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Abstract. Layered manufacturing processes operate by building the part in layers, or slices.
The layer thickness is controlled to trading off between part accuracy and fabrication time.
Several adaptive slicing approaches have been proposed to reduce the printing time while
improving the accuracy. In this paper, a novel adaptive slicing algorithm based on slice
contour reconstruction is presented. This approach can be adapted for standard additive
manufacturing machines because it does not rely upon using multiple distinct values of layer
thickness along the build direction. A simple geometric engine allows our approach to be
adapted to existing machines. Our contour reconstruction algorithm, based on Medial axis
computation, leads to 30%-50% reduction on volumetric deviation and distance deviation
between the original part surface and the deposited part surface. Alternatively, for a given
user-specified tolerance, our approach allows increases of layer thickness by over 20%, result-
ing is commensurate savings in build-time.
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1 INTRODUCTION

This paper addresses the problem of reducing build times in Layered Manufacturing (LM) technologies in
which 3D parts are constructed by depositing a series of planar layers. Current techniques can reduce the
manufacturing lead time in such applications by 30-50 percent [9], but there is much demand for speeding
up LM. An attractive property of LM is that it is relatively independent of model geometry complexity; this
discriminates it from most traditional manufacturing processes.

Most commercial LM systems use a multi-stage processing pipeline [9]: 3D modeling, Data conversion,
Pre-processing, Model slicing, Part deposition and Post-processing. The 3D model of the mechanical product
is created by a CAD system and converted into a tessellated format (STL). The tessellated model is often
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Figure 1: Data process pipeline in Layered Manufacturing

preprocessed via a set of operations, i.e. translation, rotation, and support and infill structure generation. The
processed model is then sliced by intersecting with a series of horizontal planes to get a set of layers bounded
by contours, which are closed polygons. The spacing between successive planes denotes the slice thickness
and the solid between them is called a slice. Finally, the printing head fabricates each layer by traversing along
the computed scanning path. The extra materials, such as the support structure, are removed from the part
in the Post-processing stage.

The quality of the prototype is determined by several key process variables including the part orientation, the
layer thickness, the deposition speed and environment variables such as temperature and humidity variations.
The part (and process) quality may be measured in terms of the part strength, dimensional accuracy, surface
finish, build time or the material utilization. To achieve higher part quality, the four most common issues
addressed by researchers include [13]: (i) optimal part orientation, (ii) slicing strategy, (iii) process parameter
optimization, (iv) post-treatment. The determination of the slice thickness is a key parameter involving the
trade-off between part accuracy and deposition time. In particular, due to stair-step (or staircase) errors,
smaller slice thickness leads to lower surface roughness but requires at higher build time. Therefore, some
researchers have explored methods for Adaptive Slicing, in which they allow for using layers of different
slice thickness at different heights along the build direction. However, a big issue with this approach is that
practically no existing RP machine provides this option. In this paper, we explore an approach for improving
the layer accuracy even when layer thickness remains constant over the build.

The rest of the paper is organized as follows. Section two reviews different categories of adaptive slicing
algorithms. Section 3 and Section 4 present present and initial and an improved improved algorithm using
adaptive slice profiles. Case studies illustrating the effectiveness of the improved algorithm over the traditional
one are presented. Finally, some remarks and future research challenges are discussed in Section 5.

2 LITERATURE REVIEW

Most commercial 3D printers implement the slicing process based on planar intersections of the faceted CAD
model in STL format, which is computationally robust and efficient to implement. The slice at each layer
is approximated by extruding the cross-section by a distance equal to the layer thickness along the build
direction. Several categories of adaptive slicing algorithms have been proposed for the purpose of achieving
higher accuracy and/or lowering deposition time [24]. Model slicing can be carried out on tessellated models,
analytical part shapes, and even on point cloud data. Before we look into the details of these algorithms,
several key approaches to measure part accuracy are presented.

2.1 Error Measurements

To measure the deviation or alternatively error between the deposited part surface and the original part surface
at each slice height, there are several commonly used measures: volumetric deviation[19], cusp height[11],
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Figure 2: Staircase effect and Cusp height

Figure 3: Adaptive slicing categories based on different criteria

surface roughness[25], area deviation[31], circumference difference and gravity deviation[21]. Among these,
the first three approaches are most popular in adaptive slicing.

Intuitively, the volumetric error is defined as the volume difference between the built-up part and the original
CAD model. This error can be computed for any layer, and summed over the entire part. Eqn. (1), which
accounts for the overbuilt as well as the under-built regions, give an approach to calculate volume difference.
Here VO and VP denote volume of the original CAD part and the fabricated part respectively. Kumar and
Choudhury [19] explored an algorithm to calculate the volume deviation between a CAD model and built-up
part in five axis laminated object manufacturing. They concluded that reduction on volume deviation largely
improves feature recognition.

∆′
V = (VO ∪ VP )− (VO ∩ VP ) (1)

In engineering practice, roughness is a traditional measure for surface quality. Mechanical (using touch
probes) or optical profilometers (using projected light) are commonly used to measure it. Roughness was first
used for evaluating LM part by Reeves and Cobb [25] to improve the surface accuracy in Stereo-Lithography
Apparatus (SLA). In the context of planning, a geometric definition is useful. Cusp height is the error associated
to the staircase effect, originally described by Dolenc and Makela [11] . In Fig. 2, suppose that the build
direction is V parallel to the Z axis. Given a point on the curved surface or tessellated surface, the cusp height
error is given by C = t ∗ cosθ, where θ =< V,N >, N is the normal vector to the part surface and t is the
layer thickness. However, when the normal N is perpendicular to the slice level plane, this expression becomes
invalid; in this case, the horizontal distance on the slicing plane is used as a substitute.
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2.2 Adaptive Slicing

The total deposition time for a part increases approximately linearly with the number of slices for a given part
orientation. Therefore, using different layer thicknesses at different heights along the build direction has been
studied by several researchers to achieve a good compromise between part accuracy and deposition efficiency.
These algorithms are classified into different categories from different points of view (see Fig. 3). We provide
a brief discussion of the relevant works by categorizing them based on the type of input model format: slicing
of analytical models, tessellated models and point cloud data.

2.2.1 Slicing of tessellated models

Dolenc and Makela [11] first introduced the notion of an idealized cusp height for finding the best slice
thickness for a given tessellated model. They calculated the layer thickness required to satisfy surface tolerance
(δ) defined by maximum cusp height (Cmax) at each layer. Specifically, denote ~nz as the vertical component
of normal vector at a given point pi within the layer. The upper bound of layer thickness is obtained by
Eqn.(2):

tpi = min{tmax, Cmax/ ~nz} (2)

where tmax is the maximum available layer thickness of the machine. The optimal layer thickness for a slice
is determined by a set of discrete points P = {pi, i = 0..n} along the contour.

toptimal = max{tmin,min{tpi}} (3)

where tmin is the minimum available layer thickness in the RP machine. The determination of thickness for
each layer is implemented iteratively from bottom to top. Sabourin et al. [27] refined this algorithm and
developed their slicing algorithm by first cutting the model into slabs of the maximum layer thickness. Each
slab is then divided (if necessary) into an integer number of thinner slabs whose thickness is determined by
measuring cusp height using the same formulation as in [11]. The model’s finer features were preserved by
using thinner slices in regions of high curvature.

The methods above output the thickness for each layer based on worst geometry error to meet the tolerance
criteria. Later, Sabourin et al. [26] proposed a region-based adaptive slicing algorithm that applies two levels
of thickness inside a slice. They developed a particular RP system to support filling the interior regions quickly
with thicker layers while building the exterior regions slowly with thinner layer. An average 50 percent reduction
in build time was achieved without reducing the part surface quality.

Justin and Jan [30] also looked into the local adaptive slicing algorithm where a set of different layer
thickness values may be used in each layer. Their algorithm first identified peak features, based on which the
tessellated model is sliced into uniform thick slabs of the maximum available thickness. Then, according to the
unbuilt geometry in each slab, a number of thinner layers are computed. Similar to [26], they implemented the
strategy on a modified commercial machine (a StratasysTM FDM 1600) using a custom software interface. In
their case study, a precise comparison among uniform slicing, conventional adaptive slicing and the proposed
local adaptive slicing algorithm showed up to 33 percent time-saving at a given level of surface tolerance.

2.2.2 Slicing on analytical models

Direct slicing, or Slicing of the analytical Solid/Surface CAD model was proposed by several researchers. The
claimed advantages of this approach include preservation of the geometric and topological correctness, higher
model accuracy, reduction in the the preprocessing time, and smaller file sizes. Accurate CAD models can
be represented by Constructive Solid Geometry representation (CSG) or Boundary representation (BRep), and
the model surfaces may be simple implicit surfaces or complex curved ones, with the latter being described
via B-Splines or Non-Uniform Rational B-spline Surfaces (NURBS).
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Zhao and Luc [31] adopted direct slicing on the solid model (CSG), determining the layer thickness based
on measuring the Area deviation ratio defined by two consecutive layers; see Eqn. (4). The model is divided
into blocks and the layer thickness is calculated iteratively in each block by considering the maximum area
deviation.

| (Ai −A
′
i)

Ai
| < δ (4)

where Ai and A′
i are areas of two adjacent cross-sections, and δ is the tolerance defined as maximum area

deviation.
Suh and Wozny [29] proposed an adaptive slicing approach similar to [31], but based on BRep. For each

block, each iteration considers a dense-enough set of sample points from current height contour and calculates
the layer thickness by Eqn. (5) for upward facets and by Eqn. (6) for downward facets.

d = −ρsinθ +
√
ρ2cos2θ − 2ρδ − δ2 (5)

d =

{
ρcosθ −

√
ρ2cos2θ − 2δρ− ρ2 ρ2cos2θ − 2δρ− ρ2 > 0

ρcosθ otherwise
(6)

where ρ denotes the radius of sphere that approximates the curvature at surface point, θ is the angle
between horizontal plane and the facet containing the point, and δ is user-defined surface tolerance.

In actual built parts, the side walls of deposited layers are not absolutely vertical. This has some implications
on methods to improve the surface accuracy. Hope et al. [15] adopted sloping build edge to better match
the shape of the part surface; they ensure C0 continuity at the surface, thereby reducing the staircase effect.
They developed the TruSurf system (a kind of SLA system) for depositing sloping side edges. The input model
is represented by NURBS surfaces. In their implementation, the cusp height error is measured on a set of
points sampled from the top slicing plane, the bottom slicing plane and the middle plane. A more recent work
by Huang et al.[16] proposed adaptive slicing algorithm using curved built edges. Curved and sloping build
edges require higher degree of freedom in deposition head control, and are not commonly seen in commercial
machines.

2.2.3 Slicing on the point cloud

There are some methods where the point cloud is the only input used to fabricate the 3D prototype. Since
these approaches are directly related to our work, we merely reference the works of Szu-Shen [7] and Javidrad
et al. [17] here for completeness.

2.2.4 Our contribution

In most commercial machines, the nozzle diameter determines the slice thickness, e.g. in the FDM-1650
system from Stratasys. As far as we know, commercial deposition based RP systems currently do not support
deposition scheme with adaptive layer thickness. Meanwhile, to implement sloping or curved layer surface
deposition, more axes of control, namely four or more degrees of freedom, are required. This capability is
also missing in most state-of-the-art machines. Computationally, almost all the slicing algorithms require
calculations of error based on dense sampling points, which makes the layer thickness calculation inefficient.

This paper presents a new adaptive slicing algorithm for tessellated models. Our method does not rely
upon varying the slice thickness (although it can be used in that context also), and is therefore compatible
with most existing RP machines. For generality, the proposed adaptive slicing algorithm measures error in
terms of real volumetric deviation and maximum horizontal distance error. We use well-known, robust, and
efficient computational geometric techniques. In addition, our algorithm operates on accurate tessellated CAD
model and therefore every slice takes the full mesh information into consideration.
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3 THE PROPOSED APPROACH

Commercial RP machines use the slice contour at the nominal height of the model to construct the next
layer. Local geometry variations and machine specifications dictate the magnitude of layer thickness. In our
proposed scheme, for each slice, we proceed to search an alternative contour based on the geometry of the
zone between the top and bottom planes. The contour is computed to yield an error no worse than the
traditional strategy. The efficacy of this approach is first demonstrated by selecting an actual contour at an
appropriately chosen height between the heights of the bottom and top of the slice. Next, a more general
strategy is introduced, which computes a contour by considering a silhouette of the slice. This approach is
presented in subsection 3.3. The part orientation has distinct impact on the part accuracy and deposition
time – however, our approach is effective independent of the build direction. Therefore we shall assume in the
following that the ideal part orientation has already been determined based on appropriate criteria [22] , e.g.
minimum support volume, minimum area of supported surface, or avoiding support on important features.

3.1 Validation Model

To verify the feasibility, we measure the volumetric error, from the tessellated model relative to a square-
edge layered geometry, to search for the optimal height. In objective function (Eqn. 7), VO and VE are the
geometry volume of the original slice and the extruded slice respectively, where the volume of extruded slice
is the function of height h ∈ [hlower, hupper], so is the volume deviation error ∆V .

min ∆V (h) = VO ∪ VE(h)− VO ∩ VE(h)

s.t.hlower ≤ h ≤ hupper
(7)

The pre-experiment is done in the commercial CAD software, CATIATM , which supports robust boolean
operation and accurate mess measurement. Take a Pikachu model for instance, Fig.4(b) presents the original
slice geometry and the extruded slice geometry taken from particular height of model in Fig.4(a). By Boolean
operation on these two slices, the corresponding volume deviation is calculated via mass measurement tool.
Furthermore, consider there is no guarantee on the part shape, the objective function is non-trivially non-
convex and discontinuous. Therefore, the Simulated Annealing searching algorithm embedded in the CATIA
optimizer is selected. Two examples, respectively from height range [5mm, 6mm] and [8mm, 9mm], illustrate
the volume deviation along the height. The result seems the volume deviation is convex relative to height
in both common cases, which by no means gives some implications: by simply replacing the lower cross-
section curve by a contour at height between the layer, the volumetric error will be reduced by up to 50%.
Consequently, under the same tolerance requirement, thicker layer thickness can be adopted and deposition
time is significantly reduced. However, the optimizer is run with high complexity to converge, more than
1.5 min for one common slice. Another technical issue is when the slice is composed of multiple loops, the
extrusion operation and Boolean operation require special handling, which further obstruct its practicality.

3.2 Definitions

Before we further explore alternative scheme where the entire contour is reconstructed from the slice geometry,
some important definitions are given as the technological support.

3.2.1 Silhouette edge

In computational graphics, the edge incident to two facets that are front-facing and back-facing with respect
to the viewing direction is defined as Silhouette. If Eqn.8 holds for two neighboring facets with normal ~n1 and
~n2, their common edge is silhouette edge with respect to viewers.

dot( ~eyeV ec, ~n1) ∗ dot( ~eyeV ec, ~n2) < 0 (8)
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(a) Pikachu model (b) The original and extruded slice

Figure 4: The pre-experiment model and slice

(a) h ∈ (5mm, 6mm) (b) h ∈ (8mm, 9mm)

Figure 5: Volume deviation ∆V (h)
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(a) slice mesh (b) projection view

Figure 6: A 3D slice mesh

If we look at the slice mesh (Fig.6(a)) from the direction perpendicular to the cutting plane, namely the build
direction, the outermost and innermost boundary are composed of full or partial silhouette edges, as well as
full or partial edges on the two contour curves. As can been seen in Fig.6(b), the upper and lower contour
curves may intersect with each other at some places. Furthermore, silhouette edges within the layer may also
intersect two contour curves.

3.2.2 Centerline

For the purpose of computing distance error, We focus on the two-dimensional planar polygonal domain, in
the shape of strip, formed by the union of the projection of all or partial faces that compose the slice mesh
surface. To minimize the horizontal distance between the vertical-walled surface and the original surface, we
wish to find the "centerline" of the polygonal strip. Therefore, Medial axis and straight skeletons are two
candidate schemes.

The Medial axis (MA) was introduced first by Bium[5] in 1967. Refer to Fig.7(a), consider a subset S of
points in the n-dimensional Euclidean space which is bounded by planar curve C. An open ball inside C not
contained in any other open ball inside C is denoted as the maximum ball. The MA of S is defined as the
locus of centers of its maximum balls. For a polygon, the medial axis edges are either straight segments or
parabolic curves. As for accurate computation, Lee [20] developed an O(nlogn) algorithm to generate MA by
computing the Voronoi diagram of a set of line segments making up a simple polygon. Aichholzer et al. [1]
extended the domain to planar shapes bounded by polynomial spline curves. No stable and efficient algorithm
is known for arbitrarily non-simple polygons. The straight skeleton (SS) is another kind of representation for
the topological skeleton which is composed exclusively of straight segments. For instance, Fig.7(b) shows
the straight skeleton of non-convex polygon. It was first defined for simple polygons by Aichholzer et al.
[2] : consider a continuous shrinking process where the edges of the polygon are moved inwards parallel to
themselves at a constant rate. The locus of the vertices of the propagating wave-front composes the straight
skeleton. In the straight skeleton calculation, Aichholzer et al. [2] also provided an O(n2logn) algorithm
where n is the number of vertices on an arbitrary simple polygon. Aichholzer and Aurenhammer [3] extended
the previous work to polygons with holes. Their algorithm was based on triangulation and ran in O(n3logn)
for the worst case. Cheng and Vigneron proposed an algorithm with O(n

√
nlog2n) expected time complexity

for a non-degenerate polygon with holes, which unfortunately is too complicated to implement.
In the straight skeleton scheme, regardless of its high computation complexity and instability, the bisectors

as the components are not equidistant to its defining edges, but to the supporting lines. In other words, the
straight skeleton might not be located at the appropriate center of the polygon. Therefore, the medial axis
scheme is more appropriate in our application. However, the precise computation of medial axis is numerical
unstable and furthermore, contains parabolic segments. Consequently, we adopt an approximate approach of
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(a) Medial axis of Curve C (b) Straight skeleton

Figure 7: Two candidate schemes of centerline

(a) (b) (c) (d)

Figure 8: Voronoi vertices converge to Medial axis while sampling density increases

computing the Medial axis via the Voronoi diagram of a sampling of points from boundaries.

3.2.3 Medial axis approximation by Voronoi diagram

Voronoi diagram is a planar partition scheme with respect to a set of sites. Consider a set of n point sites
P = {p1, p2, ..., pn}, each point pi is associated with a unique region called Voronoi cell V or(pi). Voronoi
vertex denotes the point equidistant to at least three sites in P and Voronoi edge is the set of points equidistant
to two sites. All the Voronoi vertices, Voronoi edges as well as Voronoi cells compose the Voronoi diagram
or graph of P , denoted as V or(P ). There exist three paradigms of Voronoi diagram construction algorithms,
including divide-and-conquer algorithm by Shamos and Hoey [28], randomized incremental algorithm by Guibas
and Knuth [14] and line sweep algorithms by Fortune [12]. These algorithms are quite efficient to run in
O(nlogn) time with O(n) space.

The Medial axis can be approximated by extracting Voronoi edges from Voronoi diagram. Brandt [6]
investigated the convergence of Voronoi diagram to Medial axis skeleton and proved that as the sampling
density increases, the subset of Voronoi vertices converges to the Medial axis. See the Fig.8 for demonstration.
Therefore, to compute the Medial axis skeleton, as the centerline for a planar strip polygon in our case, the
Voronoi edges and Voronoi vertices inside the shape are supposed to be extracted to form a new contour.
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Figure 9: Algorithm Flowchart

3.3 Contour Reconstruction Algorithm

In our algorithm, we use the STL format as the input and measure both volume deviation and maximum
horizontal deviation to evaluate its accuracy improvement. Without loss of generality, we shall use a scaled-
up layer thickness to illustrate the algorithm. Before we process the model, the data in the STL file will be
converted to produce a compact half-edge data structure[23]. The classical data structure provides us necessary
topological information and simplifies geometry operation complexity. Our proposed adaptive slicing algorithm
is outlined in Fig.9. Briefly, given an input CAD model and a pre-selected layer thickness t, the model is then
sliced from bottom to top iteratively. For each slice, the 2D outermost and innermost boundaries, termed as
boundary pair, are computed after projecting 3D mesh surface onto the horizontal plane. The Medial axis
skeleton is finally extracted from the Voronoi graph of sampling points from the computed boundary pair.

A benchmark part, the Stanford bunny model in Fig.10, is used to illustrate the key ideas. The uniform
slicing stage is the trivial intersection operation and by Euler’s formula, computing the intersection curves and
updating the slice mesh information can be done in O(n) where n is the number of vertices. The slice meshes
at several height are shown in Fig.11.

1) boundary computation
Each slice layer may produce one or more boundary pairs, referring to the ear position in Fig.11. Assume

a non-degenerate case where each layer contains one or more separate sub-regions, namely, each sub-slice do
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Figure 10: The Stanford bunny model

not intersect other sub-slices at the same height. Projection of 3D slices onto the horizontal plane might
produce intersection points and thus destroy the original connectivity with respect to geometry complexity.
All such intersections can be discovered by standard range searching techniques [10] in O(nlogn + Ilogn),
where I is the output size. After updating the data structure for 2D slice mesh in constant time, the boundary
pairs can be computed by traversing and identifying all the silhouette edges. In our implementation, we skip
constructing and updating half-edge data structure for entire 3D and 2D slice mesh.

Instead, we carry out two construction stages: (i) traversing on the upper and lower profiles. Specifically,
for a mesh instance in Fig.12(a), the upper and lower profiles (Fig.13(a)) are the intersection curves between
the two (bottom and top) slicing planes and the CAD model. The output from this stage is denoted as the
initial boundary pair (Fig.13(b)). (ii) traversing and update the boundary pair by identifying silhouette edges
within the layer. All the silhouette edges falling inside two slicing planes are identified as the candidates edges
(see the green edges in the Fig.14(a)) to update the boundaries. We start from an extreme vertex among
these on the initial boundary pair and silhouette edges, i.e. leftmost vertex , and traverse in counterclockwise
order along the loop by moving to its end vertex that is incident to the "most right hand side" edge incident
to current vertex (see the Fig.14(b)). This process end at backing to the starting vertex and output the final
outermost boundary. Once we got the outermost boundary, the innermost boundary could be identified as
well. The well-computed boundary pair corresponding to the slice mesh instance is given in Fig.12(b).

2) Medial axis contour extraction
Each boundary pair forms a polygonal domain with a hole. As analyzed in the section 3.2.3, to get a good

approximation of the Medial axis skeleton, dense sampling point are uniformly taken from the boundary pair by
setting the spacing as the minimum length among all the edges. In our implementation, the Voronoi diagram
is constructed via a robust O(nlogn) scheme provided by CGAL[18], where the points are inserted one by one
and the Voronoi graph is updated incrementally. The corresponding Voronoi diagram of the previous instance
(Fig.12(b)) is presented in Fig.15.

Denote P as the polygonal domain and Ps is the sampling points set from the boundaries where s is
the sampling spacing. Make MAs denotes the Medial axis skeleton extracted from V or(Ps), Voronoi graph
constructed based on the sampling points. DT (Ps) is the corresponding Delaunay graph of V or(Ps).

Observation 3.3.1 . All the Voronoi edges dual to Delaunay edges that are incident to two distinct vertices
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Figure 11: Slice meshes at several height

(a) Top view on 3D slice mesh (b) The boundary pair

Figure 12: The slice instance and its boundary pair

(a) Before the 1st traverse (b) After the 1st traverse

Figure 13: Before and after the first traversing stage
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(a) Before the 2nd traverse (b) After the 2nd traverse

Figure 14: Before and after the second traversing stage

are identified as the components of Medial axis skeleton. Therefore if dual(ei) ∈ DT (Ps) has two endpoints
located at different boundary loop, we conclude ei ∈MAs where ei ∈ V or(Ps).

By observation 3.3.1, Fig.16 is the Medial axis skeleton extracted from the above Voronoi graph. When
the bounded edges are quite close, the aliasing effect impairs quality of the approximate skeleton locally.
Therefore, A simple fairing process is carried out by adding more sampling points locally, where the lower the
local smoothness is, the denser sampling strategy is taken. An example in Fig.17 illustrates a partial skeleton
before and after the simple fairing process.

3.4 Error Computation

Both volumetric error and horizontal distance error can be measured theoretically. The volume deviation
(Eqn.(1)) is calculated by the CAD software. And the distance error is measured from all the points on the
3D slice mesh to the extruded surface. All the vertices on the original 3D slice mesh are projected onto the
horizontal plane and bounded by the boundary pair. Note that the maximum distance deviation must occur
among the points located on the boundaries. And the distance from a point to the contour is essentially the
distance from a point to a set of connected segments. Furthermore, since the Voronoi diagram provides a
planar partition scheme where each sampling point on the boundaries is associated to a unique Voronoi cell.
This promotes the efficiency on computing the distance error for the Medial axis contour. Generally, There
are two cases, contributing points and non-contributing points, to be discussed.

1) Contributing points
The contributing points refer to sampling points associated to a unique (bounded or unbounded) Voronoi

cell that contributes to the MA contour. The contributing points achieve its minimum distance error at its
Voronoi edges adjacent to the new contour. In Fig.18, points P1, P2, P3, P4 and P5 are sample points on the
boundaries. The Voronoi edges on the new contour are drawn by red lines and others are dashed. The dashed
blue lines are corresponding Delaunay edges .

Denote dist(Pi,MAs) as the distance from a sampling point Pi to the MA contour. Since the Voronoi
cell V or(P1) is associated to P1 and has Voronoi edges AB and BC on the MA contour. When Delaunay
egdes P1P2 and P1P3 intersect Voronoi edges AB and BC, we have dist(P1,MAs) = min{ 12P1P2,

1
2P1P3}.

And when one or both of P1P2 and P1P3 do not intersect their dual Voronoi edges, either dist(P1,MAs) =
min{P1A,

1
2P1P3} (equivalently dist(P1,MAs) = min{P1C,

1
2P1P2} or dist(P1,MAs) = min{P1A,P1B,P1C}

holds. Since any edge on the MA contour is adjacent to two Voronoi cell, for each contributing point, we
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(a) Partial Voronoi graph (b) Zoomed Voronoi graph

Figure 15: Voronoi diagram

Figure 16: The Medial axis skeleton

can find at least one sample point equidistant or less distant to the MA contour as it. Therefore, minimizing
maximum distance deviation is significantly guaranteed by the proposed Medial axis approximation strategy.

2) Non-contributing points
Some sampling points on the boundaries are not associated with a Voronoi cell that incident to any edge

on the MA contour. To compute the corresponding distance error, a traversal to its neighboring Voronoi cells
is necessary.

For instance illustrated in Fig.19, points P1, .., P5 are sample points on the boundaries. the Voronoi
cell V or(P1) doesn’t contribute to the MA contour. Therefore, the edges accounting for P ′

1s distance er-
ror are Voronoi edges adjacent to the contour and on the Voronoi cells V or(P3) and V or(P5). We have
dist(P1,MAs) = min{P1A,P1B,P1C,P1D} for this example. The non-contributing might produce a higher
error than all the contributing points and hence dominate the surface tolerance. This requires further refine-
ment on the MA contour.

The orange stippled line is the perpendicular bisector of P1P2, and it intersects Voronoi edge BF at points
I. Note that P2, P3 and P5 form a Delaunay triangle whose circumscribed circle does not contain P1. Since
the reflex vertex P1 is located between V or(P3) and V or(p5), dist(P1,MAs) = P1B holds in this case. A
basic refinement strategy is to move vertex B to the location of intersection point I. Notice that only three
Voronoi cells, namely V or(P2), V or(P3) and V or(P5), are influenced. Consider the distance of the sampling
points on the boundaries to the modified contour. We get two observations as following:

Observation 3.4.1 . dist(P3,MA′
s) < dist(P3,MAs) and dist(P5,MA′

s) < dist(P5,MAs) hold, where
MA′

s is the refined contour.
Proof. When P2P3 intersects with Voronoi edge AB (or ∠P3AB < π

2 ), As B moves to I, dist(P3,MA′
s)

is equal to the distance from P3 to AI. Since ∠P3AI < ∠P3AB < π
2 , dist(P3,MA′

s) < dist(P3,MAs) hold.
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(a) Before fairing (b) After fairing

Figure 17: Partial Medial axis skeleton

Figure 18: Contributing points instance

Figure 19: Non-contributing points instance
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On the contrary, when P2P3 does not intersect with Voronoi edge AB (or ∠P3AB > π
2 ), dist(P3,MA′

s) =
min{AP3, IP3} < dist(P3,MAs). The same logic applies for point P5.

Observation 3.4.2 . The maximum distance deviation decreases since dist(P2,MAs) < dist(P2,MA′
s) <

dist(P1,MA′
s) < dist(P1,MAs) holds.

Proof. For point P2, we have dist(P2,MAs) = min{ 12P2P4,
1
2P2P3,

1
2P2P5} when the Delaunay edges

EA,AB and BC intersect with corresponding Voronoi edges. If dist(P2,MAs) is achieved at edge AB, after
movement, P2P3 and P2P5 might no longer intersect with AI and CI respectively. Thus, dist(P2,MA′

s) =
min{ 12P2P4, P2A,P2I, P2C} > dist(P2,MAS). Otherwise, dist(P2,MA′

S) = dist(P2,MAS). For reflex
point P1, since I is closer to Voronoi vertex F in V or(P1), we get dist(P1,MA′

s) = P1I < P1B. In light of
the fact P1I = P2I, we arrive at dist(P2,MA) < dist(P2,MA′

s) < dist(P1,MA′
s) < dist(P1,MAs).

Notice that as long as dist(P2,MAs) is achieved at Voronoi edge EA, vertex B is allowed to move even
closer to P1 along the edge BF . And the maximum distance error can be reduced more. This gives us a basis
for our refinement strategy as in Fig.20. Denote Θ as the maximum distance error among all the contributing
points. The red points are non-contributing points, among which P1, P2 and P3 are the endpoints on the
edges. To define the modification range on the original MA contour, the two nearest contributing points P4

and P5 on both sides are located first. Since the contour is a closed profile, two Voronoi cells V or(P4) and
V or(P5) must be incident to the common Voronoi vertex S. On the exact Medial axis tree, P1 and P3 are
two leave nodes connecting to the truck by vertex S.

In Fig.20, L1 and L2 are two perpendicular lines passing through Voronoi vertex A. The space between
L1 and L2 accounts for the distance error of P3. R1 and R2 accounts for the distance error of Q3 and Q4.
The remaining non-contributing points are accounted by the Voronoi vertex S. Therefore, it suffices to limit
the refinement range on the Voronoi edges of V or(P4) and V or(P5). Voronoi vertices A and B define the
refinement range. By drawing circles of radius Θ centered at P1 and P3, we obtain intersection points C and
D between SP3/SP1 and corresponding circles. As a feasible scheme, the refinement edges AB, CD, DB
replace the original Voronoi edges bounded by A and B.

The above strategy also needs to take the influence of sample points P6 and P7 on the opposite side into
consideration, which means we need to ensure their distance error are controlled by the un-modified edges
on the contour. Otherwise, the strategy cannot guarantee error reduction. Unfortunately, depending on the
complexity of the neighboring geometry, and in particular when the polygonal domain has higher genus, this
approach does not minimize the error in same cases. Therefore, in our implementation this variation was not
implemented, and the exact error is measured based on the basic MA contour.

3.5 Complexity Analysis

Assume n is the number of vertices on the CAD model. As noted above, the time complexity of the uniform
slicing stage is O(nlogn). And for a slice, the complexity of projecting and updating the mesh topology is
O(nlogn+ Ilogn), where I is the size of intersection points. Construction the MA skeleton is dominated by
Voronoi diagram computation. Denote the minimum sample spacing as δ and the longest edge on the boundary
pair as lmax. The size of sampling points is bounded by lmax

δ n. Thus, Voronoi diagram could be constructed
in O( lmax

δ nlogn) and composed of O( lmax

δ n) Voronoi cells. By Eular’s formula, to traverse Voronoi graph to
extract Medial axis contour consumes linear time to number of Voronoi edges, namely O( lmax

δ n).
In conclusion, the overall algorithm time complexity is O(ht

lmax

δ nlogn) for a model of height h and layer
thickness t.

4 CASE STUDY

To evaluate the improvement in terms of part accuracy and deposition efficiency, a Stanford bunny model is
taken as the benchmark. Several key parameters are given: Height (5cm), Length (5.21cm), Width (3.97cm),
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(a) (b)

Figure 20: A feasible refinement scheme for more general cases

model components (5036 vertices, 30204 edges, and 10068 faces), and total volume (28.148cm3), shown in
Fig.21 . An available FDM machine (UP Plus 2) provides layer thickness range from 0.15mm to 0.4mm with
step 0.05mm. We firstly adopt the minimum thickness 0.15mm to evaluate part accuracy improvement. The
distance errors of the lower contour and the MA contour at each layer are visualized in the scatter chart in
Fig.22. The traditional strategy presents an average 0.0307cm and maximum 0.160cm distance error while
the MA contour gives an average 0.0178cm and maximum 0.107cm. Hence, average 47.3% distance error
reduction is achieved. Note that there are about 2.1% defect cases (at height around 4.75cm on the model)
where the distance error of the MA contour is not bounded by that of the corresponding lower contour due
to the non-contributing vertices. A bunch of slice samples are taken to verify the volume deviation, shown
in the histogram of Fig.23. Among the slice samples, the volume deviation reduction ranges from 14.3% to
49.1%, 42.4% on average. Intuitively, the slice mesh that contains more vertical faces (opposite to slope faces)
along the build orientation receives less improvement by the contour reconstruction. On the contrary, the MA
contour strategy makes difference in feature recognition improvement, for example, the slices at 2.94cm and
3.15cm.

With the average error reduction more than 40%, we are allowed to use a larger layer thickness under
the MA contour strategy while keeping the accuracy within the tolerance. Therefore, we make the distance
error of 0.15mm under the traditional strategy as the benchmark. In the Fig.24 and Fig.25, the distance
errors for the slice geometry deposited by 0.25mm and 0.2mm, where the slice contours are reconstructed by
the MA contour strategy, are calculated for the entire part. As a result, the MA contour of 0.2mm reduces
the distance error by 24% on average and 0.25mm achieves 8.5% error reduction. With the layer thickness
0.2mm, all layers excluding the 4.4% defect cases, where the further refinement is required, are bounded by
the benchmark. Therefore, we can simply pick the 0.2mm as a feasible thickness. This suffices to reduce the
number of layers from 334 to 250 and hence leads to up to 25% deposition time reduction.

Finally, we simply construct an extruded CAD model (see Fig.26 ) by extruding each contour by layer
thickness. For the purpose of model re-design, a more elegant is to build the new model by the mean of
contour interpolation[4].
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Figure 21: The Stanford bunny model

Figure 22: 2D distance error: Lower vs MA at 0.15mm
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Figure 23: Volume deviation: Lower vs MA at 0.15mm

Figure 24: Distance error: Lower(0.15mm) vs MA 0.25mm
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Figure 25: Distance error: Lower(0.15mm) vs MA 0.20mm

Figure 26: The extruded bunny model
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5 CONCLUSIONS

In this paper, a novel adaptive slicing strategy based on contour reconstruction is implemented based on
traditional uniform slicing system. The approach adopts simple, efficient and robust geometric techniques to
construct new contour for each slice on the model. The results of case studies show the MA contour yields
a more than 40% error reduction while keeping the printing efficiency. Furthermore, it leads to 20%-30%
time reduction by implementing the new contour with the slices of larger layer thickness. The new contour
data, or a new constructed model based on the new contours, can be directly feeding into the LM system for
fabrication. There are several directions for future works. First, In our implementation, we adopt the Voronoi
diagram of sampling points to approximate the Medial axis. A robust and accessible computation scheme for
exact Medial axis computation might improve the accuracy and efficiency further. Secondly, A general and
rigorous refinement scheme in terms of non-contributing vertices is a potential research topic. Finally, by the
shortest path search algorithm in anisotropic regions[8], an optimal contour might be directly searched on the
3D slice mesh surface.

ACKNOWLEDGEMENTS

This research was supported in part by RGC GRF grant 16213519 and the Departments of IEDA, and MAE
in HKUST.

ORCID

Ajay joneja, http://orcid.org/0000-0002-6797-1253
Kai Tang, http://orcid.org/0000-0002-5184-2086

REFERENCES

[1] Aichholzer, O.; Aigner, W.; Aurenhammer, F.; Hackl, T.; Jttler, B.; Rabl, M.: Medial axis computation
for planar freeform shapes. Computer-Aided Design, 41(5), 339–349, 2009. http://doi.org/10.1016/
j.cad.2008.08.008.

[2] Aichholzer, O.; Alberts, D.; Aurenhammer, F.; Grtner, B.: Straight skeletons of simple polygons. In Proc.
4th Internat. Symp. of LIESMARS, 114–124, 1995.

[3] Aichholzer, O.; Aurenhammer, F.: Straight skeletons for general polygonal figures in the plane. In
International Computing and Combinatorics Conference, 117–126. Springer, 1996. http://doi.org/
10.1007/3-540-61332-3_144.

[4] Barequet, G.; Goodrich, M.T.; Levi-Steiner, A.; Steiner, D.: Contour interpolation by straight skeletons.
Graphical Models, 66(4), 245–260, 2004. http://doi.org/10.1016/j.gmod.2004.05.001.

[5] Bium, H.: A transformation for extracting new descriptions of shape. In Symposium on Modeis for the
Perception of Speech and Visua1 Form, 1967.

[6] Brandt, J.W.: Convergence and continuity criteria for discrete approximations of the continuous planar
skeleton. CVGIP: Image Understanding, 59(1), 116–124, 1994. http://doi.org/10.1006/ciun.1994.
1007.

[7] Chen, J.S.S.; Feng, H.Y.: Contour generation for layered manufacturing with reduced part distortion.
The International Journal of Advanced Manufacturing Technology, 53(9), 1103–1113, 2011. http:
//doi.org/10.1007/s00170-010-2886-x.

[8] Cheng, S.W.; Na, H.S.; Vigneron, A.; Wang, Y.: Approximate shortest paths in anisotropic regions.
SIAM Journal on Computing, 38(3), 802–824, 2008. http://doi.org/10.1137/06067777X.

Computer-Aided Design & Applications, 18(6), 2021, 1425-1447
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://orcid.org/0000-0002-6797-1253
http://orcid.org/0000-0002-5184-2086
http://doi.org/10.1016/j.cad.2008.08.008
http://doi.org/10.1016/j.cad.2008.08.008
http://doi.org/10.1007/3-540-61332-3_144
http://doi.org/10.1007/3-540-61332-3_144
http://doi.org/10.1016/j.gmod.2004.05.001
http://doi.org/10.1006/ciun.1994.1007
http://doi.org/10.1006/ciun.1994.1007
http://doi.org/10.1007/s00170-010-2886-x
http://doi.org/10.1007/s00170-010-2886-x
http://doi.org/10.1137/06067777X
http://www.cad-journal.net


1446

[9] Chua, C.K.; Leong, K.F.; Lim, C.S.: Rapid prototyping: principles and applications. World Scientific,
Reading, MA, 2010. http://doi.org/10.1142/6665.

[10] de Berg, M.; Cheong, O.; van Kreveld, M.; Overmars, M.: Computational Geometry: Algorithms and Ap-
plications. Springer Science & Business Media, 2008. http://doi.org/10.1007/978-3-540-77974-2.

[11] Dolenc, A.; Makela, I.: Slicing procedures for layered manufacturing techniques. Computer-Aided Design,
26(2), 119–126, 1994. http://doi.org/10.1016/0010-4485(94)90032-9.

[12] Fortune, S.: A sweepline algorithm for voronoi diagrams. In Proceedings of the second annual symposium
on Computational geometry, 313–322. ACM, 1986. http://doi.org/10.1145/10515.10549.

[13] Galantucci, L.M.; Lavecchia, F.; Percoco, G.: Experimental study aiming to enhance the surface finish
of fused deposition modeled parts. CIRP Annals-Manufacturing Technology, 58(1), 189–192, 2009.
http://doi.org/10.1016/j.cirp.2009.03.071.

[14] Guibas, L.J.; Knuth, D.E.; Sharir, M.: Randomized incremental construction of delaunay and voronoi
diagrams. Algorithmica, 7(1), 381–413, 1992. http://doi.org/10.1007/BF01758770.

[15] Hope, R.J.P., RL; Roth: Adaptive slicing with sloping layer surfaces. Rapid Prototyping Journal, 3(3),
89–98, 1997. http://doi.org/10.1108/13552549710185662.

[16] Huang, B.; Singamneni, S.B.: Curved layer adaptive slicing (clas) for fused deposition modelling. Rapid
Prototyping Journal, 21(4), 354–367, 2015. http://doi.org/10.4028/www.scientific.net/AMM.
446-447.263.

[17] Javidrad, F.; Pourmoayed, A.: Contour curve reconstruction from cloud data for rapid prototyping.
Robotics and Computer-Integrated Manufacturing, 27(2), 397–404, 2011. http://doi.org/10.1016/
j.rcim.2010.08.008.

[18] Karavelas, M.I.: Voronoi diagrams in cgal. In 22nd European Workshop on Computational Geometry
(EWCG 2006), 229–232, 2006.

[19] Kumar, C.; Roy Choudhury, A.: Volume deviation in direct slicing. Rapid Prototyping Journal, 11(3),
174–184, 2005. http://doi.org/10.1108/13552540510601309.

[20] Lee, D.T.: Medial axis transformation of a planar shape. IEEE Transactions on Pattern Analysis and
Machine Intelligence, (4), 363–369, 1982. http://doi.org/10.1109/TPAMI.1982.4767267.

[21] Luo, R.C.; Tzou, J.H.: Implementation of a new adaptive slicing algorithm for the rapid prototyping
manufacturing system. IEEE/ASME Transactions on Mechatronics, 9(3), 593–600, 2004. http://doi.
org/10.1109/TMECH.2004.835332.

[22] Majhi, J.; Janardan, R.; Smid, M.; Gupta, P.: On some geometric optimization problems in layered man-
ufacturing. Computational Geometry, 12, 219–239, 1999. http://doi.org/10.1016/S0925-7721(99)
00002-4.

[23] McGuire, M.: The half-edge data structure, 2000. See http://www.flipcode.com/articles/article
halfedgepf.shtml.

[24] Mohan Pandey, P.; Venkata Reddy, N.; Dhande, S.G.: Slicing procedures in layered manufac-
turing: a review. Rapid prototyping journal, 9(5), 274–288, 2003. http://doi.org/10.1108/
13552540310502185.

[25] Reeves, P.E.; Cobb, R.C.: Reducing the surface deviation of stereolithography using in-process techniques.
Rapid Prototyping Journal, 3(1), 20–31, 1997. http://doi.org/10.1108/13552549710169255.

[26] Sabourin, E.; Houser, S.A.; Helge Bhn, J.: Accurate exterior, fast interior layered manufacturing. Rapid
Prototyping Journal, 3(2), 44–52, 1997. http://doi.org/10.1108/13552549710176662.

[27] Sabourin, S.A., Emmanueland Houser; Helge Bhn, J.: Adaptive slicing using stepwise uniform refinement.
Rapid Prototyping Journal, 2(4), 20–26, 1996. http://doi.org/10.1108/13552549610153370.

Computer-Aided Design & Applications, 18(6), 2021, 1425-1447
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://doi.org/10.1142/6665
http://doi.org/10.1007/978-3-540-77974-2
http://doi.org/10.1016/0010-4485(94)90032-9
http://doi.org/10.1145/10515.10549
http://doi.org/10.1016/j.cirp.2009.03.071
http://doi.org/10.1007/BF01758770
http://doi.org/10.1108/13552549710185662
http://doi.org/10.4028/www.scientific.net/AMM.446-447.263
http://doi.org/10.4028/www.scientific.net/AMM.446-447.263
http://doi.org/10.1016/j.rcim.2010.08.008
http://doi.org/10.1016/j.rcim.2010.08.008
http://doi.org/10.1108/13552540510601309
http://doi.org/10.1109/TPAMI.1982.4767267
http://doi.org/10.1109/TMECH.2004.835332
http://doi.org/10.1109/TMECH.2004.835332
http://doi.org/10.1016/S0925-7721(99)00002-4
http://doi.org/10.1016/S0925-7721(99)00002-4
http://doi.org/10.1108/13552540310502185
http://doi.org/10.1108/13552540310502185
http://doi.org/10.1108/13552549710169255
http://doi.org/10.1108/13552549710176662
http://doi.org/10.1108/13552549610153370
http://www.cad-journal.net


1447

[28] Shamos, M.I.; Hoey, D.: Closest-point problems. In International Computing and Combinatorics Confer-
ence, 151–162. IEEE, 1975. http://doi.org/10.1109/SFCS.1975.8.

[29] Suh, Y.S.; Wozny, M.J.: Adaptive slicing of solid freeform fabrication processes. In Solid Freeform
Fabrication Symposium, 404–411. DTIC Document, 1994.

[30] Tyberg, J.; Helge Bhn, J.: Local adaptive slicing. Rapid Prototyping Journal, 4(3), 118–127, 1998.
http://doi.org/10.1016/S0261-3069(99)00012-6.

[31] Zhao, Z.; Luc, L.: Adaptive direct slicing of the solid model for rapid prototyping. International Journal
of Production Research, 38(1), 69–83, 2000. http://doi.org/10.1080/002075400189581.

Computer-Aided Design & Applications, 18(6), 2021, 1425-1447
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://doi.org/10.1109/SFCS.1975.8
http://doi.org/10.1016/S0261-3069(99)00012-6
http://doi.org/10.1080/002075400189581
http://www.cad-journal.net

	INTRODUCTION
	LITERATURE REVIEW
	Error Measurements
	Adaptive Slicing
	Slicing of tessellated models
	Slicing on analytical models
	Slicing on the point cloud
	Our contribution


	THE PROPOSED APPROACH
	Validation Model
	 Definitions
	Silhouette edge
	Centerline
	Medial axis approximation by Voronoi diagram

	Contour Reconstruction Algorithm
	Error Computation
	Complexity Analysis

	CASE STUDY
	CONCLUSIONS

