking more layers will result in issues for training, due to the 
degradation problem. The residual network (ResNet) was designed to address this problem in 
deeper neural networks (up to 152 layers) [11] by reformulating its layers as residual learning 
function with reference to the layer input.  

Generally, the Mask RCNN model adopts ResNet101 as the backbone. It is a very deep 
network with 101 layers and approximately 27 million parameters. In this study, because the 
damage category is simple and the dataset is limited, a smaller backbone ResNet50 is used to 
improve the running speed for training. Feature pyramid network (FPN) [18] uses a top-down 
architecture with lateral connections to build an in-network feature pyramid, which addresses the 
multi-scale object recognition problem. Overall, this study uses the combination of ResNet50 and 
FPN as the backbone for feature extraction. 

3.1.2 Region Proposal Network 

The second module in the proposed damage detection and recognition is RPN. The original image 

passes through the ResNet50 and FPN convolutional network and outputs a set of convolutional 
feature maps. In this study, the algorithm uses nine different sizes of anchors as (128*128, 
256*256, 512*512) with aspect ratios of (1:1, 1:2, 2:1). Positive or negative anchors are 
computed by considering the interest-over-union (IoU) between the analyzed anchor and ground-
truth bounding boxes on the image. The IoU is calculated by Equation (3.1). In this paper, positive 
anchors are those that have an IoU is greater or equal to 0.7 in any ground-truth object, and 
negative anchors are those that have IoU is smaller or equal to 0.3. The anchors with IoU between 

0.3 and 0.7 are not considered for the training objective. The positive anchors are then processed 
to the proposal classification.  
 

IoU overlap

union

A

A
 (3.1) 
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 where overlapA  is the area of overlap and 
unionA  is the area of union. 

 

3.1.3 The loss function 

The multi-tasking loss function of the Mask R-CNN training process is defined in Equation (3.2), 

where L  is the total training loss; 
clsL  is the classification loss, 

boxL  is the bounding-box loss, and 

maskL  is the mask loss.  

cls box maskL L L L  (3.2) 

The variables for 
clsL and 

boxL are defined in [6], as shown in Equation (3.3). Each training RoI 

is labelled with a ground-truth class u  and a ground-truth bounding-box regression target v . 

, 1 ,ucls box cls locL L L p u u L t v  (3.3) 

where u  is the label of each training RoI with a ground-truth class; v  is a label of each RoI with a 

ground-truth bounding-box regression target; = , , ,u u u u u
x y w ht t t t t  specifies a scale-invariant translation 

and log-space height/width shift relative to u  class;  0,..., Kp p p represents the probability 

distribution over 1K categories; 1u denotes the Iverson bracket indicator function that 

evaluates to1 when 1u and 0 otherwise. 

The bounding-box regression ( , )u
locL t v is shown in: 

1
{ , , , }

smooth (( , ) )L
i x

u u
loc i i

y w h

L t v t v  
(3.4) 

where: 

1

20.5    if 1
smooth ( )

    otherwise0.5L

x x

x
x  (3.5)  

 

The maskL is calculated by taking the average cross-entropy of all pixels on the RoI, as: 

1
ln 1 ln 1mask i i i iL y a y a

N
 

(3.6) 1/ (1 )ii
xy e  

1/ (1 )ii
ba e  

where ix and ib  are the prediction value and true value of the i-th pixel in the positive RoI, 

respectively, N indicates the number of pixels in the positive RoI. 

 

3.2 Spatial Localization 

Spatial localization of the damaged area is achieved by finding the mapping relations between the 
2D coordinates in the image and 3D spatial coordinates by the depth sensor model, as shown in 

Equation (3.7).  
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0 cos sin
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cos 0 sin

0 1 0

sin 0 cos

y y
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y y

R ; 

cos sin 0

sin cos 0

0 0 1

z z

z z zR  

T

x y zT t t t  

where u  and v  are the 2D image coordinates; 
0u  and 

0v  are the origin of the 2D coordinate 

system; 
xf  and yf  are the focal length along x  and y  direction, respectively; z y zR R R  and T  are 

the rotation matrix and translation matrix from the camera coordinate system to the global 
coordinate system, X , Y , Z are the 3D coordinates under global coordinate. M and m represent 

the location of the pixel in 3D global coordinate and image, respectively. cz  is the distance of the 

image to the camera. The illustration is shown in Figure 4. 
 

 
 

Figure 4: An illustration of the mapping of depth and RGB image coordinate to xyz coordinate. 
 

To simplify this problem, the authors coincide the camera coordinate system and the global 

coordinate system and Equation (3.7) can be derived as: 
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 (3.8) 

Then, the 3D coordinates of the damaged area can be calculated as: 

0 0; ;c c
c

x y

u u z dx v v z dy
X Y Z z

f f
 (3.9) 

4 EXPERIMENTAL RESULTS AND ANALYSIS 

4.1 Transfer Learning 

Deep learning requires a large number of input images as training data, but for some applications, 
it is very difficult to find enough images. Transfer learning provides an alternative strategy to 
address this problem. It is possible to reuse a pre-trained CNN weight as a starting point for 
another training task, instead of building a CNN from scratch. In this study, the training model was 
initialized using the weights from a ResNet-101 network, which was trained on the COCO dataset 
[19]. COCO dataset has 330K images with 1.5 million object instances for 80 object categories. 

Therefore, a good performance pre-trained model can be obtained from this dataset. Using 
migration learning from the pre-trained model can increase the efficiency of training significantly 
than starting from scratch.  

4.2 Dataset Building 

The images with damaged pipes were collected by a GigE DFK 33GD006 image sensor with TCL 
3520 5MP lens with a 35 mm focal length, and the setup is shown in Figure 5. The entire dataset 
includes training, validation and testing datasets with the resolution of 1920*1080 images. The 
dataset is collected from 30 damaged pipes and each pipe has 3 portions of damage with different 
sizes. The experiment collected 220 images (160 for the training dataset, 40 for validation dataset 
and 20 for testing dataset). The training and validation images were annotated according to their 
damaged areas by polygon shapes using the free annotation software VGG Image Annotator [2]. It 

labelled the images with the JSON file which contains a class of damage and damage region. Figure 
6 gives examples of annotated images. 
 

 
 

Figure 5: Dataset acquisition setup. 
 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(6), 2021, 1359-1372 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

1367 

a b 

 
Figure 6: Annotation of damaged areas by polygon shapes.  

 

4.3 Experimental Environment  

The experiments were conducted using Mask-RCNN, Matlab2019a, CUDA 10.0, TensorFlow 1.14.0, 
CuDNN 6.5 on a desktop computer equipped with an Intel Core i5-8600K 3.60 GHz CPU, 16 GB 
DDR4 ram memory, Nvidia GTX 1060 with 6 GB video ram GPU, under an operating system of 
Ubuntu 16.04 64 bit. The pre-defined parameters for the damage detection and classification 

model are shown in Table 1. 

 

Parameter Value 

Batch size 30 

Learning rate 0.01 

Learning Momentum 0.9 

Mask pool size 14 

Pool size 7 

Step per epoch 200 

Detection minimum confidence 0.9 

Number of classes 2 

epoch 30 

 
Table 1: The pre-defined parameters for damage detection and classification. 

In this study, Microsoft Kinect V1 was used as the depth camera for testing. The technical 

specification of it is presented in Table 2. It outputted RGB image (640*840*3) and depth image 

(640*840), as shown in Figure 7. 
 

Kinect V1 Specifications 

Max. resolution of the 

colour sensor 
1280*960 

Max. resolution of the 
depth sensor 

640*480 

Viewing angle 43° vertical x 57° horizontal 

Vertical tilt range ±27° 

Frame rate 30 frames per second (FPS) 

 
Table 2: The pre-defined parameters for damage detection and classification. 
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Figure 7: RGB image (a) and depth image (b). 
 

By implementation of the Equation (3.7)-(3.9), the point cloud data (defined as pointcloud) was 
calculated from the RGB image and depth image, as shown in Figure 8. The data structure of 
pointcloud includes Location (480*640*3), Color (480*640*3), Count (positive integer), XLimits 
(1*2), YLimites (1*2), ZLimites (1*2). In the data of Location, each entry specifies the x, y, 
and z coordinates of a point in the 3D coordinate space. Therefore, each pixel in the RGB image 

can be mapped to the pointcloud.Location to find their x, y, z coordinates in the 3D space. 
 

  
 

Figure 8: Point cloud dataset. 
 

4.4 Results and Analysis 

For the damaged area detection and classification algorithm, after 30 epochs of training, the 
convergence history of the model loss for both training and validation samples are plotted in Figure 
9. It can be observed that the loss for training and validation achieved 0.1612 and 0.5744, 
respectively. The accuracies in this study were in segment-wised evolution. The accuracies had 
achieved 99.57% and 87.61% for training and validation datasets. Considering the size of the 

training dataset, the validation accuracy is acceptable. y would be improved. The authors also had 
tried changed hyperparameters such as batch size, learning rate, and activation function to 
improve the performance of the model but achieved limited benefit. Therefore, in this study, 
increasing the size of the training dataset would be the most effective method to improve the 
accuracy further. Some examples from the damaged area detection algorithm are shown in Figure 
10. 
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a b 
 

Figure 9: Convergence histories for loss (a) and accuracy (b) after 30 epochs. 
 

 

 

a 

 

b 

 

c 

 

d 
 

Figure 10: Example detections of the damaged area from the pipes. 

 

The authors tested the performance of the 3D localization in the proposed method by calculating 
the centroid position of the damaged area. The localization error is defined as follows: 

2 2 2= ( ) ( ) +( )i i ix x y y z z  (4.1) 

where  , ,i i ix y z  are the coordinate of the estimated centroid position and , ,x y z  are the coordinate of 

centroid position from manual measurements. The average relative error is defined as: 

1

2 2 2

n

i
i

n x y z
 

(4.2) 

 

By conducting measurements for five samples, the manual measurement of the centroid point, 
estimation of the centroid position by the proposed method were recorded. For each sample, the 
estimation of the centroid position was calculated by ten times. The results are presented in Table 
3. From [7], the proposed had achieved higher error than the traditional damage localization 
method (around 5 mm). However, the traditional damage localization approach costs a few hours 
in scanning and around 2000 s for registration. Therefore, the proposed method represents a 

much higher efficiency than the traditional method. The resolution of the depth sensor impacts the 
accuracy of the results strongly. High-accuracy 3D depth sensor (such as 2540*1600) can be 
easily adapted in this study to acquire a lower error of the damage area localization, which will be 
revealed in the future work. 

 
 

#  Manual Average estimation Average speed localization average 
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measurement 
(cm) 

by our method 
(cm) 

by our 
method(s) 

error (cm) relative error 
(%) 

1 (8.2, 2.2, 20.1) (8.8, 2.4, 20.8) 1.45 0.943 4.322 

2 (20.6, 6.8, 20.7) (19.2, 6.0, 22.2) 1.48 2.202 7.344 

3 (10.2, 4.2, 23.2) (12.2, 4.8, 25.2) 1.42 2.891 11.253 

4 (16.3, 2.3, 33.2) (16.5, 2.3, 35.2) 1.48 2.010 5.424 

5 (10.4, 20.2, 18.8) (11.4, 21.8, 19.8) 1.47 2.135 7.244 

 
Table 3: Results of experiments for the 3D localization. 

5 CONCLUSION 

Remanufacturing/repairing has been considered a green manufacturing strategy since it reduces 

cost, energy, material consumption and air pollution significantly compared to traditional 
manufacturing. Damage detection is the primary step in remanufacturing to make the decision of a 
remanufacturing strategy. However, the current damage detection method relies heavily on 
manual operations which is time-consuming. The motivation of this study is developing a novel 
damage detection approach, which performs damage classification and 3D localization 
simultaneously.   

In order to address these problems, this paper proposes an efficient deep learning-based 
damage detection and localization method. In the first step, the RGB image and depth image are 
acquired by a depth camera. Then, training data and validation data are collected to train the 
Mask-RCNN-based model to obtain optimized weight. The RGB image acquired processed in the 
damage recognition and segmentation algorithm, providing damage segments with recognized 

damage types.  In the last, the 3D position of the damage is determined by the integration of 
damage segments and a point cloud from the depth data. 

The accuracy of the damage detection can be improved by increasing the training data size. 
And, the error of damage localization can be reduced by implementing a high-accuracy depth 
sensor, which will be the focus of future work.  

The current remanufacturing/repair industry relies on visual inspection to determine the 
damage type, damage location and damage degree to schedule the process plans. The study has 
potentials to perform damage detection to output the damage type, and location. In the future 
work, a systematic method to determine the damage degree can be investigated. 
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