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Abstract. Efficiently reconstructing the Prostate tissue from a sequence of 

magnetic resonance images is a critical job for fast male health examination in 
highly populated hospitals, which requires a fast examination with acceptable 

accuracy. Existing methods rely on rather heavy data-training processes or slow 
interactive manual selection to obtain an accurate segmentation result. In this 
paper, a trade-off between accuracy and efficiency is achieved by manually 
choosing a coarse region of interest that contains a target feature on the first 
image, and iteratively segmenting the current magnetic resonance image by 

detecting only the neighboring zones of the projection of the computed contour 
from the previous image, which avoids the computation in the vast useless regions 
of the images. The feature contour segments are acquired in a patch-by-patch 
manner where a patch corresponds to a sliding window. We performed validation 
experiments on PROMISE 12 data set, which reveals that our approach can lead to 
a Dice Similarity Coefficient of 89.21 ±1.82% and Relative Volume Difference of -
10.44±6.46% computed in an average time of 3 seconds plus an average 

preprocessing time of 10 seconds. 
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1 INTRODUCTION 

Prostate cancer incidence is ranked second in all men's cancer incidence rate all over the world [1] 

and prostatic hyperplasia is also a common disease of the elderly men. The diagnosis of prostate 
disease is carried out by using computed tomography (CT), biopsies guided by transrectal 
ultrasound (TRUS), and magnetic resonance imaging (MRI) [2]. MRI has gradually replaced TRUS 
and CT as the preferred clinical examination method due to its excellent performance in soft tissue 
imaging. The MRI images need to be visually inspected, and thus the examination results get 
influenced by the radiologist's experience; and this process is often time-consuming. Considering 

these, researchers have proposed many automatic or semi-automatic segmentation methods to 

overcome the difficulties caused by noise, non-uniform gray level, low contrast, and intensity 
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inhomogeneity. These segmentation algorithms of MR images are mainly classified into three 
categories: atlas-based segmentation, deep-learning based segmentation and model-based 
segmentation. In the following, we shall review the works closely related to the three categories 
mentioned above. 

The atlas-based segmentation selects a set of training images, then annotate their contours 
manually as labels [3-9]. The training images and corresponding contour labels called atlas and 
labelled atlas, are fused by non-rigid registration (NRR) to create reference images for segmenting 
new images [3]. In the process of non-rigid registration, the anatomical marks (special points or 
faces) of the atlas are parameterized and aligned with the corresponding parts of the target image 
to guide the deformation of the rest part of the target image. The corresponding labelled atlas 
indicates whether a voxel is part of the prostate or not [4]. The operation of label fusion can be 

done in many ways. For example, gray level averaging, majority voting (VOTE), simultaneous 

truth and performance level estimation (STAPLE) [5] and selective and iterative method for 
performance level estimation (SIMPLE) [6]. Many researchers have developed various methods 
based on the atlas-based segmentation. For example, Klein et al [7] proposed an automatic atlas-
based segmentation method that applied non-rigid registration to prostate MR image and binary 
atlas image, and then selected the best matched atlas image to segment medical image; Chandra 

et al [4] proposed an atlas-based deformable model, in which the image feature model was used 
to deform the initialized surface by template matching image features via normalized cross-
correlation to the features of the scan; Yang et al [8] proposed a prostate segmentation method 
based on 3D multi-atlas MR images. The above methods are suitable for training and learning 
medical images with sufficient image data, but the training needs the support of annotated image 
labels, which is often time-consuming. 

Many scholars combined traditional techniques with deep-learning methods to conduct image 

segmentation, which has been made possible due to the availability of a large quantity of 

annotated medical image data on the network [10-21]. Many net frameworks like Image-net [10], 
Alex net [11], VGG-net [12], Google net [13], U-Net [14], V-net [15], Fast R-CNN [16], DCAN 
[17], and GAN [18] can also be used for medical image segmentation. Zhu et al [19] proposed a 
convolution neural network with deep supervision, which can detect the fuzzy boundary of prostate 
tissue. Isensee et al [20] proposed a framework called no-new-Net (nnU-Net), which could be 
automatically adapted to any given medical subdivision data set without the need of manual 

adjustment of the parameters. Cheng et al [21] proposed a method of combining atlas-based 
active appearance model with deep learning model that initialized prostate contour with fewer 
atlas and improved the segmentation result with deep learning CNN model. These methods used 
deep-learning to achieve good results in segmentation. But they rely on a large scale of annotated 
data for training the network and complicated parameter adjustment to avoid over-fitting. 

Active Contour Model (ACM) is a popular model-based image segmentation method without 

using annotated image data. In medical image segmentation, ACM was first introduced by Kass et 

al [22]. It can provide a closed and smooth contour or surface of the target object and be applied 
to various 2D and 3D segmentation scenes [23]. According to the information used in the energy 
function, ACM can be roughly classified into edge-based model [24,25] and region-based model 
[26-29]. 

ACM can be incorporated with other techniques to improve its performance. For example, Yang 
proposed an efficient ACM with a new energy function using the globally convex segmentation 

method that included the edge information into the energy functional [30]. Wang proposed an 
ACM for image segmentation and bias correction, which considered both the spatial information 
and the local image contents [31]. The ACM with the prior information is one of the promising 
approaches in addressing this problem, where the prior information includes the location of 
interesting region, size and shape of object [32-41]. There are many similar approaches that utilize 
the prior information to segment the medical images. Yan et al [37] proposed a partial active 
shape model (PASM), which used some parts of the prostate contour with salient boundary 

features for shape estimation. Vikal et al [38] proposed a semi-automatic algorithm in which the 
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contour of prostate MR image slice is used as the prior information to estimate the adjacent slices. 
Andrade et al [39] used the prior knowledge of prostate shape to guide the evolution of initial 
contour, and used the energy function to segment the image. Yang et al [40] proposed a 
hierarchical prostate segmentation formulation via level set clustering with the prior shape 

information that used the medium image slice's location to reduce the impact of the background 
and guide the segmentation of other slices. Jia et al [41] used the prior information of prostate MR 
as the reference of image coarse segmentation, and then used the depth neural network to refine 
the image segmentation to obtain more accurate results. 

Inspired by the methods based on prior information, this work proposes an efficient method 
that uses the shape and brightness of the prostate as prior information to guide the subsequent 
image segmentation wherein the information of the brightness is inherently used in the boundary 

calculation of the Canny operator [42].  

The main contributions of this paper: Given a sequence of prostate MR images, we propose an 
interactive method to locate the rough contour of the prostate tissue of the first MR image in a fast 
manner (selected manually); after that, iteratively, the contour in the next MR image is obtained 
by investigating a narrow zone containing the projection of the current contour, which avoids the 
search among the vast useless regions and speeds up the computation efficiency. 

The remainder of the paper has been organized as follows: Section 2 presents the details of 
the developed approach; Section 3 presents the results of a set of validation experiments; Section 
4 concludes the paper with some discussions.  

2 OUR PROPOSED METHOD 

A fast medical image segmentation method based on the prior information of the target image is 

proposed in this paper. The prior information of medical image is the experience and knowledge 
obtained from professional radiologists and related studies, including the image constraint 

information, the location of the region of interest (ROI), and the object's size or shape.  

In the following, Section 2.1 presents the prior information; Section 2.2 presents the crucial 
steps of reconstructing the 3D prostate model from a sequence of MR images; Section 2.3 
presents our patch-size segmentation algorithm for a single image. 

2.1 The Prior Information 

As an important gland of the male body, the dimension of prostate is generally no more than 
40mm × 30mm × 30mm [43]. According to the anatomical characteristics of the prostate, the 
contour of the prostate is gradually changed in the same sequence of MR images since the 
sampling interval is typically less than 1 mm. This property can be used as shape constraint 
information of the target. The contour obtained in the current image can provide shape constraint 

information for the next image. In addition, the prostate, the adjacent bladder, the muscle, and 

other tissue components have different brightness in MR images. These properties can be used as 
the prior information for image segmentation, which is presented in the following section. 

2.2 An Efficient Image Segmentation Algorithm 

Given a sequence of MR images, the core idea of the algorithm proposed in this paper is using the 

prior information of the prostate contour as the shape constraint to guide the search of the contour 
of the prostate in the next image. Typically, a prostate is smooth, and the change between two 
thin slices is small. Therefore, we can use the known contour to limit the ROI of the images to be 
segmented. In this way, we can avoid the search in the useless regions and reduce the 
computation cost, thus achieving the purpose of fast image segmentation. Since there is no 
accurate contour information for reference for the vague MR images, we can manually mark a 
rough region that contains the prostate on the first MR image and use it as reference to segment 

subsequent images. Note that many prostate MR images are vague such that any algorithm may 
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not be able to correctly identify a precise contour of the prostate than our human eyes. For 
example, in Figure 1(a), it is reasonably hard for any computer algorithm to identify the exact 
zone of the prostate (Figure 1(b)), which requires a lot of effort of training and parameter 
optimization. However, as shown in Figure 1 (c), our human eyes can intuitively identify the 

prostate, and therefore we can draw a zone of the prostate efficiently (but slightly different from 
the ground truth). Thus, the manually identified prostate contour on the first image is taken as the 
prior information to identify the prostate contours on the next MR images iteratively. 

 

 
                (a)                          (b)                         (c) 

 

Figure 1: The prostate MR image: (a) the original image, (b) the ground truth of prostate marked 

with a red curve, and (c) the manual selection of ROI (green curve). 
 

At the beginning, we load a sequence of prostate MR images of a patient, where the sequence 
corresponds to a range of male-body that contains the prostate tissue (scanning other parts of the 

body is meaningless); and then choose the middle image of the sequence, which contains a 
contour of the prostate. The major steps for constructing the 3D model of the prostate are as 
follows: 

• Mark a rough ROI of a middle image manually. 
• Segment the image into ROI and background. 
• Compute the feature contour in the ROI take it as the reference, and invoke Algorithm 2 in 

Section 2.3 to obtain the accurate contour of the prostate in an adjacent image.  

• Repeat the previous step until no new contour is detected. 

• Reconstruct the 3D prostate model based on the set of contours. 

In the following, Figure 2 and Algorithm 1 presents these steps in details. 

 

 
(a)                        (b)                            (c)                          (d)                (e) 

Figure 2: The major steps of our proposed algorithm: (a) Input the MRI image sequence, (b) 
Mark the rough ROI of first image manually, (c) Segment precise contour of each image of the 
prostate using Algorithm 2 in Section 2.3, (d) Obtain a sequence of precise contours, (e) 
Reconstruct the 3D model based on the segmentation. 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 19(1), 2022, 38-53 

© 2022 CAD Solutions, LLC, http://www.cad-journal.net 
 

42 

Algorithm 1  Reconstruct_Prostate(M) 

Input: A sequence of MR images M; 

Output: The 3D model of prostate reconstructed;   

1. Mi :=the first image containing the target tissue; 

2. mark the approximate ROI of Mi manually; 

3. C : = ;  

4. Ci := the target contour in set Mi;  

5. j = i ; 

6. while  (i ≠ -1 or j ≠ |M|)  do   

// process the while loop if any forward or backward adjacent image exists in the set 

if  Compute_Current_Feature_Contour(Ci , Mi-1) ≠ NULL  then  

// keep computing the feature contour of the previous image in sequence 

Ci-1:=Compute_Current_Feature_Contour(Ci , Mi-1); 

i := i -1; 

if  Compute_Current_Feature_Contour(Ci , Mj+1) ≠ NULL  then 

// keep computing the feature contour of the next image in sequence 

Cj+1 :=Compute_Current_Feature_Contour(Ci , Mj+1); //forward computation 

j := j +1; 

7. C :=C {Ci}; 

8. Reconstruct the 3D model of prostate based on C;  

 

2.3 Our Proposed Segmentation Algorithm  

In this section, we shall elaborate on using the shape constraint information of the segmented 

object (of the previous image) to calculate the contour of the prostate tissue in the current image.  

The manually selected contour includes the ROI that contains the target contour and is very 
helpful in local image segmentation (around the target object), which merely uses local image 
information rather than global image information. In processing each image, we select a sequence 
of reference points (sampling over the contour by an interval of 5) along the already computed 
contour (in the previous image) to locate the sliding window for our local image segmentation in 
the current image. Since the shape of a nut liked organic object is changed gradually, we can 

choose an appropriate dimension to ensure that the real boundary of the target feature is included 
in the sliding window. 

Many edge detection algorithms have been proposed based on gradient and Laplacian 
derivatives, which are critical in image processing. The edge detection algorithm based on the 
traditional method is calculated by detecting the maximum value of the first derivative or the zero 
crossing of the second derivative. Although the first-order differential operators such as Roberts 

operator, Prewitt operator and Sobel operator have many advantages in simple calculation and fast 
implementation, they are more sensitive to noise [44-47]. The second order differential operators 
(including Laplace operator, LOG operator and Canny operator) have better robust performances 
to noise by filtering the image before the edge detection. All these algorithms are not designed to 
identify high frequency impulse noise [48]. In practical applications, medical images contain the 
boundaries, shadows and noises of objects, so these algorithms are difficult to distinguish the 
original edges from noises or trivial geometric figures. For this reason, we have carried out medical 

image segmentation experiments on different operators. The experimental results are available in 
the Appendix at the end of the paper, and Canny operator is finally chosen. 
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The first step of the traditional Canny algorithm is to smooth image. Canny algorithm deduced 
the first derivative of Gaussian function, which is the best approximation of the optimal edge 
detection operator. The second step is to use limited difference of 2*2 neighboring area to 
calculate the value and direction of image gradient [49]. And then the Canny algorithm performed 

non-maximum suppression (NMS) to locate the edge points each of one-pixel width. Finally, the 
double-threshold method is used to select edge points [50]. 

In our case, each MRI images is of size 128*128. In order to narrow the search range, 
meantime to ensure that the Canny operator can effectively calculate the image gradient, the size 
of the sliding window used in the proposed algorithm should be larger than the neighboring area of 
Canny operator, but no more than a quarter of the original image. Through a trial-and-error 
process by testing the sliding window of size 5*5, 7*7, 9*9, 11*11 and 13*13, it is found that 

11*11 is a reasonable choice for the images with nice accuracy and efficiency. 

We use the Canny operator to obtain the contour information in this window. By moving the 
sliding window continuously along the reference contour, the entire contour of the target feature 
can be obtained by stitching the contour segments together. Formally, given the reference contour 
Ci of the former image and the current image Mi+1, our algorithm of computing Ci+1 for Mi+1 is 
presented as follows. Note that the forward computation of Ci-1 for Mi-1 can be done similarly. 

 

Algorithm 2  Patch_Size_Segmentation (Ci , Mi+1) 

Input: The reference contour of former image Ci and the current image Mi+1; 

Output: Ci+1; 

1. Ci+1 := ; 

2. P:= all boundary points of the reference contours; 

3. for  each point pi for every interval of k points along Ci  do 

set pi as the center of the sliding window; 

Ii := the sub-image covered by the sliding window centered at pi; 

Si := the feture contour in Ii by invoking the Canny operator; 

 Ci+1 := Ci+1 {Si}; 

4. return Ci+1; 

 

Figure 3 shows the contour segmentation process. The first row of Figure 3 presents the process of 
computing the boundary of the prostate tissue in the same MR image, where the rightmost 
rectangular box in each image indicates the current position of the sliding window. The second row 
of Figure 3 presents the sub-images extracted by the sliding window at the corresponding 
moment, and the third row presents the results of image segmentation of each sub-image. A 

portion of the boundary obtained from the previous image is enclosed in a rectangular box in each 
image. The small rectangle in each image of the third row indicates the portion of contour obtained 
from the previous window, which is also the common contour part of the two consecutive contour 
portions of a pair of adjacent windows. 

3 EXPERIMENT 

In this section, we present the validation of the developed algorithms by conducting prostate MR 
image segmentation on a data set. Section 3.1 presents the data set and our evaluation method, 

and Section 3.2 shows the segmentation results, Section 3.3 shows our 3D reconstruction results, 
and finally, Section 3.4 shows our comparison with existing typical results. 
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Figure 3: Identifying an accurate contour. Colored windows indicate the sliding window’s 
positions. In the third row, large rectangle boxes represent the results obtained by using edge 
detection in each iteration, while the small rectangle box shows the overlap between two 
iterations. 

3.1 Data Set and Evaluation Method 

To demonstrate the proposed algorithm's performance, we conducted our experiments on Prostate 
MR Image Segmentation 2012 (PROMISE12) data set [51]. 

The data set of PROMISE 12 has 50 training-sets and 30 test sets (and each set contains 32 
images). The dataset is transversal T2-weighted and from multi-centers. In general, the pixel 

intensities and the appearance characteristics of prostate MR images may be greatly different due 
to signal-to-noise ratio, bias, and instrument resolution [51]. The resolution of the images is 128 × 
128 pixels, and the image intensities of different groups may also have significant variations. For 
validation, we randomly selected 10 data sets from PROMISE 12 that contains the ground truth to 
demonstrate the performance of our proposed algorithm. 

Our algorithm has five main parameters:  represents the step length (in terms of pixels), 

which is the moving distance of the sliding window from one sub-image to the next,  represents 

the sub-image dimension,  represents the Gaussian filter coefficient, the built-in parameter of 

image denoising before image segmentation,  represents the ratio of non-edge pixels in each 

sub-image, and  represents the stimulus value that Canny operator recognizes as pixel boundary. 
During the process of the experiment, the main parameters of image segmentation are set by 

default as follows: , , ,  and .  

To measure image segmentation accuracy, we use Dice Similarity Coefficient (DSC) [52]and 
Relative Volume Difference (RVD) [53]. DSC is one of the most commonly used overlap-based 
indicators. It is mainly used to measure the proportion of the same pixels between the 
segmentation result and the ground truth, where higher values represent more accurate 

segmentation results. RVD is also an important indicator used to measure whether the 
segmentation result is over-segmentation or insufficient segmentation than the ground truth 
value. DSC and RVD are defined as follows. 

  DSC(X,Y)=                                                       (3.1) 

  RVD(X,Y)=( - 1) %                                           (3.2) 
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Where  is the number of non-zero pixels of the set X, and X is the segmentation results of 
proposed algorithm, and Y is the ground truth provided by the datasets. The value of DSC ranges 
from 0 to 1, and the higher the value of DSC is, the more accurate the result of the algorithm is. 
The value of RVD is the percentage of the difference between the obtained volume X, and the 
ground truth volume Y. A positive RVD value indicates under-segmentation of the prostate. In 
contrast, a negative RVD value indicates over-segmentation. 

3.2 Segmentation of the PROMISE 12 Data Set  

We have implemented our algorithm in C++ with OpenGL API on a laptop with 8 GB RAM. The 
segmentation results of 10 randomly selected data sets from PROMISE 12 are shown in Figure 4, 
Table 1 and Table 2. In Figure 4, the first row shows the original medical images whose prostate 
components are marked with red curves according to the ground truth provided by the PROMISE 

12. The second row shows our segmentation results. The white shadow parts are the segmentation 
results of our proposed algorithm, and the ground truth are marked with red curves for 
comparison. The third row shows the results of overlapping the segmentation results with the 
original images. As shown in the second row, the segmentation results of our proposed algorithm 
for prostate MR images are almost the same as the ground truth. Although the results are 
reasonable, our segmentation results are over-segmented slightly, i.e., the contour obtained is 
larger than the real value. The over-segmentation can be attributed to the choice of segmentation 

parameters, especially the dimension of sub-images (or sliding windows). In our example, the size 
of each sub-image is set to 11×11; in general, this can be determined through a set of simple 
segmentation experiments on a small sample of images.  

    Among the five parameters related to our algorithm, we find that the change of sub-image size, 
the percentage that pixels do not belong to edges, and the threshold rate has a more critical 
impact on the segmentation results. In contrast, the pixel moving step and Gaussian filter 

coefficient changes have subtle influence on the segmentation result. Although a larger pixel 
moving step can reduce the amount of calculation in the segmentation process, the segmentation 
result may be discontinuous or unstable if it is too large. Due to segmentation errors, the pixels 
that were determined as boundary edges earlier may be mistakenly treated as non-edge in 
the subsequent calculations. Therefore, for the pixel moving step-size, 5 was found to be a 
reasonable choice in our case after a simple experiment. Usually, Gaussian filter parameters 
are used to filter the image noise in the process of image preprocessing. Our algorithm can 

weaken the impact of noise by only focusing on a small local region of interest. Therefore, the 
Gaussian filter parameters have little effect on the segmentation results. 

In Table 1 and Table 2, the evaluation of segmentation results from 10 random data sets of 
PROMISE 12 are presented, which are indexed from a to j. Note that each set of data contains 32 
images. It is noted that the numbers of MR images containing the prostate in each data set are not 

consistent, and we also list them in Table 1. Also, we also record the maximum, minimum, and 
average DSC (Table 1) and RVD (Table 2) values of each data set. The proposed method yields the 

average DSC of 89.21 ±1.82%. It indicates that the proposed method has reasonably high 
accuracy and robustness. The mean RVD is -10.44 ±6.46%, which means that the proposed 
method tends to yield an over-segmentation result. However, the small RVD value indicates that 
over-segmentation is acceptable. 

3.3 3D Model Reconstruction from a Contour Sequence  

Figure 5 shows the segmented contour sequences and their corresponding 3D reconstruction for 
the models in Table 1. The reconstruction times for models a-j are 0.058s, 0.057s, 0.057s, 0.062s, 
0.072s, 0.074s, 0.051s, 0.054s, 0.076s, 0.052s, respectively. For the 3D reconstruction of the 
prostate model, we simply triangulate the zone between each consecutive pair of contours, and 
make the first and last contours solid plates. 
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Figure 4: The images segmentation results of 10 random data sets from PROMISE 12. 

 

 
Image set 
number 

Number 
of images 

Maximum DSC 
value 

Minimum DSC 
value 

Average DSC 
value 

a Image 1 13 0.930769 0.789296 0.894687 

b Image 6 21 0.952865 0.767541 0.916436 

c Image 10 12 0.940283 0.748999 0.877896 

d Image 18 29 0.939687 0.779931 0.916799 

e Image 23 31 0.951122 0.745186 0.908472 

f Image 25 28 0.941955 0.754867 0.876209 

g Image 29 20 0.913971 0.765432 0.857853 

h Image 38 16 0.937323 0.776183 0.898916 

i Image 42 27 0.932042 0.765284 0.894847 

j Image 48 15 0.926923 0.757791 0.879006 

 

Table 1: The DSC values of the segmentation results 10 random sets of PROMISE 12. 

 

 
Image set 
number 

Number 
of images 

Minimum RVD 
value 

Maximum RVD 
value 

Average RVD 
value 

a Image 1 13 
-19.082278 

4.301158 -11.362784 
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b Image 6 21 
-20.724637 

6.681611 -13.624674 

c Image 10 12 -15.032081 8.212435 -7.553306 

d Image 18 29 
-20.635673 

7.883817 -16.473548 

e Image 23 31 -21.451483 11.15282 6.623682 

f Image 25 28 -23.968528 5.686636 -18.408493 

g Image 29 20 
-17.516775 

6.838488 -9.836724 

h Image 38 16 
-17.624831 

3.535004 -11.962915 

i Image 42 27 -16.806722 6.47925 -9.479252 

j Image 48 15 -20.493827 5.618812 -12.383417 

 
Table 2: The RVD values of segmentation results of 10 random sets of PROMISE 12. 

 

 
 

Figure 5: The results of 3D reconstruction of the models in Table 1. 

3.4 Comparisons  

For comparison purpose, we run our algorithm on a PC with Intel core i5-8250U CPU and 8 GB RAM. 
We compared the results of the proposed algorithm and other nine state-of-the-art prostate 

segmentation methods were chosen as the benchmark to evaluate our approach. Using PROMISE 
12 dataset (10 data sets each of which contains 32 images), Table 3 shows the comparison results. 

Among the nine comparison methods, Klein [7] and Toth [55] put forward the very classic theories 
and models, although they did not use PROMISE 12 dataset, we also listed their results for 
comparison purpose. Note that the remaining 8 approaches used the same models for comparison. 
Milletari [15] achieved the minimum average segmentation time, but it costed 48 hours for 
preprocessing and the DSC is only 86.9 ± 3.3. According to the scores listed in Table 3, the 

accuracy of our results is lower than those of Jia [41], Yu [55] and Tian [57], but we used 
significantly less time, and our algorithm is practical for implementation. 

Refer to Table 3, Klein used the method based on Atlas Registration. Before each segmentation, 
the map was registered for about 15 minutes, and the average segmentation time took 900 
seconds. Toth and Maan [57] used Active Shape Model and Active Appearance Model. In the 
process, the shape of the active model needs to be pre-defined, and the average segmentation 
time is about 150s and 100s, respectively. Qiu [58] and Tian used the active contour model, and 

the core and most time-consuming process of the algorithm are to construct complex energy 

equations. In other four methods, neural network is used to train the network for several hours 
before image segmentation. The preprocessing of our algorithm is to select a region of interest 
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(ROI) manually on the middle image of MR image sequence, this image will be taken as the first 
image of the sequence of MR images for the prostate. As discussed earlier, as the range of scan is 
chosen properly, this middle image is guaranteed to contain the target contour in its interior. By 
manual selection experiments, we find that this process can last for less than 10s since we may 

just roughly enclose a region. 
To summarize, our approach achieved an excellent trade-off between accuracy and running 

time among the ten methods listed. In other words, faster segmentation algorithms either 
consumes more pre-processing time or leads to larger DSC. Those methods with higher calculation 
accuracy lag behind ours in running time, while those faster than ours cannot reach our calculation 
accuracy, i.e., our method can segment prostate MR images with acceptable accuracy in a short 
time. In addition, compared with the similar results achieved by Qian and Tian, our approach is 

relatively practical to implement for users. 

 
 

Paper DSC(%) 
Preprocessing 

time 

Average 
segmentation 

time Type Data set 

Klein [7] 85-88 15min 900s automatic private 

Toth [54] 
87.66 ± 

4.97 4.5min 150s automatic private 

Milletari [15] 86.9 ± 3.3 48h 1s automatic PROMISE 12 

Yu [55] 89.43 4h 12s automatic PROMISE 12 

To [59] 89.01 5h 10s automatic PROMISE 12 

Jia [41] 91 ± 3.6 40min 120s semi-automatic PROMISE 12 

Tian [56] 89.3 ±1.9 / 35s semi-automatic PROMISE 12 

Maan [57] 81 ± 12 3h 100s semi-automatic PROMISE 12 

Qiu [58] 88.5 ±3.5 / 5s semi-automatic PROMISE 12 

Ours 89.21±1.82 10s 3s semi-automatic PROMISE 12 

 
Table 3: Comparison with other prostate MR segmentation algorithms. 

4 CONCLUSION 

In this paper, we propose an approach of identifying the contours of prostate features in a small 
set of MR images based on the prior information of the contour on the first image. Due to the 

small-scale (e.g., each of the experimental data set contains of 32 images), many advanced 
methods like neural network or unsupervised training processes involving machine learning cannot 
guarantee both accuracy and efficiency. The contour information on subsequent images is 
determined in a patch-by-patch manner. The patch is a sliding window whose center is the 

projection of a point on the prior information (i.e., an already computed contour). Our algorithm's 
significant advantage is that we merely focus on a local region of interest rather than the whole 
image when segmenting a medical image, which can effectively reduce the amount of computation 
in the image segmentation process and ignore noise and useless information in the other part of 
the image. We believe that the developed approach can be beneficial for fast male health 
examination in highly populated areas (e.g., China and India) whose hospitals are usually running 
out of their capacities. 

In practice, medical images are noisy, and the target tissue pixels' intensities might be similar 

to those of other tissues. These affect the accuracy of the segmentation results. The developed 
approach will have more advantages for many images with complex and vague backgrounds since 
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we have a local focus. However, our method also has certain disadvantages since it depends on 
the accuracy of prior information. If the initial reference contour is not chosen correctly, it might 
lead to poor segmentation results. Therefore, our approach's success depends on the region of 
interest's choice to accurately cover the target tissue. Our proposed method requires the 

assumption that the prostate tissue is contained in the first chosen image, this requires the scan 
range to be as precise as possible. According to the manual selection experiments, the time for 
marking a coarse region of interest can usually be done in 10s, which is significantly less than 
existing training-learning based methods. Also, manual selection works well when the prostate 
boundary is vague, in which case automatic approaches usually fail. 
      In the future, detecting the region of interest in the first image when the prostate tissue is out 
of the usual position will be worthy of investigation. Also, the algorithms need to be improved 

further to reduce computational time while improving accuracy.  
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APPENDIX 

 

 
 
Figure 6: The Segmentation results of different operators used in proposed algorithm. From top to 
bottom are the original images, the results of Sobel operator, Prewitt operator, Roberts operator, 
Canny operator, and Fuzzy Logical operator, respectively.  
 
Refer to Figure 6 and Table 4, in terms of segmentation results, Canny operator is superior to the 
first-order derivative operators like Sobel operator, Prewitt operator and Roberts operator, but it is 

inferior to the Fuzzy Logical operator. And Canny operator is significantly superior to Fuzzy Logical 

operator in terms of efficiency (~10 times). Therefore, Canny operator is exploited as an edge 
segmentation tool for the medical images with noise and indistinct edge information. 
 

 Sobel                      Prewitt Roberts   Canny   Fuzzy 
Logical 

Image1 0.320949 0.284765 0.277686 0.291681 3.040971 

Image2 0.255813 0.231197 0.271382 0.282608 2.264425 

Image3 0.298008 0.243339 0.256423 0.306242 2.919713 

Image4 0.248287 0.242393 0.312632 0.309851 3.931292 

Image5 0.290793 0.281304 0.263489 0.256831 2.489202 

 

Table 4: The segmentation time of different operators in the proposed algorithm. 

http://www.cad-journal.net/

