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Abstract. The deformation behavior of a deformable part depends on its underlying ma-
terial. Properly distributing heterogeneous elastic materials over an object is important in
part design and becomes an active research topic in computer aided design and graphics.
This paper considers the problem of how to design heterogeneous elastic materials over a
hexahedral mesh model that commonly appears in computer-aided design and engineering
applications. Existing approaches to solving the problem typically apply L2 regularization
that is good for smoothly distributed material. Considering that many real-world objects
likely have sparse material distribution, we propose an optimization formulation with a care-
fully designed objective function and L0 regularization. An iterative algorithm is presented
to solve the L0-optimization problem. The L0 regularization encourages sparsity of the out-
put material distribution, which may facilitate some approaches for digital material design
in multi-material additive manufacturing. The experimental results show that the proposed
method can output material distribution to produce the desired deformation behavior.

Keywords: Hexahedral mesh, Deformation, Material distribution, FEM, L0-regularization,
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1 INTRODUCTION

The modeling of deformation of an object is a fundamental task in many applications. For example, in computer
graphics the deformation is used to describe the modeling process or the animation procedure. In product
design, the deformation is related to the function behavior of the target product. Note that the deformation
behavior of an elastic object depends on its underlying material. Thus theoretically the deformation can be
de�ned or controlled by specifying proper material distributions. However, directly setting materials over a 3D
object for the desired deformation behavior is a tedious and challenging task.

In this paper, we propose to design the material distribution of an elastic object by specifying forces applied
to some positions of the object and the respective displacement. Then the design problem is converted into
an inverse problem of optimizing the material assignment for individual elements of the object to match the
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speci�ed deformation behavior. This idea is actually borrowed from Xu et al's work [28], which proposed an
interactive approach using the force-displacement pair to design material of tetrahderal meshes. We extend
their idea to hexahedral mesh models. Hexahedral mesh models are quite common in computer-aided design
and engineering applications.

We also consider regularizing the material distribution with di�erent patterns. Xu et al.'s work adopts L2

regularization in material design, which is suitable for smoothly distributed material. If an object's material is
sparsely distributed, which is common in real world applications, a quantization is needed as a post-process.
We propose to use L0 regularization in our design problem, aiming to output sparse material distribution, which
is suitable for objects with sparsely distributed materials and may also bene�t 3D printing. In fact, as pointed
out in [16], recent multi-material additive manufacturing enables the fabrication of an object with deposition
of di�erent types of materials. However, the number of materials that can be deposited during the fabrication
process is limited. Thus to generate digital material compositions that can be printed and be able to achieve
the desired behavior, an exemplar-based approach is proposed in [16]. Our work uses L0 regularization to
encourage sparsity of the output material distribution, which can facilitate such exemplar-based approaches in
digital material design for additive manufacturing.

In summary, the contributions of the paper are in two aspects:

� We propose a method to compute the distribution of Young's modulus for hexahedral mesh models,
which can achieve desired deformation behavior.

� We formulate the problem as a minimization problem with L0 regularization to encourage sparsity in
material distribution and a numerical method is developed.

The rest of the paper is organized as follows. Section 2 reviews some related work. Section 3 presents
our material design method for hexahedral mesh models, which includes the formulation of the problem and
the algorithmic details. Section 4 reports the experimental results to demonstrate the e�ects of the proposed
method. Section 5 concludes the paper.

2 RELATED WORK

This section brie�y reviews physically-based deformation, material design of deformable objects, and regularized
parameter distribution, which are relevant to our work.

Physically-based deformation: Physically-based deformation is a common deformation technique in
computer graphics [19, 22]. It de�nes or simulates the deformation based on some equations or laws from
physics and mechanics [24, 3, 13]. To compute the deformation in practice, numerical methods such as the
�nite element method (FEM) are often used, which discretize objects into basic elements. To simulate the
mechanical properties of objects with inhomogeneous materials, various computational models and algorithms
have been proposed [27, 26], examples of which are homogenization coarsening and material re�ning methods.
The homogenization approaches [14, 9] use macroscopic materials to describe microscopic details. The material
re�ning methods separate di�erent materials so that each computational unit contains one material type,
making it easier to describe material properties in the simulation process. Recently, data-driven approaches
become popular to handle complicated nonlinear models [5].

Material design of deformable objects: The deformation behavior of an object depends on its under-
lying material properties. To create visually pleasing simulations, people studied the optimization of material
distribution in the past few years. Starting with visual e�ect in real life, Hasan et al. [11] provided a goal-driven
approach to design objects with ideal surface properties. Chen et al. [7] later proposed a numerical method to
design the rest shape instead of material parameters. Morovi£ et al. [18] explored the possibility of designing
color and mechanical variety with preference. Our work, however, focuses more on designing deformation
behavior through optimizing material properties in each hexahedral element. In 2010, Bickel et al.[4] proposed
a framework to design printed objects with expected mechanical behavior. After that, Skouras et al. [23]
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presented a method to design actuated deformable characters, allowing users to animate the resulting �gure.
These methods assumed available materials in real life and used discrete optimization or interpolation applied
to macro-level structures. In 2015, Xu et al. [28] proposed a material design method with material subspace
acceleration, which allows the interactive design of material distribution for elastic objects using applied forces
and displacements. Speci�cally, given applied forces and the desired displacements as input, the method
optimizes the material distribution such that the displacements meet the desired ones. For this purpose, an
optimization procedure with force-based objective function is designed [2]. Moreover, a strong regularization
is introduced to improve the numerical stability and impose some constraints on the optimization variable,
which may however result in less data �delity.

Regularization of parameter distribution: In addition to making the deformable object meet the speci-
�ed deformation, the distribution of the material parameters is preferably regularized. Bickel et al. [5] and Xu
et al. [28] proposed smooth distribution of the material parameters, which was implemented using L2 regular-
ization in optimization. The L2-optimization is easy to implement, but it is not very suitable for applications
with the requirement of sparsely distributed material, such as 3D printing where only a limited number of
materials are available. On the other hand, the sparsity of the material distribution can be implemented using
the L0 regularization. In fact, L0 regularization has been widely used in some �elds like image processing
[29, 30, 20] and mesh processing [12]. However, to the best of our knowledge, no previous work has been
proposed to use L0 regularization in elastic material design and optimization.

3 PROPOSED METHOD

Our material design problem can be described as follows. Given a hexahedral mesh, the user de�nes the
deformation behavior of the mesh by specifying applied forces at some vertices of the mesh and the corre-
sponding displacements, and we want to �nd the distribution of Young's modulus over the mesh such that
the deformation of the mesh caused by the prescribed forces matches the user speci�ed displacements. Here
we also assume a constant Poisson's ratio for all hexahedral elements. Thus the problem can be formulated
as an optimization problem that �nds the optimal Young's modulus. This section describes a �nite element
method based formulation and its numerical solution.

3.1 Construction of Finite Element Equations

Suppose the input hexahedral mesh has n vertices and m hexahedrons. We consider the �rst-order, linear
isotropic hexahedral elements. For a hexahedron e, the element sti�ness matrix Ke that relates forces and
displacements is [15]:

Ke =

∫∫∫
Ω(e)

BTDBdΩ(e) (1)

where Ω(e) is the element domain de�ned in the world coordinate system, D is the elasticity matrix to relate
stress and strain, and B is the strain-displacement matrix. For isotropic linear material, matrix D can be
expressed as

D =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1− 2ν 0 0

0 0 0 0 1− 2ν 0

0 0 0 0 0 1− 2ν


(2)
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where E is Young's modulus and ν is Poisson's ratio. Matrix B is de�ned as

B =
[
B1 B2 B3 B4 B5 B6 B7 B8

]
(3)

where

Bi =



∂Ni/∂x 0 0

0 ∂Ni/∂y 0

0 0 ∂Ni/∂z

0 ∂Ni/∂z ∂Ni/∂y

∂Ni/∂z 0 ∂Ni/∂x

∂Ni/∂y ∂Ni/∂x 0


(4)

with eight shape functions Ni corresponding to the eight nodes or vertices of the hexahdron. Shape functions
are used to determine state variables' value at any point of the element from the state variables' values at the
nodes of the element.

Note that di�erent hexahedral elements may have di�erent shapes. To simplify the computation, we map
each hexahedral element to a reference element that is a cube of size 2. Then Eq.(1) can be re-written as

Ke =

∫ 1

−1

∫ 1

−1

∫ 1

−1

BTDB|J|dξdηdζ ≈
NG∑
i=1

NG∑
j=1

NG∑
k=1

ωiωjωkB
TDB|J| (5)

where ξ, η, and ζ represent the local coordinates with respect to the reference element, and J is the Jacobian
matrix used to map the derivatives of shape functions from world coordinates to reference coordinates. In
Eq.(5), the right part is an integration process for numerically computing the element sti�ness matrix Ke. For
simplicity, we use Gaussian integration where NG is the number of integration points.

By assembling individual Ke, we get the global sti�ness matrix K. Given applied forces f , we can compute
mesh displacements u by solving the following linear system:

K(E)u = f (6)

which gives
u = K−1(E)f (7)

if E is known.

3.2 Construction of the Objective Function

Denote by ū the user-speci�ed displacements. Our goal is to design the Young's modulus distribution E ∈ Rm
such that the displacements computed from Eq.(5) match ū as much as possible. Hence we construct the
following minimization problem:

min
E

1

2
‖Su− ū‖2 + µR(E) s.t. E ∈ [Emin, Emax] (8)

where u ∈ R3n is the solution of Eq.(5), S ∈ R3c×3n is a selection matrix that maps the displacements
of all vertices to the displacements of the user-selected vertices, c is the number of the selected vertices,
Emin ∈ Rm, Emax ∈ Rm are the lower and upper bounds of Young's modulus, R(E) is a regularization term,
and µ is the weight balancing the �rst term (i.e., �delity) and the regularization term.
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In the above formulation, we adopt the displacement-based objective function which is more accurate
compared with the force-based objective function, as pointed out by Bickel et al [5]. While K(E) is linear in
E, the displacement vector u is not linear in E and thus the �rst term of Eq.(8) is not quadratic in E. In
addition, we often specify a few vertices that are to be �xed during the deformation, which helps to remove
unwanted degrees of freedom.

The regularization term is introduced to enforce the prior knowledge on the distribution of Young's modulus
and improve numerical stability. Particularly, we formulate the regularization using the L0 norm. The L0

regularization encourages clustering of similar material in adjacent elements. Let N be the set of two indices
of adjacent hexahedra. Then

RL0
=

∑
(i,j)∈N

‖Ei − Ej‖0 . (9)

In practice, a common constraint on Young's modulus is its validity (i.e., E ≥ 0). Although a few elements
or regions with negative Young's modulus might still be statically stable for the shape, the negative values
often result in odd dynamics or may lead to a non-invertible sti�ness matrix K. We propose to set box
constraints of the optimization variables using Emin and Emax. We think that enforcing box constraints is
more favorable than just a non-negative constraint since it is rare that Young's modulus ranges from a very
small to a very large value for a single object.

Note that our optimization is formulated in the full space, which facilitates imposing the box constraints.
While subspace techniques E = Φz (Φ ∈ Rm×r) are often used to speed up the calculation, the box constraints
become complex or ine�cient in the subspace. Particularly, when the number m of hexahedra is signi�cantly
larger than the number r of modes, the number of constraints will be much larger than the number of the
optimization variables in the subspace, which causes the optimization in the subspace to be overly-constrained.
Instead of directly enforcing such a constraint, Xu et al. [28] suggested adopting a regularization term with a
large weight to alleviate the issue of negative Young's modulus. However, increasing the contribution of the
regularization may lead to less accurate data �delity, and moreover there is no guarantee to get rid of it by
this approach.

3.3 L0-Optimization

Note that the L0 regularization term is non-di�erentiable. We cannot directly feed it into gradient-based
optimizer. To e�ciently solve the problem, we introduce the auxiliary variable Pi,j = Ei − Ej and re-write
Eq.(8):

min
E

1

2
‖Su− ū‖2 + µ

∑
(i,j)εN

‖Pi,j‖0 s.t. Pi,j = Ei − Ej (10)

Since Pi,j = Ei − Ej are equality constraints, we re-formulate the objective function via the augmented
Lagrangian method:

1

2
‖Su− ū‖2 +

∑
(i,j)∈N

(
µ ‖Pi,j‖0 +

rp
2
‖Ei − Ej − Pi,j‖2 + λij (Ei − Ej − Pi,j)

)
(11)

where rp is the coe�cient of the penalty term and λi,j is the Lagrange multiplier. Then we use the alternating
direction method of multipliers (ADMM) [6] to solve the problem. While other numerical methods can also be
used to solve the problem, the ADMM has some advantage that the problem can be converted into iteratively
solving two sub-problems, each of which is relatively easily solved. Speci�cally, we iteratively perform the
following three steps:
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1. First, we �x E and optimize the auxiliary variable P which is the collection of all Pi,j :

arg min
P

∑
(i,j)∈N

(
µ||Pi,j ||0 +

rp
2
‖Ei − Ej − Pi,j‖2 + λij (Ei − Ej − Pi,j)

)
(12)

It's a hard threshold problem. The auxiliary variable P can be solved point-wisely. For each Pi,j , we
can set Pi,j equal to zero or not and compare corresponding function value. Then, we have the update

strategy as: Pi,j = Ei − Ej +
λij

rp
if (Ei − Ej +

λij

rp
)2 > 2µ

rp
else Pi,j = 0.

2. Second, we �x the auxiliary variable P and optimize E. The L0 term is no longer active in this step.
Thus we solve

arg min
E

1

2
‖Su− ū‖2 +

∑
(i,j)∈N

(rp
2
‖Ei − Ej − Pi,j‖2 + λij (Ei − Ej − Pi,j)

)
(13)

The current objective function is di�erentiable. We can �nd the solution by either nonlinear conjugate
gradient or LBFGS method with box constraints.

3. In the third step, we update Lagrange multiplier λij in the same way as the original ADMM algorithm.
For each λij , we have:

λij ← λkij + rp(Ei − Ej − Pi,j) (14)

It is worth pointing out that here we design the update sequence in a way such that the e�ect of the
deviation phenomenon is reduced. Otherwise, if we �rst optimize Young's modulus, the augmented term and
Lagrange term play an essential role in a�ecting material distribution in the �rst iteration. When rp and λij
are not set properly, even if we use a warm start close to the optimal solution, these two terms may still be
prone to derivation from the warm start. As a result, if this derivation causes the current guess too far away
from the optimal solution, it will make the iterative process di�cult to converge to the solution.

4 EXPERIMENTS

In this section, we conduct experiments to evaluate the performance of the proposed method. We implement
the method using C++ and run all the experiments on a computer with Intel(R) Xeon(R) W-2133 and 32GB
RAM. Ceres is used for unconstrained nonlinear conjugate gradient or L-BFGS optimization. L-BFGS-B [31]
and SNOPT [8] are used for constrained optimization. Intel Pardiso [25] and Eigen lib [10] are used for solving
the sparse linear system. Also, a GUI is developed for interactive editing of user's inputs.

To facilitate the evaluation, we propose the following way to generate the ground truth values in the
experiments: Given an input hexahedral mesh model, we �rst assign homogeneous or heterogeneous distribution
of Young's modulus to the model. Then we select some vertices from the hexahedral model, apply some forces
at these vertices, and also choose a few vertices to be �xed. After that, we perform �nite element analysis
(FEA) using Vega FEM lib [1] to compute the deformation of the model. The computed deformation (i.e.,
vertex displacements) and the assigned Young's modulus values serve as the ground truth.

In testing, we take as input the applied forces and the corresponding computed displacements from FEA at
the selected vertices, together with the set of �xed vertices. Our method then computes the Young's modulus
for each hexahedral element and the deformation displacement for each vertex of the model. The evaluation
can be performed by examining the di�erence of the deformation displacements generated by our method and
the ground truth (i.e., generated by the FEA), and as well the di�erence of the Young's modulus distributions
generated by our method and the ground truth. Also in our experiments, we adopt constraints of Young's
modulus: 0 ≤ E ≤ 10.
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(a) Ground truth: continuous distribution 
of Young’s modulus

(b) Ground truth: deformation 
caused by the applied forces 
shown on the right

(c) Input: the displacements of the 
pink vertices on the right

(d) The results of L0 optimization:

E

Figure 1: L0-optimization on a bar model. (a): the ground true of Young's modulus; (b): the deformation
caused by applying a force to a few selected vertices shown in pink, which also serves as the ground truth;
(c): the displacements at the pink vertices computed in (b) are used as input in testing; (d): the result of our
L0-optimization.

(a) With one additional set of input (b) The results based on the input (a):

(a) With two additional sets of input (d) The results based on the input (c):

E

Figure 2: More inputs are added to the example in Fig.1. (a): displacement input at 1 additional set of
vertices; (b): the results of the optimization based on the input of (a); (c): displacement input at 2 additional
sets of vertices; (d): the results of the optimization based on the input of (c).

Our �rst example is a simple bar model consisting of 825 vertices and 512 hexahedra. The size of the bar
model is 5 cm ×5 cm ×50 cm. We �x the left side of the bar, which is highlighted in red. To generate the
ground truth for evaluation, we let the Young's modulus distribution of the bar change linearly from 6e7 Pa
on the left to 2e7 Pa in the middle, and to 0.5e7 Pa on the right. The color on the bar in Fig.1(a) depicts
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the Young's modulus distribution. A force is applied to a selected set of vertices on the right, which is shown
in pink. This force leads to a deformation of the bar, which is computed by FEA based simulation and shown
in Fig.1(b). Both Figs.1(a) and (b) then serve as the ground truth in our experiment.

Next we take the force and the displacement at the selected (pink) vertices as input (see Fig.1(c)) and
run our optimization algorithm to compute the Young's modulus distribution over the bar model. We aim to
�nd a distribution such that the resulting displacements at the selected pink vertices match the ground truth
(i.e., the results obtained from the FEA). In our algorithm, the optimization process stops when the primal
and dual residuals are su�ciently small. Following Boyd et al. [6], the residuals are chosen using an absolute
and relative criterion. We set absolute tolerance as 1e-2 and relative tolerance as 1e-3. If the optimizer cannot
achieve these residual tolerances, we stop at the iteration that follows a long plateau where our optimizer can
no longer reduce the primal and dual residuals. In this example, our algorithm takes about 1049 seconds to
give a solution that is shown in Fig.1(d). To evaluate the results, we use relative displacement error εu and
the relative di�erence εE of Young's modulus values, which are de�ned as follows:

εu = max
{v: the selected vertices}

‖SK−1(E)f − ū‖
‖ū‖

, (15)

εE = max
{e: all elements}

‖E − Ē‖
‖Ē‖

(16)

where E, Ē are the computed and ground truth Young's modulus values, respectively. It can be seen from
Fig.1(d) that our L0-optimization on the bar model can yield sparse Young's modulus distribution and achieve
the desired displacements with εu = 2.48%. Meanwhile, the computed Young's modulus distribution is very
di�erent from the ground truth with εE = 99.74%. This is actually not a surprise. Since our target is to match
the displacements only at a few selected vertices, there exist many material distributions that can achieve this
requirement.

It can be expected that when more pairs of forces and displacements are added as input to describe the
desired deformation behavior, the Young's modulus obtained in our solution may be closer to the ground truth.
This is demonstrated in Fig.2, where we add more inputs. Speci�cally, we select additional sets of vertices,
and use the displacements at these vertices computed by FEA earlier as input. We also let the force at these
vertices be zero. Then our optimization process gives improved solutions. Both relative displacement errors and
relative Young's modulus di�erence with the ground truth become smaller. That is, εu = 0.61%, εE = 29.86%
for the �rst case with one additional set of input, and εu = 0.53%, εE = 17.80% for the second case with two
additional sets of input. The computational time is about 1748 seconds and 1179 seconds for the �rst and
second cases, respectively.

The second example is a human sculpture model with 13886 vertices and 11948 hexahedra (see Fig.3).
Thus the number of variables is much larger than that of Example 1. We �x the vertices at the bottom. We
also assign Young's modulus values of 3e7 Pa, 1e7 Pa, and 5e7 Pa to the vertices from top to bottom (see
Fig.3(a)). Di�erent from Example 1, this distribution is discrete. Next we introduce a force applied to the
pink vertices located in the forehead of the model, which leads to a deformation as shown in Fig.3(b). Both
Figs.3(a) and (b) serve as the ground truth. In Fig.3(c), we take the displacements at the pink vertices as input
in testing. The results of our optimization process are shown in Fig.3(d) where εu = 1.97%, εE = 56.47%.
Similarly, we can add more sets of vertices for input, which improve both the accuracy of the deformation and
the closeness of the computed Young's modulus to the ground truth, as demonstrated in Fig.4.

Two more examples with the pig and bunny models are given in Figs.5 and 6. The vertices of the models
at the bottom are �xed. The applied forces and the target displacement are speci�ed at pink vertices as shown
in Figs.5(a) and 6(a), which are the inputs to our algorithm. For each model, two outputs are presented,
which correspond to di�erent setup of parameter values of µ and rp in the process of ADMM. In fact, the ratio
µ
rp

a�ects the e�ect of L0 regularization. The larger the ratio is, the more the algorithm moves Pi,j towards
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(a) Ground truth: 
Young’s 
modulus

(b) Ground truth: 
deformation 
caused by the 
forces applied 
to pink 
vertices 

(c) Input: 
displacements 
of the pink 
vertices

(d) The results of L0
optimization:

E

Figure 3: L0-optimization on a human sculpture model. (a): the ground true of Young's modulus; (b):
the deformation caused by applying a force to the pink vertices; (c): the displacements at the pink vertices
computed in (b) are used as input in testing; (d): the result of our L0-optimization.

(a) With one 
additional set 
of input 

(b) The results 
based on the 
input (a):

(c) With three 
additional sets 
of input 

(d) The results 
based on the 
input (3):

E

Figure 4: More inputs are added to the example in Fig.3. (a): displacement input at 1 additional set of
vertices; (b): the results of the optimization based on the input of (a); (c): displacement input at 3 additional
sets of vertices; (d): the results of the optimization based on the input of (c).

0. Note that Pi,j = 0 means Ei−Ej = 0, which makes two adjacent elements i and j have the same Young's
modulus. Thus the ratio µ

rp
can be used to tune the e�ect of L0 regularization. In Figs.5(b) and 6(b), the

ratio is smaller than that in Figs.5(c) and 6(c). As a consequence, the results in Figs.5(c) and 6(c) appear to
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be sparser those in Figs.5(b) and 6(b).

(a) Input configuration (b) Optimization results 
with 

(c) Optimization results 
with 

E

Figure 5: L0-optimization on a pig model. (a): input con�guration; (b): the result of our L0-optimization
with µ = 0.1rp; (c): the result of our L0-optimization with µ = 2.7rp.

(a) Input configuration (b) Optimization results 
with 

(c) Optimization results 
with 

E

Figure 6: L0-optimization on a bunny model. (a): input con�guration; (b): the result of our L0-optimization
with µ = 0.1rp; (c): the result of our L0-optimization with µ = 0.8rp.

The statistics of the models and the optimization process in our experiments are summarized in Table 1.
The tested models cover small to relatively large mesh density. Our optimization algorithm can deliver the
results that achieve the desired deformation behavior. It is also noticed that the our algorithm does require
certain amount of computational time.

5 CONCLUSIONS

This paper has presented a numerical method for calculating Young's modulus distribution over a hexahedral
mesh to achieve desired deformation. The method is based on L0-optimization that can be regarded as a new
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Table 1: Statistics of the models and optimization process in Figs.1-6.

Models Number of vertices Number of hexahedra εu Time (seconds)

Bar (Fig.1(d)) 825 512 2.48% 1049

Bar (Fig.2(b)) 0.61% 1748

Bar (Fig.2(d)) 0.53% 1179

Human sculpture (Fig.3(d)) 13886 11948 1.97% 12952.8

Human sculpture (Fig.4(b)) 1.12% 26025.3

Human sculpture (Fig.4(d)) 0.32% 18051.6

Pig (Fig.5(c)) 12887 11218 1.15% 10044.9

Bunny (Fig.6(c)) 8756 7455 1.24% 8525.5

way to design underlying material distribution to achieve the desired deformation while encouraging sparse
material distribution. It can help to explore design variations and also satisfy the sparsity requirement, which
may �nd applications such as 3D printing. Also, we implement the proposed L0-optimization by introducing
auxiliary variables in a carefully designed objective function and performing numerical iteration in a special
order. The e�ectiveness of the algorithm is demonstrated in several examples.

Our method has several limitations. First, the overall computational time is general long due to L0

regularization. The subspace method proposed by Xu et al. [28] might help in speeding up. Incorporating
subspace into the L0 optimization is worthy of investigation. Second, our method contains some additional
parameters like µ, rp in the optimization. How to automatically choose good values for these parameters
is non-trivial. Third, we only optimize Young's modulus in our problem. Poisson's ratio has an e�ect on
deformation [21, 17], which might be considered for future work.
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