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Abstract. Nowadays, medical image plays an important role to e�ectively assist clinicians in
disease diagnosis and treatment process. However, the image resolution in the axial spatial
direction is obviously lower than the cross section direction due to the in�uence of radiation
doses and scanning times. This phenomenon will adversely a�ect the accuracy of computer-
aided diagnosis (CAD). Thus, it is necessary to focus on the research of medical image slice
interpolation. In this paper, a fast and �exible volumetric interpolation of method based
on spatial geometry polynomial �tting is presented, in order to obtain the high resolution
reconstruction results in any direction and proportion. Based on the similarity between
medical sequence images, three consecutive CT slices in 3D space are used to reversely
reconstruct the �tted space geometry that approximates the original scene, while resampling
the space geometry to generate new voxels. First, the reverse sampling on original slice
sequence is adopted to locally construct a ternary quadratic polynomial space geometry,
which is used to generate the unit space geometry by weighted average. Then, all unit
space geometries are pieced together to �t the space geometry. Finally, the spatial geometry
is resampled to reconstruct the inter-layer slice. In our experimental results, the proposed
method performs the best in average gradient, RMSE, DSSIM and time complexity metrics,
allowing for better visual evaluation.
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1 INTRODUCTION

As an active research topic, image interpolation and super-resolution reconstruction have achieved wide-
spread use in various branches of image processing, especially in the �eld of medical imaging [16, 20]. Medical
imaging technologies, such as computational tomography (CT), Magnetic Resonance Imaging (MRI) and
Positron Emission Computed Tomography (PET), are essential to disease diagnosis and surgery planning. For
example, CT imaging method usually expresses the acquired tomographic medical image data as a set of slice
sequences. However, the acquisition of CT images is accompanied by high dose radiation. To decrease the
radiation amount received by the patients, it is a common practice to reduce the sampling rate and improve the
scanning speed, which resulting in the loss of some valuable temporal information and remarkably large slice
interval. As a result, most medical imaging volumes are taken anisotropically with a high intra-slice resolution
and a low inter-slice resolution. This asymmetry in the resolution leads to problems such as clearly step-shaped
in 3D reconstructed models and rough or even broken tissue boundaries, which will undoubtedly a�ect the
accuracy of 3D visualization or image analysis. As such, an accurate and reliable method to upsample the low
inter-slice resolution, we refer to as the slice interpolation techniques [2, 11], is much needed.

In addition to generate the accurate 3D reconstructions, medical slice interpolation can also be widely used
in medical image segmentation [22], multi-frame super-resolution (MFSR)[15, 12] reconstruction where the
aim is to reconstruct high resolution images from their corresponding low-resolution sequences. By adding
new virtual slices between two consecutive images, as depicted in Figure 1, the number and information of
experimental data sets are increased, in order to boost MFSR and medical image segmentation accuracy.
Especially, increasing the amount of training samples is indispensable for the hottest research method, neural
network method. Therefore, it is necessary to develop image interpolation techniques, more speci�cally medical
image slice interpolation techniques, to increase the axial spatial resolution of the data acquired by medical
imaging modalities.
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Figure 1: Inter-layer interpolation in fault medical images.

In this paper, we propose a method that generates inter-layer slices based on spatial geometry polynomial
�tting, which can reconstruct an arbitrary number of intermediate medical slices from two consecutive slices.
An overview of our method is illustrated in Figure 2. First, the reverse sampling on original slice sequence
is adopted to locally construct a ternary quadratic polynomial space geometry, which is used to generate the
unit space geometry by weighted average. Then, all unit space geometries are pieced together to �t the space
geometry. Finally, the spatial geometry is resampled to reconstruct the inter-layer slices. This method was used
to increase the temporal resolution in CT sequence image and compared to the state-of-the-art interpolation
methods. We further conducted an ablation study to demonstrate the e�ectiveness of our motion network.

In summary, the contributions are summarized as following:

a) A fast and �exible medical image volumetric interpolation method is proposed based on spatial geometry
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Figure 2: Algorithm framework.

polynomial �tting theory, which can fast upsample the inter-layer slices from anisotropic volumes. The
method can be directly applied to interpolate images in arbitrary orientation and scale.

b) The theory of intra-layer pixel interpolation in cross image scale-down is applied to voxel data recon-
struction in 3D space. Unlike the traditional model that uses two consecutive images as input, it uses
three adjacent images as input to predict the motion trajectory information of the inter-layer image;

c) Using the relevant theory of computer graphics, the spatial geometry of three adjacent layer images is
�tted in 3D space, and then resampled to generate new voxels to reconstruct the inter-layer slices. The
time complexity is greatly reduced while achieving high quality results.

2 RELATED WORKS

Medical image slice interpolation technology has an important research signi�cance and has spawned a lot of
methods [21]. The methods for this task can be categorized into four groups: grayscale-based, shape-based,
alignment-based and learning-based methods.

Grayscale-based interpolation methods [10, 9, 23] directly use the grayscale information of the upper and
lower images in the original sequence, to interpolate the inter-layer images by a set of basis functions. Nearest
neighbor interpolation, linear interpolation, and cubic B spline function interpolation [7] are the common types
of such interpolation methods. In the case of small layer spacing, grayscale based interpolation methods are
widely used because they are computationally simple, low time complexity and easy to implement. However,
for CT image sequences with large structural deformation between adjacent slices, the interpolated images
obtained by this method are usually too smooth and contain much artifacts, which cannot accurately re�ect the
natural gradient of tissue contours. Subsequently, Goshtasby [4] proposed a matching interpolation method,
which improved the edge blurring problem to a certain extent and improved the accuracy of the interpolated
images, but with high time complexity.

Shape-based interpolation methods [18, 5] generate the contours of the slices interpolated directly from
the shapes of original slices in the upper and lower layers. Compared with the grayscale based interpolation
methods, it can e�ectively eliminate artifacts and improve the quality of interpolated images. However, the
shape-based method still has signi�cant limitations. On the one hand, it requires a high quality of tissue
contour, which is suitable for the case where the upper and lower slices are very similar. If the layer spacing is
too large or there are large structural di�erences between two consecutive CT images, it will seriously a�ect
the e�ectiveness of this method and lead to large errors in the interpolation results. On the other hand,
the extraction and representation of contours make this method complicated and reduce the e�ciency of the
algorithm.
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The alignment-based interpolation methods [17, 13, 2] are widely used to match the local anatomical
structures by �nding the correspondence between adjacent slices, and to obtain the deformation information
of the pixel points to be interpolated based on the found deformation �elds to achieve inter-layer interpolation.
The alignment-based interpolation can eliminate boundary artifacts while taking into account the various non-
rigid deformations of human organ structures, which can produce visually satisfying results. The popular
non-rigid alignment methods can be divided into two categories: alignment based on spatial transformations,
such as the B-sample-based free form alignment method proposed by Rueckert et al [19], and alignment
based on physical models, such as the alignment method based on optical �ow estimation [8, 14]. However,
the alignment-based interpolation methods have approximate calculations in the alignment process, which
may result in multiple pixels in the original image mapped to the same location in the interpolated image,
or anomalies in the new interpolated image where there are no pixels mapped to the original image, i.e.,
missing pixels. Compared with the shape-based and grayscale based interpolation methods, their computational
complexity is higher.

In recent years, the rapid development of deep learning has enabled neural network to bring new break-
throughs on medical image slice interpolation [6, 16]. Learning-based, especially deep learning-based slice
interpolation techniques have a good development prospect. However, its inherent unpredictability and un-
interpretability in handling sophisticated tasks are di�cult to meet in most practical application scenarios.
For example, medical images remain to be labled, and in addition, deep learning-based methods rely on large
amounts of training data.

In order to solve the problems of low interpolation accuracy or low e�ciency in above, this paper proposes
a method of slice interpolation for medical image based on spatial geometry polynomial �tting, which can
improve the computational e�ciency while obtaining better reconstructed inter-layer images quantitatively and
qualitatively.

3 METHOD

3.1 Basic Constraint Condition

The inter-slice interpolation method based on spatial geometric polynomial �tting depends on two constraints:
Condition 1: the pixels between the inter-slice image to be interpolated and the original image sequence

all change continuously, and they contain similar structures.
Condition 2: the similarity between the inter-layer image to be reconstructed and the original two consective

images is inversely proportional to the distance between the two images.
Suppose the distance between two consecutive images Sk, Sk+1(0 < k < t)is 1, and the image Sk+d(0 <

d < 1) to be interpolated consists of m × n pixels Pi,j,k+d, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, which can be
regarded as a sampling value on a three-dimensional geometry F (x, y, z). To facilitate discussion, each pixel
Pi,j,k+d is assumed to be sampled from a unit volume, that is,

Pi,j,k+d=

∫
k+d+0.5
k+d−0.5

∫
j+0.5
j−0.5

∫
i+0.5
i−0.5w(x, y, z)F (x, y, z)dxdydz, (1)

where w(x, y, z) is the weight function, and di�erent weight functions can be set in di�erent application
scenarios to obtain more accurate pixel values. If F (x, y, z) is known, the corresponding Pi,j,k+d can be
obtained from the formula 1. Therefore, how to construct a reasonable F (x, y, z) has become the focus
of this section. For the convenience of discussion, assuming that F (x, y, z) is de�ned on [0.5,m+ 0.5] ×
[0.5, n+ 0.5] × [0.5, t+ 0.5], where it satis�es the formula 1 for each pixel Pi,j,k+d, i = 1, 2, . . . ,m, j =
1, 2, . . . , n. Since the pixel values are generally integers, the formula 1 is approximately valid and the error is
less than 0.5. In addition, the weight function w(x, y, z) is set to 1.
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Figure 3: Pixels transform in 13 directions.

3.2 Building the Space Geometry fi,j,k(x, y, z)

Since F (x, y, z) can be an arbitrary polynomial function, it is di�cult to be constructed accurately only by
relying on the original image sequence. Therefore, we construct the approximate space geometry fi,j,k(x, y, z)
of the original space geometry. Depending on the numerical approximation theory, any continuous function
T (x, y, z) can be expanded into a polynomial Taylor series at a point (xa, ya, za) in a consecutive three-
dimensional space, which is an approximation of T (x, y, z) in the spatial neighborhood of point (xa, ya, za).

In three-dimensional space, the space geometry fi,j,k(x, y, z), i = 2, 3, . . . ,m− 1, j = 2, 3, . . . , n− 1,k =
2, 3, . . . , t−1 must satisfy the following conditions: if F (x, y, z) in formula 1 is a ternary quadratic polynomial,
then fi,j,k(x, y, z) can accurately reconstruct F (x, y, z), that is, fi,j,k(x, y, z)=F (x, y, z).

Let u = x − i, v = y − j, w = z − k, then fi,j,k(x, y, z) is written on [-1.5, 1.5] × [-1.5, 1.5] × [-1.5, 1.5]
space of the uvw space geometry:

fi,j,k(x, y, z)=a1u
2 + a2v

2 + a3w
2 + a4uv + a5uw + a6vw + a7u+ a8v + a9w + a10, (2)

where a1, a2, . . . , a10 is unknown coe�cients. Next, we will solve these unknown coe�cients. In order to
reduce the amount of calculation, this paper �rst discusses how to determine a7, a8, a9, and then calculate
the remaining seven coe�cients. Here, we take pixel point Pi,j,k as an example for convenient discussion.

Suppose F (x, y, z) can be de�ned by the formula 2, Pi,j,k is de�ned by the sampling formula 1, and then
it can be inferred that:

Pi,j,k = 1
12a1 + 1

12a2 + 1
12a3 + a10,

Pi−1,j,k = 13
12a1 + 1

12a2 + 1
12a3 − a7 + a10,

Pi+1,j,k = 13
12a1 + 1

12a2 + 1
12a3 + a7 + a10,

...

Pi−1,j−1,k−1 = 13
12a1 + 13

12a2 + 13
12a3 + a4 + a5 + a6 − a7 − a8 − a9 + a10,

Pi+1,j+1,k+1 = 13
12a1 + 13

12a2 + 13
12a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10.

(3)
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The calculated results are as follows:

a7 = e1 = (Pi+1,j,k − Pi−1,j,k) /2

a8 = e2 = (Pi,j+1,k − Pi,j−1,k) /2

a9 = e3 = (Pi,j,k+1 − Pi,j,k−1) /2

a7 + a8 = e4 = (Pi+1,j+1,k − Pi−1,j−1,k) /2

a7 − a8 = e5 = (Pi+1,j−1,k − Pi−1,j+1,k) /2

a7 + a9 = e6 = (Pi+1,j,k+1 − Pi−1,j,k−1) /2

a7 − a9 = e7 = (Pi+1,j,k−1 − Pi−1,j,k+1) /2

a8 + a9 = e8 = (Pi,j+1,k+1 − Pi,j−1,k−1) /2

a8 − a9 = e9 = (Pi,j+1,k−1 − Pi,j−1,k+1) /2

a7 − a8 − a9 = e10 = (Pi+1,j−1,k−1 − Pi-1,j+1,k+1) /2

a7 − a8 + a9 = e11 = (Pi+1,j−1,k+1 − Pi-1,j+1,k−1) /2

a7 + a8 − a9 = e12 = (Pi+1,j+1,k−1 − Pi−1,j−1,k+1) /2

a7 + a8 + a9 = e13 = (Pi+1,j+1,k+1 − Pi−1,j−1,k−1) /2

(4)

The reconstruction quality of the image edge has the greatest impact on the intuitive visual e�ect. There-
fore, it is necessary to ensure that each surface of the three-dimensional (3D) spatial geometry may re�ect the
edge characteristics of interpolation image as much as possible. In 3D space, each pixel has some correlation
with its surrounding adjacent pixels (up and down, left and right, front and back, diagonal). As shown in
Figure 3, in thirteen directions formed in the center pixel and its neighboring pixels, if the image pixel changes
slowly in a certain direction, it is more likely that the direction is the image edge, and if the image pixel varies
linearly in a certain direction, it is desirable to be a linear function along the direction.

There are thirteen equations in the formula 4. In order to re�ect the edge characteristics of the image as
much as possible, the constrained least square method is used to determine the three unknown coe�cients
a7, a8, a9 in this formula. The objective function G(a7, a8, a9) is:

G(a7, a8, a9) = w1(a7 − e1)
2

+ w2(a8 − e2)
2

+ . . .+ w13(a7 + a8 + a9 − e13)
2
, (5)

where wi(i = 1, 2, 3, . . . , 13) is the weight function and obtained by addition and subtraction of the equations
in the formula 3:

∆1 = Pi+1,j,k − 2Pi,j,k + Pi−1,j,k = 2a1,

∆2 = Pi,j+1,k − 2Pi,j,k + Pi,j−1,k = 2a2,

∆3 = Pi,j,k+1 − 2Pi,j,k + Pi,j,k−1 = 2a3,

∆4 = Pi+1,j+1,k − 2Pi,j,k + Pi−1,j−1,k = 2(a1 + a2 + a4),
...

∆12 = Pi+1,j+1,k−1 − 2Pi,j,k + Pi−1,j−1,k+1 = 2(a1 + a2 + a3 + a4 − a5 − a6),

∆13 = Pi+1,j+1,k+1 − 2Pi,j,k + Pi−1,j−1,k−1 = 2(a1 + a2 + a3 + a4 + a5 + a6).

(6)

If fi,j,k(x, y, z) in formula 2 is linearly changed in z axis direction, a9 should be determined by e3, that is,
w3 corresponds to a relatively large value. When the center point pixel is close to the linear change in z axis
direction, then ∆3 = 2a3 ≈ 0, thus w3 is inversely proportional to ∆3. In the same way, the remaining weight
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function can be determined. The weight function is de�ned as follows:

wi =
β

1 + α∆2
i

, i = 1, 2, . . . , 13, (7)

where α and β are the correction parameters, here the sum of these two parameters is 1. a7, a8, a9 can be
obtained by minimizing the objective function:

∂G(a7, a8, a9)

∂a7
= 0,

∂G(a7, a8, a9)

∂a8
= 0,

∂G(a7, a8, a9)

∂a9
= 0. (8)

The remaining parameter a1, a2, . . . , a6 is also determined by the least square method with constraints.
Constructing the objective function G(a1, a2, a3, ..., a6) =

∑
p,q,l=−1,0,1
p 6=q 6=l=0

wp,q,l(gp,q,l ()− Pi+p,j+q,k+l)
2
, where

wp,q,l is the weight function, the de�nition rules are the same as before. If fi,j,k(x, y, z) in formula 2 varies
linearly along the z axis, Pi,j,k+1,Pi,j,k,Pi,j,k−1 should be on the same line. Pi,j,k+1 and Pi,j,k−1 should play
a decisive role in the change of fi,j,k(x, y, z) along z axis, that is, the considerable value corresponding to
w0,0,−1 and w0,0,1 can be equivalent to w3 in formula 7. Similarly, other weights can be de�ned:

w−1,0,0 = w1,0,0 = w1, w0,−1,0 = w0,1,0 = w2, w0,0,−1 = w0,0,1 = w3,

w1,1,0 = w−1,−1,0 = w4, w1,-1,0 = w-1,1,0 = w5, w1,0,1 = w-1,0,-1 = w6,

w1,0,-1 = w-1,0,1 = w7, w0,1,1 = w0,-1,-1 = w8, w0,1,-1 = w0,-1,1 = w9,

w1,-1,-1 = w-1,1,1 = w10, w1,-1,1 = w-1,1,-1 = w11, w1,1,-1 = w-1,-1,1 = w12,

w1,1,1 = w-1,-1,-1 = w13

3.3 Correcting Spatial Geometry fi,j,k(u, v, w)

In order to ensure that the sampled pixel Vi,j,k+d satis�es the condition 0 ≤ Vi,j,k+d ≤ 255, in three-
dimensional space Ωi,j,k,Ωi,j,k = [i− 1, j − 1, k − 1] × [i+ 1, j + 1, k + 1], fi,j,k(u, v, w) needs to satisfy
0 ≤ fi,j,k(u, v, w) ≤ 255, which makes the spatial geometry fi,j,k(u, v, w) generated by f(u, v, w) weighted
average also satisfy 0 ≤ f(u, v, w) ≤ 255.

Therefore, fi,j,k(u, v, w) can be modi�ed to fi,j,k(u, v, w) = 255 × (fi,j,k(u, v, w)− fi,j,k(up, vp, wp)) ÷
fi,j,k(uc, vc, wc) when the following two cases are true. (1) fi,j,k(u, v, w) reaches the minimum value
fi,j,k(up, vp, wp) < 0 at point (xp, yp, zp); (2) fi,j,k(u, v, w) reaches the maximum value fi,j,k(uc, vc, wc) >
255 at point (xc, yc, zc).

3.4 Construct Approximate Space Geometry f(x, y, z)

This section will discuss how to use fi,j,k(x, y, z), i = 2, 3, . . . ,m− 1, j = 2, 3, . . . , n− 1, k = 2, 3, . . . , t− 1
to determine the approximation space geometry f(x, y, z).

Speci�cally, in each area [i, i+ 1] × [j, j + 1] × [k, k + 1] ,i = 1, 2, . . . ,m − 1, j = 1, 2, . . . , n − 1, k =
1, 2, . . . , t − 1, we construct a unit space geometry Bi,j,k(x, y, z), f(x, y, z) is then calculated from all
Bi,j,k(x, y, z) weighted combinations. Here is a discussion about how to construct H in two cases. In the �rst
case, when i = 2, 3, . . . ,m − 1, j = 2, 3, . . . , n − 1, k = 2, 3, . . . , t − 1, Bi,j,k(x, y, z) on the spatial domain
[i, i+ 1] × [j, j + 1] × [k, k + 1] is generated by the fi,j,k(x, y, z), fi+1,j,k(x, y, z), . . . , fi+1,j+1,k+1(x, y, z)
weighted average, that is,

Bi,j,k(x, y, z) = wi,j,k(x, y, z)fi,j,k(x, y, z) + · · ·+ wi,j+1,k+1(x, y, z)fi+1,j+1,k+1(x, y, z), (9)
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where,

wi,j,k(x, y, z) = (1− u)(1− v)(1− w) wi+1,j,k(x, y, z) = u(1− v)(1− w)

wi,j+1,k(x, y, z) = (1− u)v(1− w) wi,j,k+1(x, y, z) = (1− u)(1− v)w

wi+1,j+1,k(x, y, z) = uv(1− w) wi+1,j,k+1(x, y, z) = u(1− v)w

wi,j+1,k+1(x, y, z) = (1− u)vw wi+1,j+1,k+1(x, y, z) = uvw.

In the second case, we construct unit space geometry Bi,j,k(x, y, z) in the boundary area as follows,
B1,j,k(x, y, z), Bm−1,j,k(x, y, z), j = 1, . . . , n− 1, k = 1, . . . , t− 1

Bi,1,k(x, y, z), Bi,n−1,k(x, y, z), i = 2, . . . ,m− 2, k = 1, . . . , t− 1

Bi,j,1(x, y, z), Bi,j,t−1(x, y, z), i = 2, . . . ,m− 2, j = 2, . . . , n− 2.

Taking B1,j,k(x, y, z) as an example, as shown in Figure 4, B1,1,1(x, y, z) is de�ned by f2,2,2(x, y, z), and
B1,1,k(x, y, z) is de�ned by two spatial geometry fi,j,k(x, y, z) when i = 1, j = 1, k = 2, 3, . . . , t− 1, i.e.,

B1,1,k(x, y, z) = f2,2,k(x, y, z)(1− w) + f2,2,k+1(x, y, z)w (10)

Then B1,1,k(x, y, z) is de�ned by four spatial geometry fi,j,k(x, y, z) when i = 1, j = 2, 3, . . . , n− 1, k =
2, 3, . . . , t− 1, i.e.,

B1,1,k(x, y, z) = f2,j,k(x, y, z)(1− v)(1− w) + f2,j+1,k(x, y, z)v(1− w)+

f2,j,k+1(x, y, z)(1− v)w + f2,j+1,k+1(x, y, z)vw.
(11)

Other situations are also followed by the above rules bene�ted from its symmetry.

x

y

z

1 2

1

2

2,2,2 ( , , )f x y z

1,1,1( , , )B x y z

Figure 4: B1,1,1(x, y, z) is de�ned by f2,2,2(x, y, z).

4 EXPERIMENTS AND RESULTS

In this section, for the purpose of comprehensively evaluating the performance of the proposed method, we
design the related simulation experiments based on CT datasets. The performance of the proposed method is
evaluated from three aspects: visual e�ects, quantitative analysis and time complexity.
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4.1 Dataset

In order to verify the e�ectiveness of the method in this paper, we employ 448 CT scans for simulation experi-
ments, which were provided by the the First A�liated Hospital of Shandong First Medical University (Shandong
Provincial Qianfoshan Hospital). More speci�cally, we use the human chest (coronal, cross-sectional) and head
tomographic datasets. These three types dataset with di�erent layers spacing have been widely used in medical
imaging research tasks. Figure 5 provides example images, and Table 1 lists the related imaging information.

The reconstructed inter-layer image lacks real image basis for visual comparison and quantitative evaluation.
Therefore, during the experiments, four consecutive tomographic images were randomly selected from the
image sequences of group I, II and III. In each group, the �rst and the last two tomographic images were used
to reconstruct the inter-layer image, while the second image was used as the reference image to evaluate the
e�ect of image interpolation between layers.

Figure 5: Selected three sets of test image sequences.

Dataset NO. Data class Image size No.image Layer spacing(mm)

I Chest(coronal) 560 × 420 128 2.5

II Chest(cross-section) 560 × 420 128 2.5

III Head 364 × 436 64 5

Table 1: Experimental Data Information.

4.2 Evaluation Metrics

We compare di�erent approaches via three types of quantitative metrics: average gradient, root mean square
error (RMSE) and Structural Dissimilarity (DSSIM)[1].

The average gradient is a non-reference quantitative evaluation method, which represents the average value
of all points on an image gradient map. It not only can sensitively re�ect the texture change characteristics
and small detail di�erences in images, but also can measure the clarity of the image. The larger the average
gradient value, the clearer the image. The calculation formula is as follows:

Gave =
1

M ×N

m−1∑
i=0

n−1∑
j=0

(
∆x2+∆y2

2

)1/2

,

where ∆x = ∂f
∂x represents the gradient along x direction, ∆y = ∂f

∂y represents the gradient along y direction,

and M ×N represents the image resolution.
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RMSE is the root mean square error between the reference image IGT and the estimated interpolation
image Iip. The calculation formula is as follows:

RMSE =

 1

M ×N

m−1∑
i=0

n−1∑
j=0

(Iip(i, j)− IGT(i, j))

2
 1

2

,

where M × N is the image size. RMSE can be used to measure the pixel error between the interpolation
image and the reference image. The smaller the RMSE value, the more ideal the interpolation result, and the
higher the accuracy. It is worth noting that, RMSE is more sensitive to outliers, that is, if there is a large
di�erence between the predicted value and the simulated value, RMSE will also be large.

DSSIM is a common indicator to measure the degree of similarity between images, which can better
estimate local di�erences. It is a distance metric based on structural similarity (SSIM). The smaller the
DSSIM value, the smaller the degree of image distortion, which is closer to the real image. The calculation
formula is as follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

DSSIM(x, y) =
1− SSIM(x, y)

2
,

where µx and µy represent the gray mean value of the reference image and the interpolation image respectively;

σx and σy are the standard deviations; σxy is the covariance of x and y; C1 = (k1L)
2
, C2 = (k2L)

2
, and

k1 = 0.01, k2 = 0.03, L = 255.

4.3 Comparison of Visualization Results

The designated layer is selected from three sets of medical image sequences, and the original image of this
layer is simulated as an undistorted inter-layer slice. The designated layer is reconstructed during image
quality evaluation and compared with the original image. The actual layer spacing of these three experimental
datasets used in the simulation experiment is doubled on the basis of the original layer spacing. Therefore,
the interpolation results reconstructed by consecutive tomographic images with one image interval are slightly
di�erent from the original image, which is in line with objective reality.

(b)(a) (d)(c) (e) (g)(f)

Figure 6: Interpolation results of tomographic medical images: (a) Input image 1; (b) Interpolation result 1;
(c) Input image 2; (d) Interpolation result 2; (e) Input image 3; (f) Interpolation result 3; (g) Input image 4.

Two groups of interpolation results are shown in Figure 6 by selecting consecutive CT tomographic images
from Chest Dataset (lungs and abdomen). The color rectangular boxes (orange and blue) represent the four
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(b)Bicubic (c)shape(a)Orignial image (d)CLG (e)CLG-TV (f)proposed(b)Bicubic (c)shape(a)Orignial image (d)CLG (e)CLG-TV (f)proposed

Figure 7: Comparison of interpolation results by di�erent algorithms.

consecutive inputting slices, and the inside of the rectangular box show the inter-lyaer slices reconstructed by
the method in this paper. The arrows point to the area of obvious change. From an intuitive point of view,
the changes in the contours of the reconstructed images between layers are natural and consistent. The lung
CT slice contains information such as lung nodules and lung organ tissue texture. The interpolation results
show that the intermediate image obtained by this method does not lose relevant information. The internal
details are clear, and the e�ect of smooth transition can be achieved, which can e�ectively improve the axis
resolution between layers. It is worth noting that interpolation on CT sequence images does not generate
new lesion information, but the resolution of CT images is improved to make subsequent three-dimensional
reconstruction processing more convenient.

The traditional Bicubic interpolation method [10], Shape-based, CLG [3], CLG-TV [14] and the proposed
method were compared in experiments. These four comparison methods are all related classic methods that
have been cited and compared in literatures. In terms of visual evaluation, Figure 7, Figure 8, and Figure
9 respectively show the qualitative evaluation results of the above �ve methods on three di�erent medical
image datasets, and the representative visualization results. The rectangular frame is the main change area
of the image. By comparing the reference image and the interpolation result, it is obvious that this method
can interpolate to obtain a complete inter-layer image in subjective vision, and the edge blur and artifacts of
tissues and organs are signi�cantly improved. Compared with the interpolation method based on optical �ow
registration, the proposed method can achieve better or similar interpolation e�ect.

In order to compare the subtle di�erences of the �ve interpolation results more clearly, the partial magni�ed
diagrams in color rectangular boxes are shown in Figure 7, Figure 8, and Figure 9, respectively. By enlarging
the local details of the image, the quality of the image generated by various interpolation methods can be
more intuitively evaluated from the visual e�ects. It can be seen from thees �gures that bicubic interpolation
only uses the voxel center of the slice to be interpolated as the interpolation point, and is simply calculated
by using the weighted average of the 16 nearest sampling points. It cannot accurately re�ect the non-rigid
deformation process. The edges are obviously blurred. The shape-based method has signi�cantly improved
the artifacts in the reconstruction results, but the quality of the interpolated image is not high in the case of
more deformation details.

Based on CLG method, CLG-TV method uses complementary information between di�erent phases to
enhance the structure and texture details of the reconstructed image, which can re�ect the non-rigid deforma-
tion process, e�ectively eliminate the edge artifacts, and retain the contour information. But the phenomenon
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(b)Bicubic (c)shape(a)Orignial image (d)CLG (e)CLG-TV (f)proposed(b)Bicubic (c)shape(a)Orignial image (d)CLG (e)CLG-TV (f)proposed

Figure 8: Comparison of interpolation results of various algorithms 2.

(b)Bicubic (c)shape(a)Orignial image (d)CLG (e)CLG-TV (f)proposed(b)Bicubic (c)shape(a)Orignial image (d)CLG (e)CLG-TV (f)proposed

Figure 9: Comparison of interpolation results of various algorithms 3.

of tiny holes undountly a�ects the quality of the interpolated image. The method in this paper samples
three consecutive images to construct a 3D space geometry, because it considers the correlation e�ect of 108
neighboring points in the area around the point to be interpolated, and further eliminates the problem of gray
value discontinuity based on gray-level interpolation. It can solve the phenomenon of edge blur appeared in
the bicubic interpolation, reduce the di�erence between the obtained interpolation result and the original slice
signi�cantly.

In order to compare them more intuitively, Figure 7, Figure 8, and Figure 9 show the error image comparison
between these �ve methods and the original inter-layer image. It can be seen intuitively from the di�erence map
that this method has smaller error with the real image, which further shows that it can accurately reconstruct
CT images. By observation, this method is closer to the real image than the other four methods in the area
where the deformation is smaller.

Furthermore, 3D reconstruction experiments were carried out using consecutive lung CT images with 2.5
mm layer spacing provided by the First A�liated Hospital of Shandong First Medical University. We use this
method to reconstruct the inter-layer slices, then model the virtual lung tissues and organs via the medical
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image visualization platform 3D Slicer. The e�ect is shown in Figure 10. It can be seen that the direct 3D
reconstruction of lung tomographic images is not good enough, with obvious step-like phenomena and rough
tissue boundaries or even fractures. After reconstructing the inter-layer slice by this method to reduce the layer
spacing to 1.25mm, the 3D reconstruction e�ect is relatively perfect, and the step-like phenomenon disappears
obviously. Further, after 3D reconstruction with 0.625mm layer spacing, the step-like phenomenon basically
disappeared, the details and texture of blood vessels in the lung were greatly improved, which conformed to
the structural characteristics of human organs. The result can meet the requirements of 3D reconstruction
and visualization of medical images.

Figure 10: 3D reconstruction model of lung images: (a) The layer spacing is 2.5mm; (b) The layer spacing
is 1.25mm; (c)The layer spacing is 0.625mm.

4.4 Quantitative Evaluations

In order to further illustrate the feasibility of the method in this paper, Table 2 shows the quantitative data
of the reconstruction results from di�erent methods, where the rows represent RMSE and DSSIM from top
to bottom. Combined with the data in Table 2, it can be seen that, the method proposed in this paper has
the lowest average RMSE and DSSIM values, and has a greater advantage in objective numerical evaluation.
Compared with the bicubic interpolation, DSSIM value of this method is reduced by about 46.59% on average.
It is reduced by 18.55%, 15.13% and 5.77% on average compared to Shape-based interpolation, CLG method
and CLG-TV interpolation method respectively.

By analyzing the quantitative results of three di�erent datasets, it is found that this method performs
better on the �rst and second image sequences than the third group. It can be seen that this method can
better interpolate the interval between the layers. The image is less obvious for larger layer spacing, similar to
the CLG-TV method. The results show that the performance of this method in improving the spatial resolution
of medical images is better than bicubic interpolation, Shape-based method and CLG method, and slightly
better or equivalent to CLG-TV method.

The change rate of the gray value near the edge of the image can re�ect the clarity of the image. In order
to further illustrate that the method in this paper can e�ectively improve the edge blur, the objective index of
the average gradient is used to measure the clarity of the method. From Figure 11, the reconstruction result
obtained by this method is higher than the average gradient value obtained by the linear and shape-based
methods, and the image de�nition is obviously enhanced, which is similar to the result obtained by the CLG-TV
method to a certain extent. Our goal is to synthesize the pixels of the interpolated image while making the
interpolation result appear real and smooth in the human eyes.

As we all know, the existing quantitative evaluation results are not a good substitute for human visual
perception, and the continuity in time cannot be measured by numerical standards. We found that the visual
quality and competitiveness of our method are far greater than the numerical di�erence. The proposed method
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Image Dataset Metrics Bicubic Shape-based CLG CLG-TV Proposed

I
RMSE 19.3265 14.7652 16.1897 12.8430 11.4038

DSSIM 0.2579 0.2105 0.1891 0.1773 0.1577

II
RMSE 8.2821 7.1558 6.7615 5.7551 3.8255

DSSIM 0.0948 0.0205 0.0237 0.0142 0.0128

III
RMSE 21.4194 21.6622 21.8338 21.7167 20.5492

DSSIM 0.1701 0.1120 0.1162 0.1048 0.1089

Average
RMSE 16.3427 14.5277 14.9283 13.4384 11.9262

DSSIM 0.1743 0.1143 0.1097 0.0988 0.0931

Table 2: Comparison of RMSE and DSSIM values of di�erent interpolation methods.

Figure 11: Comparison of average gradients of di�erent methods.

uses the priori information of upper and lower layers to reconstruct the inter-layer images, so no new lesion
information which could be misleading to medical sta� is generated. In summary, the contour artifacts in the
interpolation result of the proposed method are reduced. Furthermore, the intermediate state of the smooth
transition of the organ tissue structure from one image to another can be simulated, which is bene�cial to
clinical diagnosis. As shown in Figure 10, the results of 3D reconstruction have greatly improved the internal
details of organs which medical sta� could otherwise have missed.

In actual clinical application, the system needs not only higher image quality, but also the real-time
calculation speed. The faster the calculation speed, the higher the practicability of the system. In the
process of solving the polynomial coe�cients of the proposed method, assuming that the number of pixels
contained in the experimental image is m × n, the time complexity of the process is O((m − 2) × (n − 2)).
The time complexity of the process of synthesizing pixels is O(m × n), so the total time complexity is:
max {O((m− 2)× (n− 2)), O(m× n)}, that is, O(mn).

Running on the Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz, 16 GB memory, the time required to
reconstruct a single image on three di�erent datasets by �ve methods evaluated is as shown in Table 3. It
can be seen that this method greatly improves the time e�ciency and reduces the reconstruction complexity
of a single image while obtaining the same accuracy as CLG and the CLG-TV methods. It is close to the
time e�ciency of the bicubic interpolation method, but the e�ect of the bicubic interpolation is not as good
as the method in this article in both qualitative and quantitative. Therefore, the method in this paper not
only achieves better reconstruction results in visual evaluation and objective values, but also has low time
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Image Dataset Bicubic Shape CLG CLG-TV Proposed

I 1.261 61.574 76.112 68.145 0.834

II 0.437 48.957 72.374 62.309 1.331

III 0.322 40.295 73.260 59.628 1.035

Average 0.673 50.275 73.915 63.361 1.067

Table 3: Comparison of running time (second) of di�erent interpolation methods.

complexity.

5 CONCLUSION

This paper proposes a slice interpolation method for medical image based on spatial geometry polynomial
�tting. This method uses three consecutive CT slices in 3D space to reversely reconstruct the �tting space
geometry that approximates the original space scene, and performs the calculation on the space geometry.
Resampling strategy helps to generate new voxels and reconstruct inter-layer slices. We carefully evaluate
our approach on three di�erent CT datasets and �nd that, comparing with other state-of-the-art methods,
the proposed method produces improvement in terms of visual quality and quantitative measures. More
importantly, the proposed method improves the e�ciency of slice interpolation for medical image. At the
same time, after interpolating the inter-layer slice via this method, the layer spacing of the medical CT image
is reduced. On this basis, 3D reconstruction is performed, the step-like phenomenon basically disappears, the
details and texture of the blood vessels in the lung are greatly improved, which is in line with human organs.
The structural features can meet the requirements of 3D reconstruction and visualization of medical images.

However, the sampling point range of this method is limited to 108 pixels around the area, where the prior
information is relatively simple. As a result, when the anatomical structure on two consecutive slices varies
greatly, the interpolation e�ect has limitations, such as artifacts or motion-blurriness. In the future, we will
expand the range of sampling points to fully describe the semantic information of the points to be interpolated,
and conduct more experimental demonstrations on di�erent scenarios and types of data. And the future work
also includes researching new functions to construct space geometry to improve the interpolation accuracy.
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