
103

A Universal Predictor-Corrector Type Incremental Algorithm
for the Construction of Weighted Straight Skeletons

Based on the Notion of Deforming Polygon

Bar�³ �rhan1

1Arkitech Advanced Construction Technologies, barisirhan@gmail.com

Corresponding author: Bar�³ �rhan, barisirhan@gmail.com

Abstract. A new predictor-corrector type incremental algorithm is proposed for the con-
struction of weighted straight skeletons of 2D general planar polygons of arbitrary complex-
ity based on the notion of deforming polygon. Algorithm is general, sound, simple and easy
to implement. In the proposed algorithm, the raw input provided by the polygon itself is
enough to resolve edge collapse and edge split events. Neither the construction of a kinetic
triangulation nor the computation of a motorcycle graph, or any other means, is required.
Due to its incremental nature, there is always a room in the algorithm for the interactive
construction of the straight skeleton. For example, the edges which start to move at di�erent
times could easily be handled by adjusting the weights manually. The proposed algorithm
is of predictor-corrector type. In the algorithm, the edge collapse and edge split events are
tackled by a completely di�erent novel original approach. In the predictor step, the position
of the vertices is advanced in time by direct integration assuming no event. Then predicted
positions are corrected by using linear interpolation if there are edge collapse or edge split
events within the same increment. In the algorithm edge collapse and edge split events are
detected by, respectively, edge swap and edge penetration. Both edge swap and edge pene-
tration have counterparts in computational solid mechanics. Former statement is motivated
by impenetrability of matter. Whereas, the second statement is motivated by kinematical
constraint posed when two deformable body, or body with itself, come into contact. It simply
states that bodies cannot penetrate into each other during contact. The new algorithm has
been used to construct roof topology starting from a �oor plan of various complexity ranging
from simple convex to highly nonconvex with holes. In order to construct, improve and test
the building blocks of the underlying algorithm, a graphical user interface, Straight Skeleton
Development Kit, has also been developed in parallel by the author using C++ programming
language.

Keywords: weighted straight skeleton, predictor-corrector, incremental, roof modelling, com-
putational solid mechanics
DOI: https://doi.org/10.14733/cadaps.2022.103-131

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://orcid.org/0000-0003-4752-0823
mainto:barisirhan@gmail.com
mailto:barisirhan@gmail.com
http://www.cad-journal.net

104

1 INTRODUCTION

Consider the closed planar polygon given in Figure 1, where its con�guration at di�erent time instances is
depicted. In classical straight skeleton problem, each edge of the polygon moves inwards with a constant unit
velocity in such a way that it remains essentially parallel to itself throughout the shrinking process, which
continues until the polygon collapses down to a segment or a point. The regions swept by the polygon edges
throughout the shrinking process construct faces of the straight skeleton structure of the underlying polygon.
During the shrinking process, polygon topology might change due to edge collapse and edge split events. The
edge collapse event takes place at an instance when at least one edge of the polygon collapses down to a point,
whereas the edge split event comes into play as at least one of the vertices hits an edge or another vertex
of the polygon. Velocity of the vertices involved changes as these events happen and change the topology.
Therefore, these events must be detected and handled properly in order to end up with correct straight skeleton
structure.

Fig. 1 (a) Deforming polygon. (b) Straight skeleton structure

� � ��

� � ��

(a)

edge split event

edge collapse event

(b)

Figure 1: (a) Deforming polygon. (b) Straight skeleton structure.

First algorithm to construct straight skeleton of polygons was appeared in [3]. It is based on wavefront
propagation. In the algorithm, a priority queue with respect to the occurrence time of edge events is constructed
and processed. To determine split events, it is supplemented by a triangulation algorithm. In [23, 10], an
algorithm similar to one given in [3] was presented with a di�erent strategy to handle re�ex vertices. In [4], use
of kinetic triangulation is made to detect edge collapse and edge split events. Events are signaled as soon as a
triangle collapses down to a segment or a point. In case of triangle �ip, however, triangle collapse is not always

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

105

associated with an edge collapse or edge split event. Therefore, edge �ip events must be detected and �ltered
out which brings additional overburden and shadows the simplicity of the underlying idea. Also note that in
the algorithm solution of a quadratic function is required to determine the collapse time of a triangle which
brings additional cost and possible loss of accuracy together. In [27, 25], an approach to eliminate �ip events
based on the Steiner triangulations was proposed and based on this observation a straight skeleton algorithm
for arbitrary planar straight line graphs based on generalized motorcycle graph was presented. This work
was later extended in [17] to construct straight skeletons of positively weighted polygons based on bisector
arrangement.

In [21], the classical algorithm was enhanced by enabling the propagation of the edges at di�erent speeds
and hence the weighted version of the straight skeleton algorithm was emerged. The classical and positively
weighted version of the algorithm are similar. However, there is a price to pay for the additional �exibility
o�ered by weighted version. Due to additional degree of freedom provided, some ambiguities might arise as
the edge collapse event happens. After processing such an event, one might end up with vertices which are
colinear. For a colinear vertex, the set of equations governing its propagation velocity turns out to be linearly
dependent and hence the solution is unde�ned. Therefore, after processing edge collapse events, colinear
vertices must be found and removed from the forefront polygon. However, removing the colinear vertices is
not enough. One has to take another step and decide how the region, line segment, associated with a colinear
vertex will continue its propagation [8, 30]. Note also that both the classical and the weighted version of the
algorithm might su�er from the ambiguities which arise after detecting and processing multiple vertex events
[8, 30, 9]. Before passing note that it has been shown systematically in [8] that weighted straight skeleton has
di�erent geometrical characteristics than its unweighted counterpart.

Motorcycle graph was �rst introduced in [21] to address the essential problems related with re�ex vertices
while constructing the straight skeletons. The relationship between motorcycle graph and construction of
the straight skeletons was �rst exploited in [13]. Later on several straight skeleton algorithms based on the
motorcycle graph have been published [27, 17, 12, 14]. There are also some other algorithms in the literature
for the construction of straight skeletons. In [7], an algorithm for monotone polygons is proposed, whereas in
[2, 19], algorithms for simple rectilinear polygons are presented.

Weighted straight skeleton algorithm has a wide range of application area. It has been used, (i) to construct
roof and terrains [21, 30, 24, 2, 45, 44, 3, 4], (ii) to compute mitered o�set curves [5, 37], (iii) in mathematical
origami and the fold-and-cut problem [43, 16], (iv) for contour interpolation [31], (v) for polygon decomposition
[46], (vi) for digital pathology to improve image segmentation and image analysis [35].

Straight skeleton algorithm has been implemented into several software packages [10, 20, 26]. Of course,
without such a tool at hand it is very unlikely to end up with a reliable straight skeleton algorithm.

In this paper a new predictor-corrector type incremental algorithm for the construction of weighted straight
skeletons is presented. It is organized as follows. Motivation based on the notion of deforming polygon is
given in Section 2, which is followed by the Section 3 where the most striking points of the new algorithm are
highlighted. In Section 4, algorthmic details are explained and some useful examples are presented. Application
of the new algorithm to roof modelling is given in Section 5. Straight Skeleton Development Kit program
developed during the construction of new algorithm is brie�y explained in Section 6 and �nally conclusions are
given in Section 7.

2 MOTIVATION

Computational solid mechanics is a subdiscipline of computational mechanics where the partial di�erential
equations governing the evolution of physical quantities, like linear momentum, energy, mass, etc., are inte-
grated, in space and time, by resorting to vast amount of numerical techniques available [49, 28, 6].

For subsequent developments, we will investigate set of evolution equations for linear momentum which is
governed by a second order hyperbolic partial di�erential equation and has the form

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

106

ρv̇ = ∇ · σ + ρb (1)

where ρ, v, ∇, σ and b are, respectively, mass density, velocity, gradient vector, stress tensor and body
force associated with the material point. Eq. (1) simply states that temporal evolution of linear momentum
at a material point is equal to sum of the net momentum �ux (force acting at the vicinity like contact) and
the source term (force acting at a distance like gravity) associated with the material point. This equation
is called as balance equation for linear momentum, momentum equation or wave equation in the literature
and in general terms it governs the propagation of stress waves in inelastic media. Note that momentum
equation is nothing else but the continuum generalization of Newton's second law of motion, f = ma. By
using constitutive (stress-strain) and kinematical (strain-position) operators [36], momentum equation can be
rewritten in terms of partial derivatives of particle position with respect to space and time.

In computational solid mechanics, Lagrangian description of the motion is generally adapted in order to
track the evolution of physical processes. In Lagrangian framework, the motion of each material particle is
tracked throughout the course of the deformation process and the existence of a motion function of the form

x = φ(X, t) (2)

is postulated. In Eq. (2), x and X are, respectively, the position of a typical material point at initial and
current con�guration of the body. In order to be able to de�ne the deformation of a solid, the motion function
φ must possess some properties. To analyze the deformation locally around the material point, use of the
gradient of the motion function, also called as deformation gradient, is made. It has the following standard
form:

F (X, t) =
∂φ

∂X
= ∇φ (3)

In order to de�ne the solid deformation, the following conditions must hold for F [36]:

FdX 6= 0 ∀ dX 6= 0

FdX = 0 ↔ dX = 0 (4)

From physical standpoint above conditions state that an in�nitesimal material line element with non-zero
length cannot be reduced down to a zero-length line element during deformation. This constraint implies that
F must be non-singular and therefore has non-zero determinant, i.e., detF 6= 0. The volume of a typical
material point at current con�guration is given by the expression

dv = detF dV (5)

where dV is its volume at initial con�guration. For a solid, the volume of the material point must be
positive throughout the course of the deformation process. Therefore, in addition to being nonzero, the
determinant of the deformation gradient must also preserve its sign, i.e.,

detF > 0 (6)

The inequality constraint given in Eq. (6) is also known as the impenetrability of matter. Inability of the
motion function given by Eq. (2) to satisfy this constraint is a clear indication of severe deformations. The
parts of the body experiencing severe deformations does not behave like a solid anymore but a �uid or a gas.
Standard techniques fall short when a solid starts to �ow or a �uid starts to deform. The possible change
of the material state, which could also be called as change in topology, is the driving force behind several

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

107

discretization techniques, like ALE [47, 32], adaptive remeshing [22, 33, 11, 40], adaptive element deletion
[29], coupled SPH-FEM [38, 15, 39] etc. if one insists to stay in the Lagrangian framework throughout the
course of the deformation process.

Predictor-corrector type numerical algorithms are commonly used to solve problems where the solution space
is constrained. For example, in multibody contact problem the solution of the momentum equation given by
Eq. (1), i.e., particle postions at current con�guration, must also respect the kinetical and kinematical contact
constraints [48] which are de�ned as

gn ≥ 0; tn ≤ 0; tn gn = 0 (7)

where, gn, tn are, respectively, normal component of the gap vector and normal component of the contact
traction. These inequality constraints imply that during contact bodies cannot penetrate into each other,
gn ≥ 0, and normal component of the contact traction transmitted must be compressive, tn ≤ 0. As
mentioned before, multibody contact problem described could be solved by employing a predictor-corrector
type algorithm. Employing, for example, �nite element method [49, 28, 6] to discretize momentum equation
in space, the discrete dynamic equilibrium equation for a typical node I is written as

mIaI = fext
I − (fstr

I + f con
I)︸ ︷︷ ︸

fI

(8)

where mI , aI , f
ext
I , fstr

I and f con
I are, respectively, lumped mass, acceleration, external force, internal

force and contact force associated with typical node I. For high velocity short duration impact problems,
Eq. (8) is usually integrated in time by resorting to an explicit time integration scheme [22, 33, 29]. Using,
for example, second order central di�erences, nodal acceleration at time step tn can be approximated as

aIn ≈
∆xIn −∆xIn−1

∆t2
(9)

For brevity, we drop subscript I appended for the derivations that follow. Combining Eq. (8) and Eq. (9),
an explicit expression for the position update is then obtained as

∆xn =
∆t2

m
fn + ∆xn−1︸ ︷︷ ︸

known

(10)

In the presence of contact interactions, unfortunately, position update cannot be performed in single step
because contact forces are not known beforehand. One can remedy such a situation by setting up a predictor-
corrector type algorithm. In the algorithm, ∆xn is �rst additively decomposed as

∆xn = ∆xp
n + ∆xc

n (11)

where ∆xp
n, ∆xc

n are, respectively, predictor (known) and corrector (unknown) position increments. In
the predictor step node-level update is performed assuming no contact. Therefore, for typical node I we have

fp
n = fext

n − f int
n

f con
n = 0 (12)

where fp
n is the total predictor (known) force acting on node I. Using Eq. (10), predictor position increment

and predictor position itself are obtained as

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

108

∆xp
n =

∆t2

m
fp
n + ∆xn−1

xp
n+1 = xn + ∆xp

n (13)

Next, based on predictor position given by Eq. (13), a global contact search is performed, and it is checked
if there are some nodes for which impenetrability constraint given by Eq. (7) is violated. If there is no violation,
predicted positions are correct and we have

xn+1 = xp
n+1 (14)

On the other hand, if there is violation, one has to take another step and compute corrector position
increment ∆xc

n due to unknown contact force f con
n . Assuming that the contact force is known, the corrector

position increment ∆xc
n is then obtained as

∆xc
n = −∆t2

m
f con
n (15)

Unknown contact force f con
n can be computed by exploiting the kinematical contact constraint given in

Eq. (7), see [29] for details. Note that predictor-corrector type algorithms are also commonly used for the
numerical integration of inelastic constitutive equations [41, 34, 42].

The inequality constraint given by Eq. (6), namely impenetrability of the matter, and the realization of
predictor-corrector type algorithm for the solution of multibody contact problems motivate a new original
algorithm for the construction of weighted straight skeletons of planar polygons.

Fig. 2 A polygon and a typical vertex

�

��

��

��

� � ��	

� � ��

Figure 2: A polygon and a typical vertex.

3 CONTRIBUTION

To the author knowledge, a predictor-corrector type incremental algorithm has never been used before for the
construction of straight skeletons. In this work an algorithm of this class is presented. In addition to being
original, the algorithm enjoys some very powerful features. First of all, it is simple, intuitive and easy to
implement. It is general that is it can be applied to any kind of closed planar polygons of arbitrary complexity
equally well. There is no room for exceptional cases. Algorithm works with raw input provided by the underlying

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

109

polygon. Construction of a kinetic triangulation or a motorcycle graph, etc. is not necessary. Extension to
general planar straight-line graphs seems to be straightforward. In this work, speed of the underlying algorithm
has not been studied. In its current version it is slow. To construct, improve and test the building blocks of
the algorithm, a graphical user interface, Straight Skeleton Development Kit, has been developed in parallel
by the author using C++ programming language.

4 THE ALGORITHM

Consider the closed planar polygon given in Figure 2, where its con�guration at time tn and tn+1 is depicted.
Each vertex of the polygon changes position in time with a prescribed constant velocity. Recall that velocity
of the vertices has a particular form in case of straight skeleton problem such that an edge belonging to the
polygon remains essentially parallel to itself during incremental motion. The weight assigned to the edge
belonging to a typical vertex P is given by

wP = vP · nP (16)

where vP and nP are, respectively, velocity and normal assigned to the vertex P, see Figure 2. Then for
a given time increment

∆tn = tn+1 − tn (17)

the position of a vertex at time tn+1 can exactly be computed by direct integration as

P n+1 = P n + ∆tnvP (18)

Fig. 3 Edge swap

�

��

��

��

�

� � �� � � ��	
 � �� � ∆��

Figure 3: Edge swap.

While the polygon is deforming, the physical constraints given by Eq. (6) and Eq. (7) must be respected.
According to impenetrability of matter, see Eq. (6), polygon edges cannot swap during incremental motion,
see Appendix A. If edge swap happens, it indicates that there are edges which collapse within the given time
increment. Second physical constraint is the so-called contact impenetrability, see Eq. (7). That is during
deformation, polygon cannot penetrate into itself, from inside to outside or vice versa. If such a penetration
occurs, it indicates that there are edges which split within the given time increment. Position of the vertices
computed by direct time integration is then used as a predictor if edge collapse or edge split events take place
during incremental motion. In such a case, predicted positions must be corrected. Correction phase requires
the determination of the exact time instances of the edge collapse and edge split events.

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

110

�

��

��

��

�

� � �� � � ��	
 � �� � ∆��

� � �� � �� � ∆��

�

Figure 4: The instance of edge collapse event.

4.1 Edge Collapse Event

Edge collapse event within a time increment is detected by edge swap. An edge is swapped if it changes
direction (see Figure 3). Since vertices move along a linear path with a constant velocity, the instance of an
edge collapse event can exactly be computed by linear interpolation.

Projected lengths of a given vertex P corresponding to time steps tn and tn+1 are given, respectively, by

ln = (P n −Bn) · uP (19)

and

ln+1 = (P n+1 −Bn+1) · uP (20)

� �

� � ��

� � ����

�	

Figure 5: Edge penetration.

Then one can parameterize projected length within a time increment as

l =
1

2
(1− ξ)ln +

1

2
(1 + ξ)ln+1 (21)

with ξ ∈ [−1, 1].
At the instance of edge collapse event the following equation must hold:

l = 0 (22)

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

111

Inserting Eq. (21) into Eq. (22), local coordinate corresponding to edge collapse event is then computed
as

ξC = − lM
lD

(23)

where lM and lD are de�ned as

lM =
1

2
(ln+1 + ln)

lD =
1

2
(ln+1 − ln) (24)

One can also parameterize the time increment, similar to Eq. (21), as

∆t =
1

2
(1− ξ)0 +

1

2
(1 + ξ)∆tn (25)

By inserting ξC computed in Eq. (23), time increment corresponding to edge collapse event, see Figure 4,
is obtained as

∆tC =
1

2
(1 + ξC)∆tn (26)

� � �� � �� � ∆��

� � ��

� � ����

	�

�

Figure 6: The instance of edge split event.

4.2 Edge Split Event

Edge split event within a time increment is detected by edge penetration (see Figure 5). Since the vertices
move along a linear path with constant velocities, exact instance of edge split event can again be computed
by using linear interpolation. For this purpose, we de�ne parameterization of vertices P and T as

P =
1

2
(1− ξ)P n +

1

2
(1 + ξ)P n+1

T =
1

2
(1− ξ)T n +

1

2
(1 + ξ)T n+1 (27)

At the instance of edge split event, vertex P must be on the edge belonging to vertex T (see Figure 6).
Therefore, the following relation must hold:

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

112

(P S − T S) · nT = 0 (28)

Inserting Eq. (27) into Eq. (28), local coordinate corresponding to edge split event is computed as

ξS = − (PM − TM) · nT

(PD − TD) · nT
(29)

where PM and PD are de�ned as

PM =
1

2
(P n+1 + P n)

PD =
1

2
(P n+1 − P n) (30)

De�nitions for TM and TD follows from Eq. (30). Using the equation for the parameterization of the time
increment, Eq. (25), time increment corresponding to edge split event is obtained as

∆tS =
1

2
(1 + ξS)∆tn (31)

4.3 Predictor-Corrector Algorithm

For a given time increment, predicted position of a typical vertex P is computed by direct integration as

P pred
n+1 = P n + ∆tnvP (32)

After predicted positions are computed, admissibility of the polygon is checked with respect to edge collapse
and edge split events using Eq. (22) and Eq. (28). If there is no event taking place, �nal positions are equal
to predicted positions, i.e.,

P n+1 = P pred
n+1 (33)

If there is an edge collapse event within the time increment, predicted positions are corrected as

P n+1 = P pred
n+1 + ∆PC (34)

with

∆PC = (∆tC −∆tn)vP (35)

Similarly, if there is an edge split event within the time increment, predicted positions are corrected as

P n+1 = P pred
n+1 + ∆P S (36)

with

∆P S = (∆tS −∆tn)vP (37)

If both edge collapse and edge split events take place within the same increment, the one which happens
earlier is considered and the other one is disregarded.

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

113

Figure 7: Selected polygons without holes from Salzburg polygon database together with total con-
struction time [18]: Residenzplatz-123 (22s), spg-a-poly_0000500_1 (162s), srpg_iso0000693 (185s),
srpg_smo0000619 (200s) (from top to bottom).

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

114

Figure 8: Selected polygons with holes from Salzburg polygon database together with total construction
time [18] : fpg-poly_0000000600_h5 (319s), srpg_iso_aligned_mc0000329 (55s), srpg_mc0000782 (458s),
srpg_smo_mc0000866 (433s) (from top to bottom).

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

115

4.4 Examples

The Salzburg polygon database introduced in [18] has been used to test the performance of the new algorithm.
This database contains huge amount of polygon data with varying size and complexity, more than 100GB in
total. Straight skeleton structures obtained using the new algorithm for randomly selected polygons, among
those with a reasonable size, are presented in Figure 7 and Figure 8 together with total construction time.
Videos generated, for the examples presented, can be downloaded using the link given in [1].

4.5 Data Structures

Polygons are stored as doubly linked vertex lists. A vertex stores basically information about position, velocity,
unit vector to edge before it, normal vector to edge before it, pointer to vertex before it and pointer to vertex
after it. To keep track of the evolution of straight skeleton structure, a vertex also stores pointers to the vertex
above and the vertex below, which are associated, respectively, with the polygon above and polygon below.

Data structure described must be adapted as the edge collapse and edge split events occur during incre-
mental motion. When an edge corresponding to a vertex is collapsed, it is simply removed from the linked
list and links, namely vertex before and vertex after pointers, for the neighbor vertices are updated. When an
edge split event occurs, there are two possibilities. Split event could occur from an edge, vertex-in-edge (see
Figure 9), or from a vertex, vertex-on-vertex (see Figure 10). Note that in case of vertex-in-edge, a new vertex
is created and added to linked list. The link update should work �ne for rather extreme cases like simultaneous
penetration of an edge multiple times (see Figure 11). After the links are updated, velocity of the contributing
vertices must be recomputed.

In case of simultaneous multiple vertex-on-vertex collision events, there are three possible cases which must
be handled properly. (i) If the vertices which collide belong to the same subpolygon, we de�ne polygon split
event. In the polygon split event, links are updated in a recursive manner until no more unprocessed event left
(see Figure 12). The number of subpolygons at the end of the link update must be equal to the number of
vertices which collide. (ii) If the vertices which collide belong to di�erent subpolygons, one speaks of polygon
merge event (see Figure 13). In polygon merge event, the most suitable vertex has to be found for a given
vertex in order to end up with correct link update. Among all colliding vertices, the one which has the smallest
relative angle with respect to given vertex is selected to perform link update. The number of subpolygons
at the end of link update must be equal to one. (iii) Combination of cases (i) and (ii). In this case, �rst
polygon split event is processed and then polygon merge event is resolved. Note that in contrary to [30], no
preprocessing is necessary to order the vertices contributing to the simultaneous vertex-on-vertex collisions.
Algorithm works perfectly �ne when those vertices are handled in an arbitrary order. The ambiguities related
with vertex-on-vertex collisions have been discussed in depth in [8, 9].

4.6 Search for Edge Penetration

The most time-consuming part the of the predictor-corrector algorithm is the construction of the vertex pairs
for edge penetration within a given time increment. In the search for edge penetration, no di�erentiation is
made between convex and re�ex vertices, because depending on the weight both can cause edge split event
to occur. A vertex can penetrate into the polygon both from inside and from outside, see Figure 14. One
must be careful because sometimes during a given time increment a vertex could even penetrate through, see
Figure 14. Criteria given by Eq. (28), holds in all possible scenarios and could safely be used. To test Eq. (28)
for a given vertex P, all the vertices, except P and vertex after P, must be checked. This brute force approach,
resulting in O(n2) algorithm, is not very feasible especially for a polygon with many vertices and independent
subpolygons. Instead of performing a brute force search, an enhancement based on bounding box of a vertex
or a quadtree structure or any other similar approach, like given in [21], based on spatially grouping the vertex
input could be proposed. Speed of the algorithm is not the main concern of the current study and therefore

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

116

 new vertex

Figure 9: Vertex-in-edge collision.

Figure 10: Vertex-on-vertex collision.

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

117

Figure 11: Multiple simultaneous vertex-in-edge edge split event.

(a)

(b)

Figure 12: Polygon split event. (a) one-pass resolution. (b) recursive resolution.

Figure 13: Polygon merge event.

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

118

Fig. 11 Edge penetration. Different possibilities. Vertex penetrates

(a) from inside outside, (b) from outside inside, (c) through

(a)

(b)

(c)

Figure 14: Edge penetration. Di�erent possibilities. Vertex penetrates (a) from inside outside, (b) from
outside inside, (c) through.

(a)

(b)

Figure 15: Edge penetration search. Extreme cases (a) stationary vertex and moving edge. (b) moving vertex
and stationary edge

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

119

no attempt has been made to accelerate search for edge penetration. Proposed brute force search algorithm
works also �ne for rather extreme cases where penetrating vertices or penetrated edges are stationary, see
Figure 15.

A

Fig. 13 Roofs with curved edges

A parabolic gambrel roof

 A wavy rhombic roof

Figure 16: Roofs with curved edges.

� ��

�

��

�� ��

	�

��
��

�

Figure 17: Roof planes associated with vertex P and A.

5 ROOF MODELLING

To construct a roof topology using straight skeleton algorithm proposed, a proper expression for the vertex
velocity is necessary. For a roof with straight edges, velocity for a typical vertex P assumes the form

vP = v̄P + vzez (38)

where v̄P is the projection of the velocity vector vP onto the polygon plane which is spanned by unit
vectors ex and ey, and, therefore, has the form

v̄P = vPxex + vPyey (39)

Note that z component of the velocity vector is same for all the vertices therefore polygon remains planar
while deforming. By setting vz = 1, the amount of o�set applied to polygon in z direction turns out to be
equal to the corresponding time increment. One can construct piecewise linear approximations to the roofs

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

120

��

��
��

��

��

��

�

Figure 18: Construction of roof unit normal sP .

with curved edges by connecting z component of the velocity vector to a function (see Figure 16) without
introducing any additional complexity to the underlying algorithm.

For a typical vertex P, velocity components vPx and vPy are computed using the inclination angles αP

and αA, with α ∈ (0, π), assigned respectively to the vertex P and vertex after it, which we denote as A (see
Figure 17 and Figure 18). The roof plane associated with a typical vertex is oriented with respect to surface
normal de�ned as sP . To compute sP consistently, we �rst de�ne a unit vector tP which lies inside the roof
plane as

tP = cos (π − αP)nP + sin (π − αP)uz (40)

where uz is unit vector normal to the polygon plane. Both tP and uP lie inside roof plane associated with
the vertex P. Then normal to this roof plane can easily be constructed by taking the cross product as

sP = uP × tP (41)

While the polygon is deforming vertices must lie inside the roof surfaces belonging to them, which can be
expressed by the following set of linear equations:

sP · (P n+1 − P n) = 0

sA · (P n+1 − P n) = 0 (42)

Note that computation of sA follows from Eq. (40) and Eq. (41). With the insertion of Eq. (18) and
Eq. (39), Eq. (42) can be rewritten as

s̄P · v̄P + sPzvz = 0

s̄A · v̄P + sAzvz = 0 (43)

As can be realized from Eq. (41), Eq. (42) and Eq. (43), v̄P is a function of inclination angles assigned to
vertices P and A. Therefore, if the roof planes associated with the vertices of underlying polygon have possibly
di�erent inclination angles, di�erent weights are assigned to them which can be computed using Eq. (16).

In Eq. (43), expressions with bar follows the de�nition given in Eq. (39). If the projections s̄P and s̄A are
not colinear, Eq. (43) de�nes two linearly independent equations for unknown velocity components vPx and
vPy and hence can easily be solved. Note that if, for example, stationary vertices are present, one can easily
end up with an edge collapse event where colinear vertices emerge during incremental motion, see Figure 19.

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

121

��� ∙ ��� � ��	 ∙
	 � 0

�� ∙ ��� � �	 ∙
	 � 0

(42)

Fig. 16 Singularity due to colinear vertex

stationary vertex

 moving vertex

edge swap (predictor) edge collapse (corrector)

colinear vertex

colinear vertex removed
singularity point

jump in the roof slope

Figure 19: Singularity due to colinear vertex.

Fig. 17 A composite roof made up of a polygon

with four independent subpolygons

Figure 20: A composite roof made up of a polygon with four independent subpolygons.

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

122

Fig. 18 Different roof types (for last row see [36])

Figure 21: Di�erent roof types (for last row see [24])

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

123

Fig. 19 Straight Skeleton Development Kit

Figure 22: Straight Skeleton Development Kit

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

124

For colinear vertices, the set of equations given by Eq. (43) becomes automatically linearly dependent and as
a result solution is unde�ned. Therefore, after an edge collapse event, colinear vertices must be found and
removed from the polygon. In the proposed algorithm, in the auto mode, the part belonging to removed vertex
is added to the edge belonging to the vertex after it. However, due to underlying incremental nature, one
has the capability to interrupt and make manual adjustment to decide how the base polygon will propagate
further. Alternative treatments of the colinearity issue are discussed in detail in [8, 30]. Independent of the
solution proposed, there will be a jump in the velocity vector along a certain part of the polygon after the
colinear vertices are removed. In roof modelling, it can be interpreted as sudden change in the slope, see
Figure 19, which is perfectly sound from geometrical point of view. Note that due to its incremental nature,
one could interact with the algorithm at any time and , for example, change slope along some edges or insert
and remove vertices in order to construct roofs with custom geometry as given in Figure 21.

In the roof construction using weighted straight skeleton algorithm, new position of the polygon is computed
based on predictor-corrector algorithm for a prescribed o�set in z direction. A roof is complete if there remains
no possibility to further apply an o�set. Recall that a polygon cannot be o�set if it has collapsed down to a
single vertex or a single edge, two vertices. O�set polygons are kept and used to construct the roof polygons,
namely the straight skeleton structure, in a systematic way by paying special attention to the vertices which
are split, collapsed or colinear. In Figure 20 and Figure 21, several representative non-exhaustive examples are
given.

6 STRAIGHT SKELETON DEVELOPMENT KIT

In order to develop a reliable general purpose straight skeleton algorithm, or algorithm of any kind, it is
essential to have a tool equipped with visualization capabilities. Therefore, a graphical user interface has been
developed by the author in parallel for the construction of new predictor-corrector type incremental weighted
straight skeleton algorithm which is based on the notion of deforming polygon using C++ programming
language, see Figure 22. With the help of this tool, it was possible to test each individual building block of
the algorithm separately, which gave tremendous amount of speed up to converge to the current version of the
algorithm. Program was not only used to develop the algorithm but also to automize repetitive error prone
and time-consuming tasks like preparing the �gures for the work presented here.

7 CONCLUSIONS

A universal predictor-corrector type incremental algorithm for the construction of weighted straight skeletons
of 2D general planar polygons, possibly with holes, has been developed based on the notion of deforming
polygon. An algorithm of this class has never been used before for straight skeletons. Algorithm resembles the
techniques which are commonly used in computational solid mechanics. The algorithm works with the raw
input provided by the underlying polygon. Additional tools like kinetic triangulation or motorcycle graph are not
needed. Polygon edges which move at di�erent speeds and/or start to move at di�erent times are supported
by default. In the algorithm predicted positions of the vertices are computed by direct time integration �rst.
Then admissibility of the polygon is checked with respect to edge swap and edge penetration. Edge swap and
edge penetration are used to detect, respectively, edge collapse and edge split events within an increment.
For a given event, corrected position of the vertices is computed exactly by using linear interpolation. In the
algorithm, there is no special treatment for the re�ex vertices. Positively, or negatively, weighted and stationary
vertices are dealt within the same framework proposed. By assuming a special form for the vertex velocity,
the algorithm has been used to construct roof topology starting from a �oor plan given. The algorithm could
also be used to generate piecewise approximations to the roofs with curved edges by simply connecting z
component of the vertex velocity to a prescribed function without introducing any additional complexity. A
graphical user interface, Straight Skeleton Development Kit, has been developed in parallel from scratch to

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

125

construct, improve and test the algorithm.

ORCID

Bar�³ �rhan, http://orcid.org/0000-0003-4752-0823

Appendices

A IMPENETRABILITY OF AN EDGE

In this section deformation of an individual edge of a polygon will be analyzed and it will be shown that
inpenetrability of matter constraint strongly requires projected length of an edge always be positive.

�0

��

��

�0

��

��

	

��

��

� initial configuration

current configuration

Figure 23: Deforming edge.

Consider the edge of the polygon depicted in Figure 23. The projected length of the edge is de�ned as

lP = (P −B) · uP (44)

The projected length at initial con�guration is then given by

lP0 = (P 0 −B0) · uP (45)

By de�nition, initial projected length is positive, i.e.,

lP0 > 0 (46)

Position of the vertices B and P at current con�guration are given by

B = B0 + vBt

P = P 0 + vP t (47)

With the insertion of Eq. (47), Eq. (44) can be rewritten as

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://orcid.org/0000-0003-4752-0823
http://www.cad-journal.net

126

lP = lP0 + ∆vut (48)

with

∆vu = vuP − vuB (49)

In Eq. (49), vuB and vuP are given by

vuB = vB · uP

vuP = vP · uP (50)

Initial position vector for a typical particle belonging to the edge can be written in parametric form as

X =
1

2
(1− ξ)B0 +

1

2
(1 + ξ)P 0 (51)

with ξ ∈ [−1, 1].
Similar to Eq. (51), velocity for a typical particle is expressed as

v =
1

2
(1− ξ)vB +

1

2
(1 + ξ)vP (52)

Recall that edge is to remain parallel to itself while deforming in straight skeleton problem. In order to
bring this parallelism constraint into action, velocities vB and vP are �rst written in component form as

vB = vuBuP + vnBnP + vzez

vP = vuPuP + vnPnP + vzez (53)

where vuB and vuP are given by Eq. (50), and vnB and vnP are similarly de�ned as

vnB = vB · nP

vnP = vP · nP (54)

Due to parallelism constraint, normal components of vB and vP must be equal, i.e.,

vnB = vnP = vn (55)

Using equations Eq. (53), Eq. (54) and Eq. (55), �nal form the particle velocity is obtained as

v = vuuP + vnnP + +vzez (56)

where vn is given by Eq. (55) and vu is de�ned as

vu =
1

2
(1− ξ)vuB +

1

2
(1 + ξ)vuP (57)

The position of the particle at current con�guration is given by the motion function which is de�ned as

x = φ(X, t) = X + vt (58)

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

127

Using Eq. (58), the deformation gradient is then obtained as

F (X, t) =
∂φ

∂X
= I +

∂v

∂X
t (59)

By employing Eq. (56), gradient of particle velocity, ∂v/∂X, turns out to be

∂v

∂X
= uP ⊗

∂vu
∂X

(60)

By applying the chain rule, ∂vu/∂X can be expressed as

∂vu
∂X

=
∂vu
∂ξ

∂ξ

∂X
(61)

With the insertion of Eq. (57) and Eq. (49) , ∂vu/∂ξ is obtained as

∂vu
∂ξ

=
∆vu

2
(62)

By employing Eq. (51) and Eq. (45), ∂X/∂ξ can be written as

∂X

∂ξ
=

1

2
(P 0 −B0) =

lP0

2
uP (63)

Using the identity

1 =
∂X

∂ξ
· ∂ξ
∂X

(64)

and Eq. (63), ∂ξ/∂X is obtained as

∂ξ

∂X
=

2

lP0
uP (65)

Inserting Eq. (62) and Eq. (65) into Eq. (61), it is obtained that

∂vu
∂X

=
∆vu
lP0

uP (66)

Putting Eq. (66) into Eq. (60), the �nal form of the velocity gradient is obtained as

∂v

∂X
=

∆vu
lP0

uP ⊗ uP (67)

Identity tensor I is de�ned as

I = uP ⊗ uP + nP ⊗ nP + ez ⊗ ez (68)

Putting Eq. (67) and Eq. (68) into Eq. (59), �nal form of the deformation gradient is obtained as

F = (1 +
∆vut

lP0
)uP ⊗ uP + nP ⊗ nP + ez ⊗ ez (69)

From Eq. (69), determinant of F is obtained as

detF = 1 +
∆vut

lP0
(70)

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

128

Using Eq. (48), normalized projected length of the edge can be written as

lP
lP0

= 1 +
∆vut

lP0
(71)

Comparing Eq. (70) and Eq. (71), it is observed that

detF =
lP
lP0

(72)

According to impenetrability of matter, detF > 0, and noting that lP0 > 0, it is �nally concluded that
projected length of the edge must be positive throughout the course of the deformation process, i.e.,

lP > 0 (73)

REFERENCES

[1] Videos generated for the examples selected from Salzburg Polygon Database. https://github.com/

bi100477/MyDocuments/tree/master/straight_skeleton.
[2] Ahn, H.K.; Bae, S.W.; Knauer, C.; Lee, M.; Shin, C.S.; Vigneron, A.: Realistic roofs over a rectilinear

polygon. Comput. Geom., 46(9), 1042�1055, 2013. http://doi.org/https://doi.org/10.1016/j.
comgeo.2013.06.002.

[3] Aichholzer, O.; Alberts, D.; Aurenhammer, F.; Gärtner, B.: Straight skeletons of simple polygons. In
Proc. 4th Internat. Symp. of LIESMARS, 114�124, 1995.

[4] Aichholzer, O.; Aurenhammer, F.: Straight skeletons for general polygonal �gures in the plane. In
International computing and combinatorics conference, 117�126. Springer, 1996. http://doi.org/

https://doi.org/10.1007/3-540-61332-3_144.
[5] Barequet, G.; Goryachev, A.: O�set polygon and annulus placement problems. Comput. Geom., 47(3),

407�434, 2014. http://doi.org/https://doi.org/10.1016/j.comgeo.2013.10.003.
[6] Belytschko, T.; Moran, B.; Liu, W.K.: Nonlinear �nite element analysis for continua and structures,

vol. 1. Wiley, 1999.
[7] Biedl, T.; Held, M.; Huber, S.; Kaaser, D.; Palfrader, P.: A simple algorithm for computing positively

weighted straight skeletons of monotone polygons. Inf. Process. Lett., 115(2), 243�247, 2015. http:

//doi.org/https://doi.org/10.1016/j.ipl.2014.09.021.
[8] Biedl, T.; Held, M.; Huber, S.; Kaaser, D.; Palfrader, P.: Weighted straight skeletons in the plane. Com-

put. Geom., 48(2), 120�133, 2015. http://doi.org/https://doi.org/10.1016/j.comgeo.2014.

08.006.
[9] Biedl, T.; Huber, S.; Palfrader, P.: Planar matchings for weighted straight skeletons. Int. J.

Comput. Geom. Appl., 26(3&4), 211�229, 2016. http://doi.org/https://doi.org/10.1142/

S0218195916600050.
[10] Cacciola, F.: A cgal implementation of the straight skeleton of a simple 2d polygon with holes. In 2nd

CGAL User Workshop, vol. 1, 2004.
[11] Camacho, G.; Ortiz, M.: Adaptive lagrangian modelling of ballistic penetration of metallic targets.

Comput. Methods Appl. Mech. Eng., 142(3), 269�301, 1997. http://doi.org/https://doi.org/

10.1016/S0045-7825(96)01134-6.
[12] Cheng, S.W.; Mencel, L.; Vigneron, A.: A faster algorithm for computing straight skeletons. In European

Symposium on Algorithms, 272�283. Springer, 2014. http://doi.org/https://doi.org/10.1007/

978-3-662-44777-2_23.

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

https://github.com/bi100477/MyDocuments/tree/master/straight_skeleton
https://github.com/bi100477/MyDocuments/tree/master/straight_skeleton
http://doi.org/https://doi.org/10.1016/j.comgeo.2013.06.002
http://doi.org/https://doi.org/10.1016/j.comgeo.2013.06.002
http://doi.org/https://doi.org/10.1007/3-540-61332-3_144
http://doi.org/https://doi.org/10.1007/3-540-61332-3_144
http://doi.org/https://doi.org/10.1016/j.comgeo.2013.10.003
http://doi.org/https://doi.org/10.1016/j.ipl.2014.09.021
http://doi.org/https://doi.org/10.1016/j.ipl.2014.09.021
http://doi.org/https://doi.org/10.1016/j.comgeo.2014.08.006
http://doi.org/https://doi.org/10.1016/j.comgeo.2014.08.006
http://doi.org/https://doi.org/10.1142/S0218195916600050
http://doi.org/https://doi.org/10.1142/S0218195916600050
http://doi.org/https://doi.org/10.1016/S0045-7825(96)01134-6
http://doi.org/https://doi.org/10.1016/S0045-7825(96)01134-6
http://doi.org/https://doi.org/10.1007/978-3-662-44777-2_23
http://doi.org/https://doi.org/10.1007/978-3-662-44777-2_23
http://www.cad-journal.net

129

[13] Cheng, S.W.; Vigneron, A.: Motorcycle graphs and straight skeletons. In Proceedings of the thirteenth
annual ACM-SIAM symposium on Discrete algorithms, 156�165. Society for Industrial and Applied Math-
ematics, 2002.

[14] Cheng, S.W.; Vigneron, A.: Motorcycle graphs and straight skeletons. Algorithmica, 47(2), 159�182,
2007. http://doi.org/https://doi.org/10.1007/s00453-006-1229-7.

[15] Chuzel-Marmot, Y.; Ortiz, R.; Combescure, A.: Three dimensional sph�fem gluing for simulation of
fast impacts on concrete slabs. Comput. Struct., 89(23), 2484�2494, 2011. http://doi.org/https:

//doi.org/10.1016/j.compstruc.2011.06.002.
[16] Demaine, E.D.; Demaine, M.L.; Mitchell, J.S.: Folding �at silhouettes and wrapping polyhedral packages:

New results in computational origami. Comput. Geom., 16(1), 3�21, 2000. http://doi.org/https:

//doi.org/10.1016/S0925-7721(99)00056-5.
[17] Eder, G.; Held, M.: Computing positively weighted straight skeletons of simple polygons based on a

bisector arrangement. Inf. Process. Lett., 132, 28�32, 2018. http://doi.org/https://doi.org/10.
1016/j.ipl.2017.12.001.

[18] Eder, G.; Held, M.; Jasonarson, S.; Mayer, P.; Palfrader, P.: Salzburg database of polygonal data:
Polygons and their generators. Data in Brief, 31(105984), 2020. http://doi.org/https://doi.org/
10.1016/j.dib.2020.105984.

[19] Eder, G.; Held, M.; Palfrader, P.: Computing the straight skeleton of an orthogonal monotone polygon
in linear time. In Proc. 35th EuroCG, 2019.

[20] Eder, G.; Held, M.; Palfrader, P.: On implementing straight skeletons: Challenges and experiences. In 36th
International Symposium on Computational Geometry (SoCG 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020. http://doi.org/https://doi.org/10.1016/j.comgeo.2021.101760.

[21] Eppstein, D.; Erickson, J.: Raising roofs, crashing cycles, and playing pool: Applications of a data
structure for �nding pairwise interactions. Discrete Comput. Geom., 22(4), 569�592, 1999. http:

//doi.org/https://doi.org/10.1007/PL00009479.
[22] Erhart, T.; Wall, W.A.; Ramm, E.: Robust adaptive remeshing strategy for large deformation, transient

impact simulations. Int. J. Numer. Methods Eng., 65(13), 2139�2166, 2006. http://doi.org/https:
//doi.org/10.1002/nme.1531.

[23] Felkel, P.; Obdrzalek, S.: Straight skeleton implementation. In Proceedings of Spring Conference on
Computer Graphics, 210�218, 1998.

[24] Held, M.; Palfrader, P.: Straight skeletons with additive and multiplicative weights and their application
to the algorithmic generation of roofs and terrains. Computer-Aided Design, 92, 33�41, 2017. http:

//doi.org/https://doi.org/10.1016/j.cad.2017.07.003.
[25] Huber, S.: Computing straight skeletons and motorcycle graphs: theory and practice. Ph.D. thesis.

University of Salzburg, 2011.
[26] Huber, S.; Held, M.: Theoretical and practical results on straight skeletons of planar straight-line graphs.

In Proceedings of the twenty-seventh annual symposium on Computational geometry, 171�178, 2011.
http://doi.org/https://doi.org/10.1145/1998196.1998223.

[27] Huber, S.; Held, M.: A fast straight-skeleton algorithm based on generalized motorcycle graphs.
Int. J. Comput. Geom. Appl., 22(5), 471�498, 2012. http://doi.org/https://doi.org/10.1142/

S0218195912500124.
[28] Hughes, T.J.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover

Publications, 2012.
[29] �rhan, B.; Oºbolt, J.; Ruta, D.: 3d �nite element simulations of high velocity projectile impact. Int.

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://doi.org/https://doi.org/10.1007/s00453-006-1229-7
http://doi.org/https://doi.org/10.1016/j.compstruc.2011.06.002
http://doi.org/https://doi.org/10.1016/j.compstruc.2011.06.002
http://doi.org/https://doi.org/10.1016/S0925-7721(99)00056-5
http://doi.org/https://doi.org/10.1016/S0925-7721(99)00056-5
http://doi.org/https://doi.org/10.1016/j.ipl.2017.12.001
http://doi.org/https://doi.org/10.1016/j.ipl.2017.12.001
http://doi.org/https://doi.org/10.1016/j.dib.2020.105984
http://doi.org/https://doi.org/10.1016/j.dib.2020.105984
http://doi.org/https://doi.org/10.1016/j.comgeo.2021.101760
http://doi.org/https://doi.org/10.1007/PL00009479
http://doi.org/https://doi.org/10.1007/PL00009479
http://doi.org/https://doi.org/10.1002/nme.1531
http://doi.org/https://doi.org/10.1002/nme.1531
http://doi.org/https://doi.org/10.1016/j.cad.2017.07.003
http://doi.org/https://doi.org/10.1016/j.cad.2017.07.003
http://doi.org/https://doi.org/10.1145/1998196.1998223
http://doi.org/https://doi.org/10.1142/S0218195912500124
http://doi.org/https://doi.org/10.1142/S0218195912500124
http://www.cad-journal.net

130

J. Solids Struct., 72, 38�49, 2015. http://doi.org/https://doi.org/10.1016/j.ijsolstr.2015.
07.010.

[30] Kelly, T.: Unwritten procedural modeling with the straight skeleton. Ph.D. thesis. University of Glasgow,
2014.

[31] Levi-Steiner, A.; Steinerd, D.: Contour interpolation by straight skeletons. Graphical Models, 66, 245�
260, 2004. http://doi.org/https://doi.org/10.1016/j.gmod.2004.05.001.

[32] Linder, C.: An arbitrary Lagrangian-Eulerian �nite element formulation for dynamics and �nite strain
plasticity models. Institut für Baustatik und Baudynamik (Bauwesen) der Universität Stuttgart, 2003.

[33] Marusich, T.; Ortiz, M.: Modelling and simulation of high-speed machining. Int. J. Numer. Methods
Eng., 38(21), 3675�3694, 1995. http://doi.org/https://doi.org/10.1002/nme.1620382108.

[34] Miehe, C.: Exponential map algorithm for stress updates in anisotropic multiplicative elastoplasticity
for single crystals. Int. J. Numer. Methods Eng., 39(19), 3367�3390, 1996. http://doi.org/https:

//doi.org/10.1002/(SICI)1097-0207(19961015)39:19%3C3367::AID-NME4%3E3.0.CO;2-7.
[35] Obando, D.F.G.; Olivo-Marin, J.C.; Wendling, L.; Meas-Yedid, V.: Vector-based morphological opera-

tions on polygons using straight skeletons for digital pathology. In International Conference on Discrete
Geometry for Computer Imagery, 249�261. Springer, 2019. http://doi.org/https://doi.org/10.

1007/978-3-030-14085-4_20.
[36] Ogden, R.: Nonlinear Elastic Deformations. Dover Publications, 1997.
[37] Palfrader, P.; Held, M.: Computing mitered o�set curves based on straight skeletons. Comput Aided Des

Appl, 12(4), 414�424, 2015. http://doi.org/https://doi.org/10.1080/16864360.2014.997637.
[38] Pro�zi, P.; Combescure, A.; Ogawa, K.: Sph modeling of adhesion in fast dynamics: Application to

the cold spray process. C.R. Mec., 344(4-5), 211�224, 2016. http://doi.org/https://doi.org/10.
1016/j.crme.2016.02.001.

[39] Rabczuk, T.; Xiao, S.; Sauer, M.: Coupling of mesh-free methods with �nite elements: basic concepts
and test results. Commun. Numer. Methods Eng., 22(10), 1031�1065, 2006. http://doi.org/https:
//doi.org/10.1002/cnm.871.

[40] Radovitzky, R.; Ortiz, M.: Lagrangian �nite element analysis of newtonian �uid �ows. Int. J. Nu-
mer. Methods Eng., 43(4), 607�619, 1998. http://doi.org/https://doi.org/10.1002/(SICI)

1097-0207(19981030)43:4%3C607::AID-NME399%3E3.0.CO;2-N.
[41] Simo, J.C.; Hughes, T.J.: Computational Inelasticity. Springer, 1998.
[42] Stein, E.; Sagar, G.: Theory and �nite element computation of cyclic martensitic phase transformation

at �nite strain. Int. J. Numer. Methods Eng., 74(1), 1�31, 2008. http://doi.org/https://doi.org/
10.1002/nme.2148.

[43] Sugihara, K.: Design of pop-up cards based on weighted straight skeletons. In 2013 10th International
Symposium on Voronoi Diagrams in Science and Engineering, 23�28. IEEE, 2013. http://doi.org/

https://doi.org/10.1109/ISVD.2013.9.
[44] Sugihara, K.: Straight skeleton computation optimized for roof model generation. In WSCG'2019 - 27. In-

ternational Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2019,
101�109. Václav Skala-UNION Agency, 2019. http://doi.org/https://doi.org/10.24132/CSRN.

2019.2901.1.12.
[45] Sugihara, K.; Khmelevsky, Y.: Roof report from automatically generated 3d building models by straight

skeleton computation. In 2018 Annual IEEE International Systems Conference (SysCon), 1�8. IEEE,
2018. http://doi.org/https://doi.org/10.1109/SYSCON.2018.8369554.

[46] Tanase, M.; Veltkamp, R.C.: Polygon decomposition based on the straight line skeleton. In Proceedings of

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://doi.org/https://doi.org/10.1016/j.ijsolstr.2015.07.010
http://doi.org/https://doi.org/10.1016/j.ijsolstr.2015.07.010
http://doi.org/https://doi.org/10.1016/j.gmod.2004.05.001
http://doi.org/https://doi.org/10.1002/nme.1620382108
http://doi.org/https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19%3C3367::AID-NME4%3E3.0.CO;2-7
http://doi.org/https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19%3C3367::AID-NME4%3E3.0.CO;2-7
http://doi.org/https://doi.org/10.1007/978-3-030-14085-4_20
http://doi.org/https://doi.org/10.1007/978-3-030-14085-4_20
http://doi.org/https://doi.org/10.1080/16864360.2014.997637
http://doi.org/https://doi.org/10.1016/j.crme.2016.02.001
http://doi.org/https://doi.org/10.1016/j.crme.2016.02.001
http://doi.org/https://doi.org/10.1002/cnm.871
http://doi.org/https://doi.org/10.1002/cnm.871
http://doi.org/https://doi.org/10.1002/(SICI)1097-0207(19981030)43:4%3C607::AID-NME399%3E3.0.CO;2-N
http://doi.org/https://doi.org/10.1002/(SICI)1097-0207(19981030)43:4%3C607::AID-NME399%3E3.0.CO;2-N
http://doi.org/https://doi.org/10.1002/nme.2148
http://doi.org/https://doi.org/10.1002/nme.2148
http://doi.org/https://doi.org/10.1109/ISVD.2013.9
http://doi.org/https://doi.org/10.1109/ISVD.2013.9
http://doi.org/https://doi.org/10.24132/CSRN.2019.2901.1.12
http://doi.org/https://doi.org/10.24132/CSRN.2019.2901.1.12
http://doi.org/https://doi.org/10.1109/SYSCON.2018.8369554
http://www.cad-journal.net

131

the nineteenth annual symposium on Computational geometry, 58�67, 2003. http://doi.org/https:
//doi.org/10.1145/777792.777802.

[47] Wall, W.A.: Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen. Institut für Baustatik und
Baudynamik (Bauwesen) der Universität Stuttgart, 1999.

[48] Wriggers, P.: Computational Contact Mechanics. Springer, 2006.
[49] Zienkiewicz, O.; Taylor, R.; Fox, D.: The �nite element method for solid and structural mechanics, 7th

Edition. Butterworth-Heinemann, 7 ed., 2014.

Computer-Aided Design & Applications, 19(1), 2022, 103-131
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://doi.org/https://doi.org/10.1145/777792.777802
http://doi.org/https://doi.org/10.1145/777792.777802
http://www.cad-journal.net

	INTRODUCTION
	MOTIVATION
	CONTRIBUTION
	THE ALGORITHM
	Edge Collapse Event
	Edge Split Event
	Predictor-Corrector Algorithm
	Examples
	Data Structures
	Search for Edge Penetration

	ROOF MODELLING
	STRAIGHT SKELETON DEVELOPMENT KIT
	CONCLUSIONS
	Appendices
	IMPENETRABILITY OF AN EDGE

