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Abstract. In the design of aesthetic objects, controlling the curvature variation of a curve
segment is an important task. Freeform curves, such as Bézier curves or B-spline curves, are
widely used in many CAD systems. Controlling the curvature variation of freeform curves,
however, is not easy because how the curvature behaves by moving its control points is not
predictable. This paper introduces an intrinsically defined planar curve based on an explicit
polynomial B-spline curve and its G1 and G2 Hermite interpolation method. The advantage
of using explicit B-spline curvature functions instead of explicit Bézier curvature functions is
that a wider variety of curvature variation can be represented by increasing the number of
segments and modifying the knots. The proposed method can theoretically match any G2

Hermite conditions. In the proposed approach, the curvature plot is specified in terms of
an explicit B-spline curve and the explicit B-spline curve is integrated to generate a curve
segment such that given G1 or G2 Hermite interpolation conditions are satisfied. As an
application of the proposed curve, we show a method of controlling the curvature variation
interactively by modifying control curvatures shown on the curvature comb satisfying G1 or
G2 Hermite conditions.
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1 INTRODUCTION

Freeform curves, such as Bézier curves or B-spline curves, are commonly used not only in CAD software but
also in many other applications including graphics design software. Although freeform curves are widely used,
it is not easy to control the curvature variation of freeform curves. Controlling the curvature of freeform
curves by moving the control points is not easy due to the complexity of curvature computation. In this
paper, we propose intrinsically defined curves based on explicit polynomial B-spline curvature functions. We

Computer-Aided Design & Applications, 19(1), 2022, 152-163
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://orcid.org/0000-0001-8889-0949
http://orcid.org/0000-0001-5831-596X
mainto:norimasa@acm.org
mainto:txsaito@cc.tuat.ac.jp
mailto:norimasa@acm.org
http://www.cad-journal.net


153

use an explicit B-spline curve [16] because it is a natural extension of a linear function. Although numerical
integration and an optimization (of two parameters) is necessary to perform G1 or G2 Hermite interpolation,
a curve segment can be generated in real time. As an application of the proposed curve, we present a method
of controlling the curvature variation interactively by modifying control curvatures shown on the curvature
comb satisfying G1 or G2 Hermite conditions.

The advantages of proposed curves over previous work are the following:

• Given G1 or G2 Hermite conditions, various kinds of curves with the control of curvature variation can
be generated.

• Since B-spline curvature functions include linear and constant curvature functions, the proposed curve
can theoretically match any G2 Hermite conditions satisfying the monotonicity of the curvature and the
curvature variation is still under control.

• To control the curvature variation, control curvatures on the curvature comb can be directly controlled
satisfying G1 or G2 Hermite conditions.

The rest of this paper is organized as follows. In section 2, we review the related work on controlling the
curvature variation both for freeform curves and for intrinsically defined curves. In Section 3, we describe the
method for computing intrinsically defined curves based on explicit B-spline curvature functions. We show
that an integration of an explicit B-spline curve is straightforward once it is converted to explicit Bézier curves.
In Section 4, we present a G1 or G2 Hermite interpolation method using an optimization of two parameters.
In Section 5, we show the results of G1 and G2 Hermite interpolation in addition to examples of controlling
the curvature variation. In Section 6, we conclude our paper.

2 RELATED WORK

In computer aided design, curves are usually designed by freeform curves, such as Bézier curves or B-spline
curves. Various work has been done for controlling the curvature variation of freeform curves. In quadratic
polynomial Bézier curves, Sapidis et al. clarified specific position of control points where the curvature is
monotonically varying [15]. Because of its simplicity that it has only one curvature extrema, quadratic Bézier
curves are used for style design [18] and illustration [22].

Since quadratic Bézier curves cannot represent an inflection point and its curvature function is rather fixed,
freeform curves of degree 3 or higher are widely used in many applications, such as illustration software and
CAD/CAM systems. For curves of degree 3 or higher, the position of control points where the curvature is
monotonically varying is not known except for typical class A Bézier curves [4]. Yoshida et al. showed that
typical class A Bézier curves get closer to logarithmic spirals as the degree gets higher [23]. Wang proposed
a shape control method of Bézier and B-spline curves by finding a solution of an optimization subject to
monotone curvature variation constraints [20]. Li et al. have proposed a target curvature driven fairing
algorithm for planar cubic B-spline curves [8]. Dietz et al. have numerically considered a cubic Bézier curve
with monotonically varying curvature that satisfies G2 Hermite conditions in [2] and a rational cubic Bézier
curve in [3]. Habib et al. derived admissible regions for the G2 Hermite spiral segment of a rational cubic
Bézier curve [6]. Due to the complexity of computing curvature of freeform curves, controlling the curvature
variation of freeform curves is not easy in general.

Most of the work related to intrinsic equations have dealt with piecewise linear curvature [12, 13, 19]
with several exceptions: Watanabe et al. proposed intrinsically defined curves based on cubic Bézier curves
[21]. The generalised Cornu spiral [1] has rational linear curvature profile, thus can be considered as the
generalization of Cornu (Clothoid) and logarithmic spirals. Log-aesthetic curves [7, 10, 24], which has a
shape parameter α, are the generalization of Clothoid curve(α = −1), Nielsen’s spiral(α = 0), logarithmic
spiral(α = 1), the circle involute(α = 2) and a circle(α = ±∞). Log-aesthetic curves are high quality curves
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whose logarithmic curvature graphs are linear. In all of the previous work, the shapes of curvature functions
are rather limited. We provide a general framework that can represent various curvature functions by using an
explicit B-spline curves.

Concerning G2 Hermite interpolation, Meek et al. used Clothoids and circular arcs and showed that the
method can match any G2 Hermite conditions [9]. The proposed curves in this research have more variety of
curvature functions than [9]. Miura et al. have used log-aesthetic curves for G2 Hermite interpolation [11].
The quality of the generated curves may be high, but it is not clear that the method can match a wide variety
of G2 Hermite conditions.

In this work, we extend our previous work [25] by using explicit B-spine curvature functions instead of
explicit Bézier curvature functions. The advantage of using explicit B-spline curvature functions is that a
wider variety of curvature variation can be represented. For example, as shown in Fig. 8 (d), the proposed
method can represent a curvature function like a step function. This kind of curvature function is necessary to
cover the viable G2 Hermite conditions. Since explicit B-spline curvature functions can represent both linear
and constant curvature functions, the proposed method can theoretically match any G2 Hermite data [9].

3 CURVES BASED ON EXPLICIT B-SPLINE CURVATURE FUNCTIONS

This section describes a method for computing an intrinsically defined curves based on an explicit polynomial
B-spline curvature function. To simplify the description, we consider a curve in the standard form where the
starting point and its tangent are the origin and [0 1]T, respectively. A curve in a general position can be
obtained by performing an appropriate transformation to the curve in the standard form.

Let s be the arc length and κ(s) be the curvature function. The tangential angle θ(s) is

θ(s) =

∫ s

0

κ(u)du. (1)

The curve position P(s) is

P(s) =

[ ∫ s
0
cos(θ(u))du∫ s

0
sin(θ(u))du

]
. (2)

Eqs. (1), (2) are standard equations in differential geometry. If we use the curvature function of log-aesthetic
curves [24] as κ(s), Eq. (2) immediately becomes the equation of log-aesthetic curves. In this work, we
specifically consider the case where κ(s) is an explicit B-spline curve.

An explicit polynomial B-spline curve of degree n with control points pi(i = 1, 2, . . . ,m) and knots
t1, t2, . . . , tm+n−1 in polar form [14, 16] is a curve whose x coordinate is the parameter t and y coordinate is

p(t) =

m∑
i=1

Bni (t)pi (t ∈ [tn, tm]) (3)

Here, Bni (t) is a B-spline basis function. In explicit B-spline curves, t coordinate ci for each control point pi,
known as Greville abscissa, is the average of n consecutive knots [16]:

ci =
ti + ti+1 + · · ·+ ti+n−1

n
. (4)

Fig. 1 (a) shows an explicit cubic B-spline curve with knots [0, 0, 0, 1
2 , 1, 1, 1] and control points

pi(i = 1, . . . , 5). For an explicit polynomial B-spline curve, integration of Eq. (1) is straightforward once it
is converted to explicit Bézier curve segments by appropriately inserting knots. Fig. 1(b) shows the Bézier
control points qi(i = 1, 2, . . . , 7) and the control polygon converted from (a). Since the integration of an
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(a) Cubic explicit B-spline curve (b) Bézier curves generated from (a)

(c) Generated Curve
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Figure 1: Curvature in terms of an explicit cubic B-spline curve (a),(b) and the generated curve (c)

explicit Bézier curve with the range t ∈ [0, 1] is just the average of the control points [16], integration of the
explicit B-spline curve of Fig. 1(a) is∫ 1

0

5∑
i=1

B3
i (t)pidt =

1

2

q1 + q2 + q3 + q4
4

+
1

2

q4 + q5 + q6 + q7
4

. (5)

Note that 1
2 in the right side of Eq. (5) is the parameter range of the first or second explicit Bézier curve

segment.
Let st be the arc length of a curve segment and κi(i = 1, 2, . . . ,m) be control curvatures. Without loss

of generality, we assume tn = 0 and tm = 1 to make the parameter range of an explicit B-spline curve [0, 1].
The curvature function κ(s) in terms of arc length s in the explicit polynomial B-spline form is

κ(s) =

m∑
i=1

Bni (s/st)κi (s ∈ [0, st]). (6)

Plugging Eq. (6) into Eq. (1) and then Eq. (1) into Eq. (2), curve points in the standard form can be computed.
Note that to compute Eq. (1), numerical integration is not necessary. This integration can be computed by
converting an explicit B-spline curve to explicit Bézier curves using knot insertion and using the characteristics
of explicit Bézier curves [16, 25].

To compute the curve point at arc length su(0 ≤ su ≤ st), we need to compute the tangential angle
θ(su). We are given an explicit B-spline curvature function (Eq. (6)) with arc length st. We insert knots at
tu = su

st
at most n times to divide the explicit B-spline curve into two curves with parameter ranges [0, tu]

and [tu, 1]. By appropriately inserting knots, we convert the explicit B-spline curve with the range [0, tu] to
explicit Bézier curves with gz segments and mz control curvatures κ̂i(i = 0, . . . ,mz). Let ui(i = 1, . . . , gz)
be the parameter range of each explicit Bézier curve segment. Now Eq. (1) can be simply computed by

θ(su) =

∫ su

0

κ(u)du

= su

gz∑
i=1

ui

∑n
j=1 κ̂n(i−1)+j

n+ 1
. (7)
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Concerning Eq. (2), numerical integration is inevitable. Fig. 1(c) shows the generated curve in the standard
form using the curvature function of (a) when the arc length st is given.

In an explicit B-spline curvature function, detecting an inflection point and curvature extrema is straight-
forward. To detect an inflection point, we check if κ(s) becomes 0 using Bézier clipping [17]. Similarly, to
detect curvature extrema, we need to check if the derivative of κ(s) with respect to s becomes 0 using Bézier
clipping. For a low degree curvature function, such points can be directly computed.

4 G1 AND G2 HERMITE INTERPOLATION METHOD

In G1 Hermite interpolation, a starting point Ps and an endpoint Pe with their unit tangent vectors ts and
te are given. In G2 Hermite interpolation, control curvatures κs and κe at Ps and Pe are also given. G1 and
G2 Hermite interpolation methods works in a similar way except that the first and the last control curvatures
are set to κs and κe, respectively, in case of G2 Hermite interpolation.

In G1 or G2 Hermite conditions, we use the standard form where Ps is placed at the origin and ts = [1 0]T.
Let θd be the angle formed by ts and te. Thus te = [cos(θd) sin(θd)]

T. Given the degree n, the number
control curvatures m and κi(i = 1, . . . ,m), the arc length st of the curve segment is given by

st =
θd∫ 1

0
(
∑m
i=1B

n
i (t)κi) dt

. (8)

In G1 or G2 Hermite interpolation in the standard form, the generated curve must satisfy the following
conditions:

(a) P(0) = Ps, (b) P(st) = Pe,

(c) [cos(θ(0)) sin(θ(0))]T = ts, (d) [cos(θ(st)) sin(θ(st))]
T = te. (9)

Conditions (a), (c) are always satisfied by using Eq. (1) and (2), respectively. Condition (d) is always satisfied
by using the arc length st computed by Eq. (8). The remaining condition (b) is satisfied by an optimization
that minimizes |P(st)−Pe|.

Fig. 2 shows typical cases how the control curvatures are computed. In G1 Hermite interpolation, we
typically use κ1 and κm as optimization parameters and κ2, . . . , κm−1 are either user-specified or computed
by some kind of interpolation, such as linear interpolation. In G2 Hermite interpolation, κ1(= κs) and
κm(= κe) are given in addition to G1 Hermite conditions. Therefore, we typically use κ2 and κm−1 as
optimization parameters and compute κ3, . . . , κm−2 similarly by some kind of interpolation or specify them.

1

2

m-1 m

3

m-2

t

interpolation or user-specified

optimization paramters optimization paramters

1

2

m-1 m

3

m-2

t

interpolation or user-specified

(a) G1 Hermite interpolation (b) G2 Hermite interpolation

Figure 2: Typical G1 and G2 Hermite interpolations

To modify the curvature variation under given Hermite conditions, we use the following interpolation by a
parameter p ∈ [−1, 1] to compute intermediate control curvatures. If p = 0 the interpolation becomes the linear
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interpolation. See the curvature plots of Fig. 3(a)-(e) to see how the curvature plot changes depending on the
value of p. Suppose we are given κi1 and κim (1 ≤ i1 < im ≤ m). We would like to compute κi1+1, . . . , κim−1
using κi1 , κim and p. Let xi be the Greville abscissa for κi. Then each κi(i = ii1+1, . . . , iim−1) is computed
by

temp =
tim − xi
tim − ti1

κi1 +
xi − ti1
tim − ti1

κim (10)

κi =

{
(1− p) temp+ p κi1 if p ≥ 0

(1 + p) temp− p κim if p < 0
(11)

The user can modify the curvature variation of the curve by modifying p.
For typical G1 Hermite interpolation, we set i1 = 1 and im = m. The monotonicity of curvature is

always guaranteed if p ∈ [−1, 1], though the curve may include an inflection point. For typical G2 Hermite
interpolation, we set i1 = 1 and im = m− 1.

5 RESULTS

5.1 Implementation and Computation Time

We have implemented our method in C++. Once G1 or G2 Hermite conditions are given, we transform the
two endpoints and their tangents such that they satisfy the standard form. More specifically, we perform
a translation such that first endpoint is placed at the origin, perform a rotation such that the first tangent
become [1 0]T. Then the second endpoint is scaled such that it is on the unit circle. Note that in case of G2

Hermite interpolation, two given control curvatures are inversely scaled. Under the standard form, appropriate
control curvatures are computed and then curve points are computed. The computed curve points are inversely
transformed so that they fits the original G1 or G2 Hermite conditions. For computing numerical integration
and performing an optimization, we use GNU Scientific Library (GSL). We use the downhill simplex method
for optimization.

Since we use the same framework for G1 and G2 Hermite interpolation, we show the computation time of
G1 Hermite interpolation. Table 1 shows the average computation time of a curve segment and its standard
deviation for various degrees and number of control points on Ryzen 9 3950X with 64GB RAM. To measure
the computation time, randomly chosen 500 G1 Hermite conditions are used and the number of curve points
is set to 500. Table 1 shows that the proposed curve can be controlled fully interactively.

Table 1: Computation Time

degree # of control curv. comp. time (ms) std. dev. (ms)

1 2 0.27 0.008

2 3 0.32 0.009

3 4 0.37 0.103

3 6 0.49 0.108

3 8 0.60 0.118

5.2 G1 Hermite Interpolation

Fig. 3 shows examples of generated curves and their curvature plots for typical G1 Hermite conditions using
explicit cubic B-spline curvature functions. κ values of curvature plots are scaled so that the curvature plot fits
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in the graph. In Fig.3 (a)-(e), the number of control curvatures is 6 and the knot vector is [0, 0, 0, 13 ,
2
3 , 1, 1, 1]

but the value of p is different. In the curvature plot, black circles represent control curvatures κ1, . . . , κ6 from
left to right. Tick marks in t-axis represent knots ti. The rightmost tick mark is placed at t = 1. Since we use
Bézier end conditions, the multiplicity of knots at t = 0 and t = 1 are set to 3. By modifying the value of p, the
curve shape and the curvature plot can be variously controlled for the same G1 Hermite condition guaranteeing
the monotonicity of curvature. Depending on G1 Hermite conditions, the generated curve may include an
inflection point. Fig. 3(f) shows a curve segment with 4 control curvatures the knot vector [0, 0, 0, 1, 1, 1].
This explicit B-spline curvature function is exactly the same as an explicit Bézier function. In this example,
κ1 and κ4 are used as optimization parameters for satisfying G1 Hermite conditions and κ2 and κ3 are set
to be equal to κ1 and κ4, respectively. In this way, we can generate a curve segment whose dκ

ds = 0 at both
endpoints.
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Figure 3: G1 Hermite interpolation using explicit cubic B-spline curves

5.3 G2 Hermite Interpolation

In G2 Hermite Interpolation, we are given κs and κe in addition to G1 Hermite conditions. Let θe be the
angle between Pe −Ps and ts. See Fig. 4.

Without loss of generality, we consider the case of monotonically increasing curvature without an inflection
point. We also assume the curvature is greater than or equal to 0. Thus 0 ≤ κs < κe and θd > 2θe. If
θd < 2θe, curves with monotonically decreasing curvature are be generated. For 0 < θe < (θd − θe) < π

2 and
|Pe−Ps| = 1, if the following inequalities[5, 2] are satisfied, there exists a curve segment with monotonically
varying curvature satisfying given G2 Hermite conditions.

κe >
2(1− cos θd)− 2 sin(θd − θe)

2 sin θe − κs
, κs < 2 sin θe (12)

Computer-Aided Design & Applications, 19(1), 2022, 152-163
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


159

Note that if |Pe −Ps| 6= 1, we can replace κs and κe by κs

|Pe−Ps| and
κe

|Pe−Ps| , respectively. If θe and θd are
given, the left inequality in Eq. (12) describes a region in (κs, κe) space above a hyperbola. Fig. 5 shows
a hyperbola for θe = 7

36π and θd = 4
9π. If (κs, κe) is inside the region and κs ≥ 0, there exists some curve

segment with monotonically varying curvature satisfying given conditions.
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Figure 4: G2 Hermite interpolation
κ
s

κ
e

Figure 5: A hyperbola for θe = 7
36 and θd = 4

9

For θe = 1
9π, θd = 1

3π and |Pe − Ps| = 1, Fig. 6 shows the (κs, κe) viable regions where curvature is
monotonically varying. For (κs, κe) points satisfying Eq. (12), if a curve with monotonically varying curvature
is generated, the point in the (κs, κe) graph is plotted in black. Otherwise, the point is remain in white. In Fig.
6(a), an explicit cubic B-spline curvature function with 4 control curvatures and knot vector [0, 0, 0, 1, 1, 1] is
used. In Fig. 6(b),(c),(d), an explicit cubic B-spline curvature function with 6 control curvatures and knot
vector [0, 0, 0, 13 ,

2
3 , 1, 1, 1] is used. The values of p for the interpolation using Eqs. (10), (11) are: (b) p = 0,

(c) p = 0.5, and (d) p = 1. In Fig. 6(e), an explicit cubic B-spline curvature function with 6 control curvatures
with knot vector [0, 0, 0, 0.0333, 0.966, 1, 1, 1] and p = 1 is used. If (κs, κe) is in the black region, a curve
segment with monotonically varying curvature exists satisfying the given G2 Hermite conditions. Fig. 7 (a)
and (b) show examples of curves satisfying the given G2 Hermite conditions whose (κs, κe) is in the black
region of Fig. 6 (a) and (e), respectively.

Fig. 8 shows examples of G2 Hermite interpolation for θe = 1
9π, θd = 1

3π and |Pe − Ps| = 1. Fig.
8(a) shows the region of (κs, κe) where curves with monotonically varying curvature can be generated. In
Fig. 8 (b),(c),(d),(e), (κs, κe) are the points denoted as a, b, c and d in Fig. 8(a), respectively. The degree
and the number of control curvatures are 3 and 8, respectively. The control curvatures and the knots are set
manually to make the curvature monotonically varying. Based on these results and other experiments we have
performed, proposed curves can match a wide variety of G2 Hermite conditions by appropriately specifying the
number of control points, control curvatures and a knot vector. Especially for the pairs of (κs, κe) denoted
as a, b and c, G2 Hermite interpolation with monotonically varying curvature is impossible by the previous
method[25].

5.4 Controlling the Curvature Variation on the Curvature Comb

Using an explicit B-spline curvature function provides a method to control the curvature variation by directly
modifying control curvatures on the curvature comb. This section shows examples of controlling the curvature
variation using explicit cubic B-spline curvature functions with 6 control curvatures.
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Figure 7: G2 Hermite interpolation examples

Fig. 9 (a) shows a curve segment and its curvature plot satisfying given G1 Hermite conditions. On the
curvature comb, appropriately scaled control curvatures are plotted as black dots in the normal direction of the
curve. In Fig. 9 (b), control curvature κ4 indicated by an arrow is moved. To control the curvature variation,
the control curvature can be interactively moved in the normal direction of the curve. To modify κ4, the scaled
(signed) difference between the original position of κ4 and the moved position in the normal direction of the
curve is added to the original κ4. After κ4 is modified, an optimization is performed to satisfy the given G1

Hermite conditions with κ4 fixed. In this example, κ1 and κ6 are used for optimization parameters. In Fig.
9 (c), control curvature κ5 indicated by an arrow is further moved. Note that large movement of a control
curvature may generate an undesirable curve shape including inflection points and curvature extrema, or may
not satisfy given G1 Hermite conditions. Controlling a control curvature can also be done in the curvature
plot.

Fig. 10 (a) shows G1 curve segments and their curvature plots. In Fig. 10 (b), control curvatures indicated
by arrows are interactively moved to make the curve segments G2 continuous. Modifying control curvatures
can also be used to make curve segments G2 continuous.
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Figure 8: Examples of G2 Hermite interpolation

6 CONCLUSIONS

In this paper, we proposed intrinsically defined curves based on explicit B-spline curvature functions. In the
proposed method, two of the control curvatures are used as an optimization for fitting G1 or G2 Hermite
interpolation conditions and other control curvatures (except for two control curvatures specified in case of
G2 Hermite interpolation) are either interpolated or user-specified. Given G1 or G2 Hermite interpolation
conditions, the proposed curve has a wider variety of curvature variation than our previous work[25] due to
the use of an explicit B-spline curvature function. We also proposed a method for interactively controlling the
curvature variation by moving the control curvature shown on the curvature comb or curvature plot. Future
work includes a method for automatically covering all the viable region of G2 Hermite interpolation and the
extension to space curves
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