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Abstract. Path planning is one of the fundamental issues for automated valet 
parking system. However, current automatic parking system solutions simply 

choose the center of the parking bay as target parking pose, which is not the most 
suitable pose in many situations. Besides, it requires further study to effectively 

evaluate the parking trajectory; particularly, the path generator might not figure 
out the suitable trajectory if adjacent vehicle is improperly parked. This paper 
presents a low-risk parking pose and trajectory selection approach based on the 
information of the ultrasonic radar and vision. To evaluate the positions of 
obstacles and parking lines when parking, we design a virtual potential field that 

can effectively represent the real parking scenario. Thereafter, a Particle Swarm 
Optimization approach is used to determine the parking pose with the least risk. 
We use a trajectory configuration to define possible trajectory which connects the 
initial pose with the final parking pose, and thereafter optimize it by PSO as well to 
minimize the risk degree, and finally smooth the path by spline interpolation. The 
experimental results show that our method can adaptively adjust the parking poses 
in different parking scenarios, which leads to a feasible and smooth parking 

trajectory. 
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1 INTRODUCTION 

Automated Valet Parking (AVP) system is one of the hottest research topics in advanced driver-
assistance systems. Path planning is a crucial part of the AVP system. It’s responsible to calculate 
a reasonable collision-free parking path from the initial parking state to the desired goal position to 
help drivers finish the final parking process. Compared with driving on an urban road or highway, 
parking performs at a relatively slow speed but in a much narrower and more compact 

environment, which makes it difficult to find a feasible and suitable parking path. 
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1.1 State of the Art 

Several methods have been proposed to generate a feasible trajectory for the automated parking 

system. The most representative one is Reeds and Shepp [13], which first proposed a path 
planning method for car-like robots by connecting the initial position and target position with line 
segments and circular arcs to avoid obstacles. Wang et al. also presented a double circular 
trajectory generator for perpendicular parking based on geometrical information [19]. The 
drawback of these approaches is that the curvature is not continuous at the joints of the 
segments, meaning that the ego vehicle needs to stop at the joints which will induce faster 

wearing of the tires. Therefore, more and more researchers start to focus on continuous-curvature 
path generators. Fraichard et al. adopted Reeds and Shepp’s work and present a clothoid planning 
scheme where clothoid arcs are included to combine with line segments and arcs of circles [14]. 
Vorobieva et al. proposed a parallel parking method that generates smooth clothoid curves to help 

park the vehicle into tiny parking spots in one or more maneuvers [18]. Besides clothid curve, B-
splines was used to smooth the trajectory in [6] and Bezier curve was used in [8]. Some other 
methods using the geometric method can be found in [16, 17, 20]. 

Other than conventional geometric methods mentioned above, several randomized sampling-
based planning algorithms have been proposed for the planning task of the vehicles [2, 22].  
Jeong et al. proposed a planning algorithm based on Rapidly-exploring Random Tree (RRT) [3]. 
However, due to the compact environment of parking scenarios, RRT algorithm might find it hard 
to obtain a feasible path into the parking slot. 

The above methods merely discuss how to derive a feasible parking trajectory but have not 
discussed how to determine the path most suitable to the present parking scenario. Neural 

network scheme has been studied to implement in the parking process in [9]. But it highly relies 
on human expert’s knowledge and thus is hard to apply to the real-world parking scenario if 
training data is limited [16]. Li et al. formulated a dynamic model based on kinematic principle and 

environment information and introduced an interior-point simultaneous approach to optimize the 
model to derive the parking path [7]. Jing et al. al proposed a path planning algorithm based on 
sequential quadratic programming for parallel parking [4]. Some more work done with 

optimization can be found in [10, 21]. However, these optimization methods either minimized the 
length of the parking trajectory, which seems trivial since the lengths differ slightly in compact 
parking area, or tuned the curve to avoid collisions, which can only guarantee the path is feasible 
but not the most suitable.  
 

1.2 Contribution and Content of This Paper 

Many advanced driver-assistance systems using ultrasonic radar and camera are now commercially 
available for several manufacturers (e.g., Tesla and NIO). In this paper, we present a novel parking 

path planning algorithm for this kind of multi-sensor detection scheme. The proposed method is 
able to determine the optimal parking pose for parking the car in one maneuver from an arbitrary 

starting pose. The contribution of this paper are summarized as follows:  
• We fuse the ultrasonic radar and vision information with a modified artificial potential field 

algorithm. By assigning different weights for obstacles and parking lane markers, the 
algorithm can thoroughly represent the real parking scenario and treat different types of 
objects with different risks. This allows our path planning algorithm to effectively avoid 
obstacle collisions and park ego vehicle into the target parking slot. 

• Currently, most of the parking path planning algorithms choose the final parking pose by 

selecting the position at the middle of the parking slot or parking the car between two 
adjacent vehicles. However, in some parking scenarios, the former strategy may cause the 
ego vehicle to park too close to obstacles, while the latter strategy cannot handle the 
situation when there is no adjacent vehicle. To mitigate these problems, we propose a 

general parking pose selection algorithm that can determine the optimal parking pose for 
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different parking scenarios, including the case when some adjacent vehicle is not parked 
properly. 

• To generate a feasible trajectory from the initial parking state to the final parking pose. We 
present an innovative path planning algorithm that combines conventional geometric 

methods and an optimization-based method that utilizes PSO to tune the parking poses and 
trajectory control parameters and figure out the optimal parking path with the least risky 
degree, which makes our algorithm robust and effective. 

The paper is organized as follows: Section 2 introduces the methodology. Section 3 presents 
the experimental result conducted in MATLAB platform. Finally, conclusions and some discussions 
are given in section 4. 

2 METHODOLOGY 

Our approach mainly contains three steps: (1) a virtual potential field is constructed to help assess 
the risk degree within the parking scenario; (2) the final parking pose with the least risk is 
determined; (3) a smooth and effective path is computed to connect the initial pose with the final 
parking pose, and the path can be used to guide the vehicle’s parking maneuver. 

2.1 Artificial Potential Field Construction and Cost Evaluation 

Considering the high price of lidar, nowadays most vehicles use cameras or ultrasonic radar for 
advanced driver-assistance systems. The camera can obtain the lane line information on the road 
using lane-line detection algorithm, and the ultrasonic radar can quickly detect physical obstacles 
such as other vehicles and fences [15]. In this paper, an artificial potential field method is used in 
our approach to fuse the information of the ultrasonic radar and vision camera such that the 
circumstances around the vehicle can be better evaluated. 

Artificial potential field is a commonly used path planning algorithm introduced by Khatib [5]. 
However, considering that parking normally happens in narrow areas, directly using conventional 
artificial potential field method often fails to find a feasible solution [12]. Also, the algorithm cannot 
guarantee that the motion of the vehicle satisfies kinematic constraints. Therefore, in our 
approach, an improved artificial potential field method is developed to help evaluate the safety of 
the surrounding environment, and the parking path is defined geometrically and optimized in the 

configuration space. 

Let W  denote the 2-D Euclidean parking plane. To distinguish the two different types of 

obstacles in the neighborhood of the parking space detected by ultrasonic radars and cameras, the 
following notation is used in this paper [1]. Physical obstacles detected by ultrasonic radar are 

represented as the compact sets of points , 1,2,...,iOU i n  in W . And the parking lines detected by 

the camera are represented as , 1,2,...,iOC i m . As shown in Equation (2.1), the potential energy U  

at point x  is computed by summing up the effects of all the neighboring obstacles. For a specific 

obstacle point iOU or iOC , the potential energy at point x  is computed by Equation (2.2). 
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j j
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where ( )jd x is the distance from point x  to the obstacle j , j  is the potential repulsive constant, 

jQ is the range of the influence of obstacle j . During the auto-parking process, the ego vehicle first 

needs to ensure that it can avoid physical obstacles and maintain a safe margin with nearby 
vehicles, and park the entire car into the parking spot according to the parking line markers 

information. Therefore, for obstacles OU  detected by ultrasonic radars, maxjU , j , and jQ  are 

assigned with large values to ensure that the vehicle keeps a safe distance from obstacles. For the 
parking lines OC  detected by the cameras, these parameters are assigned with relatively small 

values. Their relationship is described in Equation (2.3). In this way, our algorithm can fuse sensor 
information and evaluate different obstacle’s effects on the car separately. 

 

 

 
 

Figure 1: The first row shows the parking scenario without nearby vehicles: (a) Parking lot map, 
(b) Potential filed (contour plot), (c) Potential filed. The second row shows the parking scenario 
when nearby vehicles are tilted, (d) Parking lot map, (e) Potential filed (contour plot), (f) Potential 
filed.  
 

Figure 1 shows two common parking scenarios and the corresponding potential fields. Figure 
1(a)(d) is the initial parking environment. The hatched regions denote obstacles detected by 
ultrasonic radars and the red lines denote parking line markers detected by cameras. Figure 1(c)(f) 

show the corresponding potential fields, and Figure 1(b)(e) are the contour plot views. The higher 
the potential energy (the yellower part in the figure), the more likely the vehicle collides with 

obstacles or crosses the lane lines. 

2.2 Optimal Parking Pose Computation 

To describe the final parking pose of the vehicle, three control parameters are used: vehicle 

center’s coordinate [ , ]x y , and the vehicle’s heading angle  relative to x-axis. Hence, the pose 

configuration can be represented as [ , , ]q x y . All possible final parking poses form the 

configuration space C , which is a Euclidean group of 2SE(2) R SO(2) . Let ( )A q be a subset of C  

referring to the points covered by the body of the vehicle at configuration q . After constructing the 

potential field, the risk degree for a given vehicle pose q  can be measured by sampling the vehicle 

coverage space ( )A q  and computing its average potential energy. Therefore, the problem of 

(a) (b) (c) 

(f) (e) (d) 
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selecting the optimal parking pose can be transformed into the problem of finding the vehicle pose 
that minimizes the average potential energy. 

 min

min max

( )

max

min max

1
)( ()p

p A q
oseq C

m qin Uf p
n
x x

y y y

s.t. x   (2.4)  

Where n  is the population of the sample and p  refers to the sample point in the vehicle coverage 

area ( )A q . Figure 2 demonstrates the pose sampling process where the background is the potential 

field generated previously. We first determine the area covered by ego vehicle’s current pose and 

sample discrete points within it (indicated as the black dots in Figure 2). The average potential 

energy of all sampling points is used to represent the risk of current pose and used as the objective 
function in Equation (2.4). 

 

 
 

Figure 2: The parking pose sampling demonstration.  
 

We then use PSO to solve the above optimization problem and determine the optimal pose. Within 
the configuration space C , particles are first initialized with an arbitrary pose configuration 

[ , , ]q x y . The velocity attribute t
iv  determines the particle’s position in the next iteration. The 

iteration rule is shown as follows: 

 1 1t t t
i i iqq v  (2.5) 

 1
1 1 2 2

t t t t t t
i i i i iv v c r Q q c r G q  (2.6) 

Where, t
iq  is the position of the particle i  at the t  th iteration, and t

iv  is the velocity of the particle 

i  at the t  th iteration. The first term in the velocity expression reflects the inertia of the particle. 

The second and third terms are the velocity components pointing to the optimal position of the 

individual and the optimal position of the swarm, respectively. The hyperparameters , 1c , and 2c  

have a great influence on the final result. In our experiments, we gruadually converge  from 1.0 

to 0.4. In this case, a strong  avoid the searching falls into local best solution at the beginning 

while a weaker  could speed up convergence once particles are close to the global best solution. 

For the individual and global acceleration coefficients, we use 1 1.5c  and 2 1.5c , which is found 

to determine the optimal solution efficiently, usually in less than 30 iterations. Within limit iteration 

steps, the global best cost becomes stable and its corresponding particle’s position [ , , ]bestq x y  

can be taken as the optimal parking pose. 
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2.3 Kinematic Model and Trajectory Definition 

Since parking is a relatively slow movement with small acceleration and jerk, several assumptions 

can be made: (1) the car is a rigid body; (2) the car is restricted to move in a plane; (3) there is 
no sliding at the contact point of wheels and the ground. Therefore, the kinematic model of the 
vehicle can be simplified as the Ackermann steering model, also known as the bicycle model. This 
kinematic model is illustrated in Figure 3(a). 
 

 
 

Figure 3: (a)Ackermann steering model, (b) Parking trajectory definition. 
 

In the reference coordinate system, [ , , ]x y  illustrate the vehicle’s pose. The ego vehicle rotates 

around ICP, instantaneous center of rotation, with radius R . v  represents the vehicle’s current 

velocity and  represents the heading angle.  refers to the steering angle and lr , lf is the 

distance from the center of vehicle to the front/rear axle. According to the non-holonomic 
constraints shown in Figure 3(a), the ego vehicle kinematics can be expressed as 

 

( )
cos( ( ) ( ))

( )
sin( ( ) ( ))

( )
sin( ( ))

dx t
v t t

dt
dy t

v t t
dt
d t v

t
dt lr

 (2.7) 

Where, 

 ( ) arctan tan( ( ))
lr

t t
lf lr

 (2.8) 

As mentioned in Section 1.1, several parking path generators have been designed using circular 
arcs and line segments and then the path is further smoothed. This is a straightforward and 

efficient approach by studying a driver’s behavior. In this paper, we follow these previous works 
and define the parking trajectory template as shown in Figure 3(b). Two arcs are used to guide the 
vehicle from the starting point A to point B, and then point B to point C, with the turning radius of 

2R  and 1R , respectively. Then, a line segment with distance d  guides the vehicle to reverse itself 

to the final parking position. It is worth mentioning that in the conventional geometrical-base 

methods, these trajectory control parameters, e.g. 1R , 2R , and d , are derived according to the 

parking environment’s geometric information, e.g. the corners of the parking slot. However, these 
methods are not robust and cannot guarantee to obtain a suitable parking trajectory. In the next 
section, we present an optimization approach to fine-tune these parameters and to figure out the 
optimal parking path with the minimum risk degree.  

(a) (b) 
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2.4 Optimal Parking Path Computation 

Let t denote a parking trajectory mentioned in Section 2.3, which can be expressed as 1[ , ]t R d . 

All the possible parking trajectories span a 2-D configuration space and can be represented as 

1 1 min 2 min max[ , ] | , ,0T t R d R R R R d d . Here, 
minR  is the minimum turning radius according 

to the Ackermann steering model. For a specific trajectory t , we sample several poses with a 

constant step along the path for each segment. When sampling, more sample poses are selected in 
circular arcs segment, since the car turning process is more likely to accidentally collide with 
adjacent obstacles. We then use these poses’ average covered potential energy as a measure of 
the risk degree of the trajectory. The optimal trajectory selection problem can thus be transformed 
into an optimization problem as follow. 

 min

min

max

1

2

1
( )( )

0

trajectory pos
q

et T t
f t fm

s.t. R

d

in q
n
R

R R

d

 (2.9)  

Where, 

 

2
1

2
1 2 1 1

2

1

2 cos 2

R
R

O

AO

AO O A R
 (2.10)  

Next, PSO is also implemented to search for the parking trajectory t  with the minimum potential 

energy in T . In this case, we search for the best trajectory in a two-dimensional space where the 

particle’s position configuration is 1[ , ]q R d  since 
2R  can be derived geometrically once 

1R , d are 

known according to Equation (2.10). Similar to pose computation, the iteration stops as swarms’ 
global best cost no longer drops. 

Since the path generated so far is a composition of circular arcs and line segments, it’s 
discontinuous on the tangent points. This means that the ego vehicle will either needs to be 
steered or stopped suddenly along the path, which should be avoided. Different smooth curves 
have been studied to use for creating a continuous-curvature path [11, 16]. Here, we solve this 
problem by sampling the trajectory to obtain discrete points along the path the same way as 
measuring the trajectory’s risk degree mentioned above. We then use a cubic spline curve to 
interpolate these points. The property of cubic spline guarantee that the reshaped curve’s second 

derivative is continuous and thus can avoid the above issues. Figure 4 is the curvature comparison 
before and after path smoothing process. From the figure, we can see that before smoothing (black 
line), the curvature is discontinuous as it changes abruptly at the points where segments connect. 

After interpolation, curvature continuity can be achieved (red line), which makes the generated 
path satisfy kinematic constraint and is able to avoid sudden steering during the parking process.  

 

 
 

Figure 4: Curvature comparison. 
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3 EXPERIMENTS AND DISCUSSION 

The proposed algorithm has been evaluated in MATLAB platform using a virtual parking lot map 
and random initial parking pose. Section 3.1 demonstrates the optimal parking pose computed 
under different parking circumstances. Once the final parking pose is determined, the path 

generator algorithm is tested with different initial poses in Section 3.2. Table 1 presents some 
specification parameters used in the experiments. In Figure 5-7, the center of the target parking 
spot is set to be the origin and is perpendicular to x-axis. 

 

Parameters Notation Value 

Vehicle length Lv  4.2 (m) 

Vehicle width Wv  1.7 (m) 

Wheelbase lr lf  2.7 (m) 

Maximum steering angle 
max  0.47 (rad) 

Parking plot length Lp  5.0 (m) 

Parking plot width Wp  2.5 (m) 

 
Table 1: Specifications of the vehicle and parking plot. 

3.1 Optimal Parking Pose Determination 

To evaluate the effectiveness of the proposed algorithm, we tested this pose optimization approach 
in several parking scenarios frequently encountered in daily life. Figure 5 shows three common 
cases in the underground garage, one ideal parking scenario, and two less perfect parking 

scenarios. Refer to Figure 5(a) and (d), case 1 shows the scenario when no adjacent vehicles exist 
t, and the parking process is only guided by parking lane markers. Refer to Figure 5(b) and (e), 

case 2 is the case when two vehicles are already parked on both sides, but too close to the right 
parking lane. Refer to Figure 5(c) and (f), case 3 is when the nearby vehicles’ heading is not 
perpendicular to the parking spot. Figure 5(a-c) show the optimal pose’s sampling condition in the 
potential field map. Figure 5(d-e) demonstrate the final parking condition. 
 

   

               
 

Figure 5: Optimal parking poses our approach determined in three cases.  

(a) (b) (c) 

(f) (e) (d) 
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The result shows that our approach is effective no matter whether the parking lane markers or the 
nearby obstacles exist or not. Thus, it is robust and general for different parking scenarios. 
Moreover, case 2 and case 3 show that our approach is capable to adjust the final parking pose to 
guarantee a safe margin between ego vehicle and adjacent vehicles. Even when the adjacent 

vehicles are too close to the target parking spot (Figure 5(e)) or rotated (Figure 5(f)), the final 
parking pose is adaptively adjusted to ensure that the driver and the passengers can get out of the 
car easily, and to avoid collisions when driving out of the parking spot. 
 

Parking Scenario Parking Pose x/m y/m θ/° Average Potential Energy 

Case 1 Center of parking spot 0.0 0.0 90.0 21.867 

Center of nearby vehicles 0.0 0.0 90.0 21.867 

Our method -0.01 0.02 89.93 21.924 

Case 2 Center of parking spot 0.0 0.0 90.0 23.048 

Center of nearby vehicles 0.2 0.0 90.0 22.828 

Our method 0.09 0.02 90.18 22.250 

Case 3 Center of parking spot 0.0 0.0 90.0 20.573 

Center of nearby vehicles 0.0 0.0 86.0 21.066 

Our method 0.06 0.03 88.78 20.356 

Table 1: Comparison of the pose result of our method with two common default poses.  
 

As shown in Table 1, we also compare the final parking pose selected by our approach with two 
common default parking poses, center of parking spot (widely used in vision-based scheme) and 
center of nearby vehicles (widely used in ultrasonic-based scheme). From the table, we can see 
that when no adjacent vehicles exist, our pose selection approach chooses to park the car at the 

center of the parking slot and set it perpendicular with the parking bay, which is the ideal pose. As 
for the case when adjacent vehicles are improperly parked, our approach can significantly reduce 

the average potential energy, also regarded as risky degree, by adjusting the position or heading 
angle to better fit in the scenario. 

3.2 Determination of the Optimal Parking Pose 

We tested the parking path generator with different initial positions and random parking scenarios.  

 

 

 
 

Figure 6: Optimal parking trajectories determined in three cases with our approach.  

(a) (b) (c) 

(f) (e) (d) 
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Figure 6 demonstrates the path our approach obtains in three different scenarios. The above 
figures (Figure 6(a-c)) are the template trajectories composed by line segment and circular arcs 
and optimized by PSO. The below figures (Figure 6(d-f)) are the trajectories after smoothing and 
the demonstration of the entire parking process. The result shows that our approach is capable to 

deal with arbitrary initial poses and different parking scenarios even when the adjacent car is not 
parked ideally. With our path generator, a feasible and suitable path can be derived to guide the 
vehicle to drive into the parking spot and park at desired parking pose. We find that the selected 
path with the least average risk tends to straighten the pose before the entire car enters the 
parking spot and then uses a long-distance reverse to finish the parking process, which is similar 
to human drivers’ behavior. 

We compared our path generator with a widely used approach [4]. The comparison result is 

shown in Figure 7. Both approaches generate feasible parking paths. A major difference is that the 

conventional method derives a feasible parking path by computing the possible turning radius and 
generates the path with Bezier curve, while our approach further evaluates each possible path and 
determines the one with the least risk degree. Besides, from the local perspectives, shown in 
Figure 7(b), we can see that our approach selects the final parking pose with a little rotation to 
better fit in this particular parking scenario. Moreover, since the parking lane markers are given 

with a small risky influence when constructing virtual potential field in our approach, the generated 
path adjusts the vehicle’s pose earlier than the conventional method and does not even cross any 
side of the parking lane during the parking process. The results indicate that the proposed 
approach can guide the vehicle to park into the target parking spot effectively and the 
performance is ideal even when some adjacent vehicles are not parked properly. 
 

  

 

 
Figure 7: Trajectory comparison between our method and conventional method. (a) Overall view, 
(b) Local perspective view. 

4 CONCLUSION 

In this paper, we presented an efficient parking path planning algorithm for the multi-sensor 

detection scheme. To efficiently fuse the information of ultrasonic radar and vision and represent 
the real parking environment, we developed a virtual potential field to help assess the risk degree 
of different parking poses and trajectories. In order to derive optimal parking pose, we 
transformed the pose selecting problem into an optimization objective and solved it using Particle 
Swarm Optimization to determine the final pose with the least risk. A template parking trajectory 
was defined to connect the initial pose with the final parking pose, which can be controlled by path 

configuration. Thereafter, the configuration was optimized by PSO as well to minimize the risk 
degree, and finally, the trajectory was smoothed by spline interpolation. 

The performance of the proposed algorithm has been evaluated via a set of MATLAB 
simulations. The experimental results showed that our approach can adaptively adjust parking 

pose to fit different parking scenarios. It is capable of changing the car’s position or rotating the 
heading angle to keep a safe margin with nearby obstacles, and ensuring the entire car is inside 

(a) (b) 
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the parking spot. Our path generator is robust to deal with different initial car positions and 
parking scenarios. Meanwhile, the curvature of the path is continuous after smoothing. We also 
found that the optimized trajectory is quite similar to an experienced driver’s behavior. 

For future work, we plan to apply the algorithm to other parking cases, e.g. parallel parking 

lots and echelon parking lots. In addition, a parallel computing scheme can be integrated into our 
approach to speed up the construction of the potential field that takes much computation time 
(which is now ~1 sec running via MATLAB on Inter(R) i7-10750H).  
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