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ABSTRACT 

 

This paper describes how to apply machine learning to adjust shape matching techniques to suit 

different classification of CAD models.  Existing research based on either group technology or fixed 

modeling matching algorithms, impose a priori categorization schemes on engineering data or 

require significant human labeling of design data.  This paper describes a general technique for 

“teaching” existing model comparison algorithms to adapt to different classifications that are 

relevant in many engineering applications.  In this way, the core shape matching algorithms can be 

learned to adapt to wide variety of model classifications based on user input and training data.  

This allows for great flexibility in search and data mining of engineering data.  Results are 

presented that show how to optimize different parameters to fit different categorization schema.  

The paper presents a comprehensive example and provides empirical results using a nearest 

neighbor classification on mechanical CAD models from the National Design Repository. 

 

Keywords: CAD Database, Shape Matching, Machine Learning 

 

1. INTRODUCTION 

Indexing of parts and part families had been done with group technology (GT) coding in practice.  Group technology 

was designed to facilitate process planning and cell-based manufacturing by imposing a classification schema on 

individual machined parts.  These techniques were developed prior to inexpensive computer technology; hence they 

are not rigorously defined and are intended for human interpretation, rather than machine interpretation.  Some of the 

early work on feature identification from solid models aimed to find patterns in model databases [14] or automate the 

GT coding [19,8,1] process [9,2,10,3].  The common aspect of all of these techniques is that they are all post priori: 

one runs their algorithm on model, and it produces the category or label for it. 

Comparing 3D CAD Models 

There are two basic types of approaches for matching and retrieval of 3D CAD data: (1) feature-based techniques and 

(2) shape-based techniques.  The feature-based techniques [7,18], going back at least as far as the late 1970s [14], 

extract engineering features e.g. machining features, and form features, from a solid model of a mechanical part for use 

in database storage, and automated GT coding.  Elinson et al. [6] used feature-based reasoning for retrieval of solid 

models for use in variant process planning.  Cicirello and Regli [5] examined how to develop graph-based data 

structures and create heuristic similarity measures among artifacts; this work was extended in [4] to manufacturing 

feature-based similarity measurements.  McWherter et al. [15] have integrated these ideas with database techniques to 

enable indexing and clustering of CAD models based on shape and engineering properties. 

The shape-based techniques are more recent, owing to research contributions from computational geometry, computer 

vision, and computer graphics.  A shape-based approach works as the representational “lowest common denominator”: 

polygon mesh available from faceting solid models, in the form of VRML or STL.  From the polygon mesh, different 

transformation invariant attributed can be extracted as the means of similarity among 3D models.  Thompson et al. [20] 

examined reverse engineering of designs by generating surface and machining feature information from range data 

collected from machined parts. Hilaga et al. [11] present a method for matching 3D topological models using multi-

resolution Reeb graphs.  The method of Osada, Funkhouser et al [17] creates an abstraction of the 3D model as a 

probability distribution of samples from a shape function acting on the model.  Kazhdan et al compares 3D models 

with spherical harmonics [13].  Novotni and Klein demonstrate the use of 3D zernike descriptors [16]. 



 

 

Computer-Aided Design & Applications, Vol. 2, No. 5, 2005, pp 609-617 
 

610 

 

 

The Research Challenge for Multi-Classification 

Shape matching techniques are generally robust under model degradation, but it is a rigid technique and is a poor 

discriminator among model classes, because it usually emphasizes gross model shape, rather than the discriminatory 

features that are common in CAD/CAM data. 

To complicate matters, in the CAD/CAM domain, engineering artifacts can have multiple classifications.  For example, 

discrete machined parts can be classified in to different categories according to different classification criteria, such a 

functionality (e.g., brackets or fasteners), manufacturing cost and manufacturing process (e.g., casting, machining, 

forging, molding).  Fig. 1 shows four CAD models under two different, but perfectly reasonably, classification schemas.  

The first classification is based on the manufacturing process, where parts are separated into either “3-axis machining” 

or “casting” processes.  In machining, rotating cutting tools remove material based on swept volumes; these sweeps are 

limited to those on a 3-axis vertical machining center.  The second, orthogonal classification, is based on mechanical 

function.  Fig 1. also shows a decomposition into parts that function as “brackets” or as “housings”. 

This paper describes how to apply machine learning to create automated classifiers for 3D CAD models.  We describe 

a general technique for “teaching” existing model comparison algorithms to adapt to the different classifications that 

are relevant in many engineering applications.  In this way, the core shape matching algorithms can be learned to 

adapt to wide variety of model classifications based on the user input and training data.  Methods are presented that 

show how to optimize different parameters to fit different categorization schema.  Lastly, a comprehensive example 

and is presented to provides empirical results using a nearest neighbor classification on mechanical CAD models from 

the National Design Repository (http://www.designrepository.org/). 

2. LEARNING MULTIPLE CAD CLASSIFICATIONS 

Research Goals 

This research aims to develop automatic model classifiers by developing methods to train shape matching algorithms to 

discriminate among different model classes, such as those shown in Fig 1.  Our approach optimizes performance for a 

particular classification schema and model comparison algorithm pair by adjusting the parameters of the model 

comparison algorithm.  In this way, the shape matching technique is tuned to return shorter distances for models falling 

in the same category, but larger distance for models falling in different categories.  Given a set of example CAD models 

and their corresponding categories, relevant features are weighted to automatically construct a model classifier.  This 

work integrates traditional AI and machine learning with CAD and shape modeling.  Specifically: 

• By altering 3D model matching techniques, patterns or features of classification can be extracted from 

different perspectives to fit various classification schemas. 

• Given different reasonable training examples, this approach can learn useful classification schemas to 

improve retrieval accuracy. 

Hence, this research demonstrates a practical solution to a long-standing problem in CAD/CAM: automated part 

classification. 

Fig. 1. Different Classification Schemas 
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2.1. Applying Machine Learning to Classify CAD Models 

Shape comparison algorithms provide different approaches to select invariant features from 3D models.  These shape 

comparison algorithms transform a 3D model into a set of n  comparable attributes, as a vector >< naaa L,, 21
 

Switching among model comparison algorithms can focus classification schemas on different aspects, such as, topology, 

local geometry patterns, feature interactions, and gross shape.  The flexibility of switching model comparison 

algorithms enables us to further optimize by matching comparison algorithm with classification schemas. 

The aggregate distance between models in the same category should be relatively less than models falling into different 

categories.  Given CAD models
321 ,, sss , a category 

1c  and the distance between 21, ss  as ),( 21 ssD : 

),(),(,: 312113121,,, 1321
ssDssDcscsscsss <⇒∉∧∈∀     (1) 

To improve the efficiency of learning classification schemas from training examples, distances produced by the model 

comparison algorithm, ),( 21 ssD  should be adjusted to satisfy (1).  Assuming ),( 21 ssD is produced by the gross 

difference of the two sets from n  attributes representing
21, ss .  The discriminatory power of each attribute can be 

studied; weights can be assigned to each attribute according to its significance in computing distance between example 

models and query models. 

The distance in between a pair of models as the aggregate of some weighted distances among n  attributes: 

),(),( 21

1

21 ii
ssDwssD

n

i

i∑
=

⋅=  

),( 21 ii
ssD  represents the distance between attribute i  of models 

1s and 2s , iw  represents the weight of the attribute.  

Evaluation of through machine learning techniques will be discussed in the next section. 

3. TECHNICAL APPROACH 

Shape distribution comparison functions [12, 17] is used as an example to illustrate the process of learning weights 

through a set of example models. Then the shape distributions and the learned parameters are used to classify 

incoming query models using nearest neighbor classification.  The overall concept is shown in Fig. 2. 

3.1. Primer on Shape Distribution Matching 

A shape distribution can be viewed as a digital signature for a 3D model.  Shape distribution techniques [17] are used 

with an enhancement for matching CAD models [12], to perform a statistical sampling of the shape properties of CAD 

models and use these samples to generate meaningful comparisons between the models. 

Let s  be a CAD model, let },{ 21 ktttT L=  be a set of triangular facets that approximate the topology of s . The facets 

of T  could be produced by existing mesh generation algorithms, Stereolithography exporters or VRML exporters.  The 

facets in T  could also be from an active data acquisition system working off of actual models, as in [20]. 

 

Fig. 2. Technical Approach Overview 
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Matching two models with shape distributions requires: 

1. Selecting a shape function. Many different functions were tested by [17] and the 2D  shape function 

(measuring the distance between two random points on the surface of a model) was shown to be the most 

consistent. 

2. Sampling of random points. Generate a sufficiently large number of random sample point pairs on 

surface of model s . 

3. Classification of point-pair distances. [12] In computing the 2D , distances are classified based on their 

interaction with the local geometry and topology.  Specifically, there are three kinds of interactions: 

o IN distances: The line connecting the two points lies completely inside the model. 

o OUT distances: The line connecting the two points lies completely outside the model. 

o MIXED distances: The line connecting the two points passes both inside and outside of the model. 

4. Calculate shape distribution histograms. Construct histograms associated with IN, OUT and MIXED 

2D  shape distribution function. 

5. Compare shape distribution histograms. Using well-known curve matching techniques (e.g. Minkowski 

NL  distance). 

3.1.1. Comparing Shape Distributions 

 

Shape distributions histograms are compared to produce dissimilarity measures. The dissimilarity in between models is 

represented by a per bin 
1L  norm Minkowski distance in between their corresponding shape distribution histograms, 

computed using across each of the j  histogram bins as: 

j

hh

hhL

n

i
ii∑

=

−

= 0

21

21

||

),(  

This is done for each of the IN, OUT, and MIXED histograms. 

Example 

16 CAD models classified in four categories along with their histograms are shown in Fig. 3. 

3.2. Learning Optimal Weights 

Each histogram carries different degrees of significance in distance computation >< MIXEDOUTIN www ,, .  Distance 

function should produce smaller distance for parts sharing the same category, and larger distance for parts falling into 

different categories, such that, the weighted distance of histograms, MIXEDwOUTwINw MIXEDOUTIN ⋅+⋅+⋅ minimizes 

the aggregate distance within a category and maximize the aggregate distance across different categories. 

Fig 3. Example Classified Models and Shape 
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3.2.1. Training Process 

Shape distribution histograms of all training examples are being compared to find out the frequencies of IN, OUT or 

MIXED distance being selected to be representative distance.  Provided a set of training examples models, the training 

of weights for IN, OUT or MIXED histograms can be carried out as follow: 

1. Profile the example models and construct IN, OUT and MIXED histograms as signatures of each model. 

2. Compute the 1L  Minkowski distances in between all pairs of example models. 

3. Pick the appropriate IN, OUT or MIXED distance for each pair of models, according to the corresponding 

categories, as the representative distance. 

4. Normalize the frequencies of IN, OUT or MIXED distance being selected as representative distances to be the 

weights. 

Three distances, IN, OUT and MIXED, are calculated for each pair of models.  From each triplet of distances, only one 

suitable representative distance is selected for weights computation. 

• Select the shortest distance among IN, OUT and MIXED when two models fall into the same category. 

• Select the longest distance among IN, OUT and MIXED when two models fall into the different categories. 

The frequencies of the IN, OUT, and MIXED distances are selected as representative distances to reflect that the 

chance of IN, OUT, and MIXED distance being the appropriate distance for aggregate distance computation.  The 

weights triplet >< MIXEDOUTIN www ,,  is derived as: 

},,{,
###

#
MIXEDOUTINi

MIXEDOUTIN

i
wi ∈

++
=  

Different weight triplets are produced to fit each category specifically.  When computing distance in between a query 

model and an example model, the weight triplets that corresponds to the example model's category will be used to 

scale the distance of IN, OUT and MIXED histograms. 

Example 

Training example models presented in Fig. 3 are grouped into four different categories: Prismatic machined Brackets, 

Cast-then-machined Housings, Cast-then-machined Brackets and Prismatic machined Housings.  To demonstrate our 

training technique can learn different weighting schemas from examples, four groups of models are classified into two 

different classes. 

• Functional — Brackets or Housings (Tab. 1) 

• Manufacturing — Prismatic Machined or Cast-then-machined (Tab. 2) 

Pairwise distances between all models are computed in Tab. 1(a) (Functional classification) and Tab 2(a). 

(Manufacturing classification) to obtain two different sets of weights; boxed distances in the tables denotes 

representative distances. 

Tab. 1(b) and Tab 2(b) summarize different weighting schemes captured from the example models.  For example, in 

functional classification, 47 IN distances, 23 OUT distances and 46 MIXED distances are selected as representative 

distances.  By normalizing the proportion of representative distances, a weighting scheme for functional classification 

could be 39% for IN, 23% for OUT and 38% MIXED.  Weighting schemes learned from this process will be used as 

input during nearest neighbors’ classification process. 

3.3. Nearest Neighbor Classification 

The classification of the query model 
qs  is computed and returned after this process.  Considering the categories of the 

k  nearest example models, the classification of the query model 
qs  is determined by a locally weighted function 

provided to the nearest neighbor classification.  Here are two simple variations of the function: 
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• The Majority method simply returns the majority of categories of the k nearest training example neighbors as 

the classification.  All k  example neighbors vote for their classification.  The classification with the highest 

votes will be returned as the classification of
qs . 

• Gaussian Kernel Regression assigns weights to the k  nearest example neighbors,
is , according to a Gaussian 

kernel function. ),( qi ssD is the distance in between, example model 
is  and query model 

qs , with a standard 

deviation σ . 

σ

σπ

2

),( 2

2

1
qi ssD

e
−

 

The category with the highest accumulated weight is returned as the classification of
qs . 

Example 

Using the example models and weighting schema captured in the last section, the classification process is illustrated by 

classifying a query model, base2 (Fig. 4).  Base2 is a bracket and manufactured by prismatic machining processes. 

Fig. 4. Query Model base2 and Histograms 

Tab. 1 Functional Classification Tab. 2 Manufacturing Classification 
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The classification process with both weighted functions on functional and manufacturing classifications: 

1. Computes the distance and apply an appropriate weighting scheme for each category to obtain a weighted 

distance between example models and the query model. Tab. 3 and Tab. 4 shows the resulting distances and 

classifications between query models and example models, under both functional and manufacturing 

classifications. 

2. Use the majority or the Gaussian Kernel Regression method to classify the query model 

a. Using a majority method to classify the query model, k =5 is used in this example, Five of the 

closest training models are picked to “vote” for the classification of the query model.  The five 

closest weighted distances in Tab. 3 (functional classification) and Tab. 4 (manufacturing 

classification) are boxed.  Under the functional classification weighting schema (Tab. 3), query 

model base2 is classified as a bracket, as four out of five of its closest neighbors come from the 

Bracket category.  Under the manufacturing classification weighting schema, query model base2 is 

classified as a Prismatic Machined part, as three out of five of its closest neighbors come from the 

prismatic machined parts category. 

b. Using the Gaussian Regression method to classify the query model, the resulting Gaussian weight of 

each example is showed in Tab. 3 and Tab. 4, the total cumulative Gaussian weights are present in 

bold face, and the categories with higher weights are boxed. The classification result is the same as 

using the majority method, the query model is classified into Brackets and Prismatic Machined 

categories.  Note that this regression method is biased towards the closest model, which may 

generate a weight that dominates the others. 

This example demonstrates that the different weights learned in the previous steps can be use to effectively to classify 

query models under different classifications schemas, along with the same set of training models. 

 

4. EMPIRICAL RESULTS AND DISCUSSION 

To validate this approach, it was applied to learn and classify an expanded data set of 100 CAD models, according to 

manufacturing properties.  This method has been implemented in Java/Perl, and executed on Linux platforms.  

Tab. 3 Distances between base2 and Training Models  

(Functional) 

Tab. 4 Distances between base2 and Training Models 

(Manufacturing) 
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Experiments were conducted using a subset of mechanical part data from the National Design Repository.  The model 

datasets are available at http://www.designrepository.org/datasets/. 

The datasets was initially classified by hand into (1) prismatic machined parts and (2) parts that are first cast and then 

have their finishing features machined.  The engineering rationale in this classification is that parts that are exclusively 

machined are usually high-precision parts, or parts made in small batches (i.e., for custom jobs).  Cast-then-machined 

parts are typically from larger production runs and generally have much looser tolerance considerations for the non-

machined surfaces of the object.  In this case the investment of physical plant is larger, as is the manufacturing 

production plan (i.e., one needs to machine a mold for casting). 

Training examples were randomly selected based on this classification.  The objective was to see if the system could 

learn weights from the training examples and then classify the non-training examples in a manner consistent with the 

human classification.  The experiment was repeatedly performed to confirm the robustness of our approach.  The 

results are summarized in Tab. 5. 

 

In these experiments the highest classification correctness reached 76%, with an average classification correctness of 

63%.  While 63% might not sound like a particularly good score, it needs to be noted that: 

• There are no other fully automated, customizable, part classification schemes for 3D CAD data. 

• As with any automated classification system, performance depends on the quality of training examples and 

the make up of the overall data set.  In the experiments, data was sampled from the National Design 

Repository.  While the CAD models selected are all real engineering artifacts, they exhibit considerable 

heterogeneity and variability within classes.  The technique is expected to perform better in a more realistic 

setting where the datasets would be much larger and more structurally homogeneous within class.  A larger 

number of training examples can also be provided to increase accuracy. 

• Better training sets can be identified.  Classification varies with training dataset; hence some training models 

would lead to a better performance. Instead of providing random examples as in our experiments, hand 

picking examples by experts can possibly improve the accuracy of classification. 

5. CONCLUSIONS AND FUTURE WORK 

This paper described a new approach to automate the classification of CAD models with machine learning techniques.  

The paper shows how existing work in 3D matching can be extended to enable data mining in the challenging new 

domain of CAD databases. 

The contribution of this research is applying machine learning to shape matching to categorize CAD models, both old 

archived components and brand-new parts, with any existing classification schema.  At a minimum, this approach 

represents a method for augmenting traditional group technology coding schemes by providing a completely digital 

process for storage and comparison of engineering models.  With refinement, eventually users will be able to train a 

retrieval system to recognize arbitrary categories based on shape, manufacturing or other properties.  With long-term 

research, we believe that the techniques in this paper could replace GT schemes with flexible matching systems 

adaptable to diverse engineering disciplines. 
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