
 

Computer-Aided Design & Applications, Vol. 2, No. 5, 2005, pp 675-684 

 

675 

Relative Positioning of Planar Parts in Toleranced Assemblies 
 

Yaron Ostrovsky-Berman and Leo Joskowicz 
The Hebrew University of Jerusalem, {yaronber,josko}@cs.huji.ac.il 

 
ABSTRACT  

 
Accounting for geometric variability in mechanical assemblies is a key component of modern 
design methodologies. This paper presents a framework for worst case analysis of the relative 
position variation of toleranced parts. The framework is based on our general parametric 
tolerancing model for planar parts whose boundaries consist of line and arc segments and whose 
vertices are described by standard elementary functions of part dimensions, which vary within 
tolerance intervals. Here, we present six types of relative position constraints designed to model all 
types of contact and clearance specifications between features of two parts. For these pairwise 
constraints, we describe an algorithm to compute the sensitivity matrix of each vertex. This matrix 
describes the vertex position variation satisfying the constraints as a linear function of the two part 
parameters. To model the relative part position variation in the entire assembly, we introduce the 
assembly graph, a generalization of Latombe’s relation graph that includes cycles, toleranced parts, 
and three degrees of freedom. We show how to compute the sensitivity matrices of each vertex 
from the pairwise relative position constraints and the assembly graph. These matrices serve to 
compute the tolerance envelopes bounding the areas occupied by the parts under all possible 
assembly instances. The envelopes are an accurate characterization of geometric uncertainty for 
assembly planning and mechanism design.  
 
Keywords: variational part models, geometric constraint solving, tolerance envelopes. 

 
 
1. INTRODUCTION 

Manufacturing and assembly processes are inherently imprecise, producing parts that vary in size and form. Tolerance 
specifications allow designers to control the quality of the production and to manufacture parts interchangeably. 
Designers prefer tight tolerances to ensure that parts will fit in the assembly and perform their intended function. 
Manufacturers, on the other hand, prefer loose tolerancing to lower the production cost and decrease the need for 
quality machine tools and precision measurement machines. Tolerance analysis methods play a key role in bridging 
between the two.  

Predicting the effect of tolerances is difficult even for skilled designers because it requires identifying the critical 
interactions of toleranced dimensions, which often have complex dependencies. Tolerancing methods have been 
developed and incorporated into most modern CAD software. However, these methods are limited in the types of 
interactions they can model and in the quality of the results they produce. 

Determining the variations of the relative positioning of parts with tolerances in an assembly is a key problem in 
assembly planning [3] and mechanism design [9]. For example, nearly all assembly planners produce plans for 
nominal parts. However, because of shape and position variability due to manufacturing imprecision, the relative part 
positions vary as well. Thus, the nominal assembly plan might not be feasible for certain instances of parts, and a valid 
plan for one instance might not be suitable for others. In mechanism design, interference between two part instances 
can occur even when there is no blocking between the nominal parts. 

The relative position of imperfect planar parts was studied by Turner [11], who reduces the problem to solving a 
non-linear system of constraints for a given cost function. Sodhi and Turner [10] later extended this work for 3D parts. 
Li and Roy [7] show how to find the relative position of polyhedral parts with mating planes constraints. These 
methods compute the placement of a single instance of the assembly, and thus cannot be extended to analyze the 
entire variational class of the assembly. Inui et al. [4] propose a method for bounding the volume of the configuration 
space representing position uncertainties between two parts.  However, their method is only applicable for polygonal 
parts and is computationally prohibitive. Cazals and Latombe [2] present a simple tolerancing model in which 
polygonal parts vary in the distance of their edges from the part origin, but not in their orientation. They show how to 
compute the relative position between two parts when the variational parameters span their allowed range, and use it 
in assembly planning with infinite translations [6]. They acknowledge the limitations of their model and point to the 
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need for developing a more general tolerancing model and for supporting other motion types. This motivated our 
work.  

P1

P2
P3

P4

P5

P6

P7

Relative position constraints legend

vertex - line

edge - line

arc - line

arc - arc

conditional edge - edge
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Fig. 1. Example of a simplified seven part planar mechanism with all types of contacts between parts. 

 
In this paper, we present a framework for worst case analysis of the relative position variation of toleranced parts 

in mechanical assemblies. The framework is based on our previously developed general parametric tolerancing model 
for planar parts whose boundaries consist of line and arc segments and whose vertices are described by standard 
elementary functions of part dimensions, which vary within tolerance intervals. We introduce six types of relative 
position constraints designed to model all types of contact and clearance specifications between features of two parts. 
For these pairwise constraints, we describe an algorithm to compute the sensitivity matrix of each part vertex. This 
matrix describes the vertex position variation that satisfies the constraints as a linear function of the two part 
parameters. To model the relative part position variation in the entire assembly, we introduce the assembly graph, a 
generalization of Latombe’s relation graph that includes cycles, parts with general tolerances, and three degrees of 
freedom.  We then show how to compute the sensitivity matrices of each part vertex from the pairwise relative position 
constraints and the assembly graph. These matrices are used to compute the tolerance envelopes bounding the areas 
occupied by the parts under all possible assembly instances. The envelopes provide an accurate characterization of 
geometric uncertainty that is useful in assembly planning and mechanism design.  
 
2. TOLERANCED ASSEMBLY SPECIFICATION 
Assemblies of toleranced parts require a representation that accounts for part variations.  The goal is to develop a 
framework within which part variations can be represented and efficiently computed. Our starting point is the general 
model of planar toleranced parts whose boundary consists of line and arc segments that we developed in previous 
research, which we briefly describe in Section 2.1. In Section 2.2, we describe the six types of relative position 
constraints between two parts. In Section 2.3, we introduce the assembly graph and describe an algorithm for 
computing the variability of part positions in the assembly. Throughout the paper, we will use the assembly shown in 
Figure 1 as an example to illustrate the concepts.  
   
2.1 Toleranced parts 

We model part variation with the parametric tolerancing model described in [8]. This model is general, reflects current 
tolerancing practice, incorporates common tolerancing assumptions, and has good computational properties. In this 
model, part variation is determined by m parameter values p=(p1…pm), specifying lengths, angles, and radii of part 
features. The parameters have nominal values and can vary along small tolerance intervals. The coordinates of the part 
vertices are standard elementary functions of a subset of the m parameters. An instance of the parameter values 
determines the geometry of the part. Figure 2(a) shows the tolerance specification of part P3. 

In [8], we describe an algorithm for computing the outer and inner tolerance envelopes, which are boundaries of 
the union and the intersection of all possible parts, respectively.  The algorithm inputs the partial derivatives of the 
vertices according to the m variational parameters, and computes the envelopes under the linear approximation of the 
model. For a part with n vertices, the algorithm computes the most accurate tolerance envelope in O(nm2) space and 
O(nm2logm) time. Figure 2(b) shows the tolerance envelope of part P3. 
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    (a)                  (b) 
Fig. 2. (a) Tolerance specification and (b) envelope of part P3. Vertices v1 to v12 are ordered clockwise. Parameters p1…,p12 have all 
nominal values equal to zero. Typically, the vertex functions are derived from the dimensional tolerance specification, either manually 
or as output from a symbolic geometric constraint solver. Here we chose the parametrization and tolerance intervals that best illustrate 
the envelopes properties. 

 
2.2 Relative position of two parts 

The relative position of one part with respect to another is modeled with contact and clearance constraints. These 
constraints specify the location of the part boundaries with respect to each other, or with respect to a reference datum.  
For planar parts consisting of line and arc segments, the constraints describe how to position a part feature (vertex, 
edge, or arc) with respect to another one or with respect to a datum (line).   The variability of the feature parameters 
determines the variability of the relative position of parts in the assembly.  
       It is well known that distance relations between points, lines, and arcs are sufficient to specify all clearance, 
contact, and angularity relations [1]. We have identified six types of relative position constraints that describe all types 
of contact and clearance constraints, including simultaneous contacts for deliberate over-constraint. The constraints 
yield the possible variation in the position of part B (the free part) relative to part A (the fixed part) when B is 
positioned according to the specification and the variational parameters of both parts span their allowed values. For 
each vertex u of B, the goal is to compute the transformation matrix that describes the sensitivity of the vertex to 
variations in the parameters of parts A and B. The 2 × m sensitivity matrix Su has one column for each of the 
variational parameters. We first describe the relative position constraints and their associated equations. We then show 
how to solve the resulting system of equations and compute the sensitivity matrices of B. 
 

2.2.1 Relative position constraints 

Planar part B has three degrees of freedom, two for translation and one for rotation. Thus, to uniquely determine its 
position relative to A, three independent constraints are required. For each instance of the parts, there is a rigid 

transformation T = (tx,ty,θ) that positions B relative to A and satisfies the constraints.  Since the part variations are 
typically at least two orders of magnitude smaller than the nominal dimensions, the translation offsets and rotation 
angle are also small.  We can thus approximate the transformation with cos(θ)≈1 and sin(θ)≈θ.  For parts whose 
boundaries consist of line and arc segments, there are six types of distance constraints, with which we can model all 
contact and clearance specifications: 1. vertex-line; 2. edge-line; 3. arc-line; 4. arc-arc; 5. conditional edge-edge, and; 
6. conditional arc-arc. For each constraint type we write in parenthesis the number of degrees of freedom it constrains. 
The assembly in Figure 1 has all the six types of constraints.   
 
1. vertex-line constraint (1): this constraint is used to describe distance and angle relationships between two linear 

features.  For example, in Figure 1, the flush relationship between the top of parts P6 and P4 is described with a 
vertex-line constraint between the left vertex of part P6 and the line supporting the upper edge of P4. 

The vertex-line constraint equation is derived as follows. Let vi=(vix,viy) be a vertex of B and let ei be an edge 
of A supported by the line nixx+niyy+ci=0, where nix

2+niy
2=1. Since B undergoes a rigid transformation, the 

coordinates of vi are functions of the original coordinates and the transformation variables: ωix=vix-viyθ+tx and 
ωiy=viy+vixθ+ty. To constrain the distance between vi and ei to be di, we write nixωix+niyωiy+ci = di, or: 

nixtx + niyty + (vixniy – viynix)θ + vixnix + viyniy + ci – di = 0                         (1)

which is linear in (tx,ty,θ). When ei∈B and vi∈A, the vertices of ei, denoted ei1 and ei2, are transformed by T, and 
the resulting distance constraint equation is: 

(ei2y-ei1y)tx + (ei1x-ei2x)ty + ((ei1x-ei2x)vix+(ei1y-ei2y)viy)θ + (ei1y-ei2y)vix+(ei2x-ei1x)viy+ei1xei2y-ei1yei2x – di = 0       (2)
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2. edge-line constraint (2): this constraint is used to describe a distance relationship between two edges. For example, 
in Figure 1, the contact relationship between the left edge of P6 and the right edge of P4 is described with an edge-
line constraint.  The edge-line constraints are expressed as two vertex-line constrains, one for each vertex of the 
edge, with two Equations (1) or (2) (depending on whether the edge belongs to A or B). 

 

A

B

            

A B

        

A B

 
(a)              (b)         (c) 

Fig. 3. Conditional constraint cases. (a) contact between the secondary mating edge of A and the conditional edge of B. (b) 
contact between the interiors of the conditional arc of A and the arc of B. (c) contact between the interior of part B’s arc and 
conditional arc endpoint. 

 
3. arc-line constraint (1): this constraint is used to describe distance or contact relationships between an arc and an 

edge, such as the contact between parts P4 and P5 in Figure 1. An arc-line constraint entails a linear equation 
defining the distance of the arc center to the line supporting the edge as the required distance plus the arc radius.  
In our tolerancing model [8], circular arc segments are specified by the two endpoint vertices v1, v2, and either the 

radius r or the arc angle α, all of which are functions of the variational parameters. The center and radius of the 
circle supporting the arc is derived from the relations: c = 0.5(v1+v2+v12

⊥tan(0.5(π−α)) and r = |v1-
v2|/(2cos(0.5(π−α)), where v12

⊥ is counterclockwise perpendicular to v2-v1. To derive the constraint equation, we 
substitute vertex vi in Equations (1,2) with ci, the arc center defined by the relation above, and set di to be di+r. 
For example, Equation (1) becomes: 

nixtx + niyty + (cixniy – ciynix)θ + cixnix + ciyniy + ci – (di+r) = 0                       (3)

4. arc-arc constraint (1): this constraint is used to describe contacts between two arcs,  which are common in 
mechanisms with rotating parts, such as the contact between parts P3 and P4 in Figure 1.  

The arc-arc constraint entails a quadratic equation setting the distance d between the two arc centers to the 
required distance plus either |r1-r2| (when one arc’s supporting circle bounds the other arc, as in parts P3 and P4) 
or r1+r2 (when the interiors of the arcs' supporting circles do not intersect). Let c1 be the center of the fixed part arc 
and c2 be the center of the free arc, then the constraint is (c2x - θc2y + tx - c1x)

2 + (c2y + θc2x + ty – c1y)
2 = d2. We 

collect the terms according to the transformation variables to get: 

        tx
2 + ty

2 + (c2y
2+c2x

2)θ2 - 2c2ytxθ + 2c2xtyθ + 2(c2x-c1x)tx + 2(c2y-c1y)ty +  

(-2(c2x-c1x)c2y+2(c2y-c1y)c2x)θ +(c2x-c1x)
2 + (c2y-c1y)

2 – d2= 0     (4) 
 
5. conditional edge-edge constraint (1): this constraint is used to specify contacts between nominally parallel edges. 

In the nominal case, two parallel edges make contact in a line segment; in toleranced assemblies, the contact is 
usually a point. For example, consider parts P1 and P5 in Figure 1. The design intent is to make contact between 
both pairs of edges: first with the horizontal edges (which are wider and therefore provide more stable contacts), 
then with the vertical edges. The former edges are termed the primary mating edges, and the latter two are termed 
the secondary mating edge and the conditional edge (the conditional edge is typically the shorter edge). The 
secondary contact is generally between the secondary mating edge and a vertex of the conditional edge, but 
which vertex makes contact depends on the instance of the parts. For example, if the vertical edge of P1 leans to 
the right and P5 is nominal, then the upper vertex of P5 will be in contact; else, when the edge leans to the left, the 
lower vertex will be in contact. Both cases yield linear equations between the secondary mating edge’s supporting 
line and one of the two endpoint vertices of the conditional edge as in Equation (1,2).  Figure 3(a) shows one of 
the two conditional cases.  

6. conditional arc-arc constraint (1): this constraint is used to specify contact between arcs of the same radius. The 
nominal contact between arcs of the same radius, as in parts P2 and P3 in Figure 1, is a circular arc, but when the 
geometries vary, there are three possible solutions: contact between the interiors of the circular arcs, and contact 
between an arc and either the first or second endpoint of the other arc, termed the conditional arc. The first case 
yields a constraint in the form of Equation (4), and the other cases entail a similar quadratic equation with the 
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conditional arc vertices replacing the arc center.  Note that conditional edge-edge and arc-arc constraints specify 
that contact should occur between the two features, but do not specify which vertex is in contact.  We assume that 
in the nominal case all contacts occur simultaneously, so that any infinitesimal change in the variation parameters 
either forces the assembly into a state where there is only one contact or leaves the assembly in the same state. 
This assumption holds in most practical cases. 

 

d
B

A

  

d2

d1

A

B

        

d2

d1

BA

 
(a)                (b)                     (c) 

Fig. 4. Modeling arc-arc constraints between the fixed part A and the free part B. (a) One constraint: part B can rotate about the two 
arc centers while keeping the arc center at distance d from A’s arc.  (b) Two constraints involving the same arc of B: part B has a 
rotational degree of freedom. (c) Two constraints involving different arcs of B:  the centers of B’s arcs are free to move along the 
dashed circles, while keeping their relative distance fixed. 
 

The six types of relative position constraints can be used to capture the design intent and model all contact and 
clearance specifications. However, the designer must ensure that the constraints do not yield unsolvable equations. We 
propose the following modeling guidelines to prevent this situation:  
1. Features not participating in the constraints may overlap, even in the nominal solution. The designer should 

identify them and prevent the overlap by including them in the constraints, as is the case in Figure 1 for the 
constraint between P4 and P5. 

2. Lines participating in three constraints must not all be parallel, as this results in dependent equations which are 
both over and under-constrained. For example, in Figure 1, P5 cannot simultaneously contact both the left and 
right edges of the cavity of P1. 

3. Arc-arc constraints may result in equations whose solutions are imaginary. In general, one arc-arc constraint leaves 
the free part with two rotational degrees of freedom, as illustrated in Figure 4(a). Two rotations about different 
axes are equivalent to a rotation about the origin, followed by a translation. Since the translation is fixed (it 
depends on the axes coordinates), the two remaining linear constraints must set the single rotational degree of 
freedom, so they must be related, as demonstrated by the constraints between parts P3 and P4.  
Two arc-arc constraints involving the same arc of part B, as illustrated in Figure 4(b), leave B with a single 
rotational degree of freedom, which can be set by the third constraint. Two arc-arc constraints involving different 
arcs of B (Figure 4(c)) allow B’s arc centers to move along the circles with distance d1 and d2 from A’s arcs while 
keeping their relative distance fixed. The third constraint must determine the position of one arc center on its 
corresponding circle (dashed), which in turn will fix the position of the second arc center. Three arc-arc constraints 
are impossible to satisfy with imperfect parts because three circles do not generally intersect in a point. 
 

2.2.2 Computation of the sensitivity matrices 

We now present a four-step algorithm to compute the vertex sensitivity matrices. The steps are: 1. model the relations 
between the two parts; 2. construct the corresponding system of equations; 3. compute the transformation relating the 
parts and its partial derivatives according to the variational parameters, and; 4. apply the transformation on the vertices 
of the free part to obtain the sensitivity matrix of each vertex. 

In step 1, the relations are determined by three constraints of the six types described in Section 2.2.1.  In step 2, 
the equations are constructed according to Section 2.2.1, and stored in the following abstract form: for linear equations 

(Eqs (1,2,3)), the form is: Aitx + Bity + Ciθ +Di = 0; for quadratic equations such as Equation (4), the form is: tx
2 + ty

2 
+ Eiθ 2 + Fitxθ + Gityθ + Hitx + Iity + Jiθ + Ki = 0. For efficiency, we precompute and store the coefficients 
Ai,Bi,Ci,Di,Ei,Fi,Gi,Hi,Ii,Ji,Ki and their partial derivatives according to the variational parameters of parts A and B. There 
is no need to evaluate the partial derivatives of the coefficient functions, because they can be obtained from the 
original vertex nominal values and partial derivatives, which were given as input to the algorithm. For example, in 
Equation (1), Ci = vixniy–viynix, and its partial derivatives are ∂Ci/∂pj = ∂vix/∂pj*niy+∂niy/∂pj*vix - ∂viy/∂pj*nix-∂nix/∂pj*viy. 
Since the normal (nix,niy) is also a function of the original vertices, its partial derivatives can also be precomputed.  
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For the equations of the circular arc constraints, the partial derivatives of the coefficients with respect to the 
variational parameters depend on the parametrization of the arc. When the arc is defined by the angle α, the radius 
changes according to the above relation, i.e., the constraint distance has non-zero derivatives. When the arc is defined 
by the radius r, the angle depends on the variational parameters, i.e., the position variation of the arc center also 
depends on the partial derivatives of α. 

(250,20+p1) (280,20+p2)

(250,0)

(250,20)
(280,20)

P1

P7
L1

L2

(280,50)u

 
Fig. 5. Relative position constraints between parts P1 and P7. Distance constraints are denoted by two headed arrows (distances are 
zero). The horizontal edges are forced to overlap by an edge-line contact constraint, and their left endpoints are forced to coincide by 
a vertex-line contact constraint. 

 
In step 3, we solve the system of abstract equations constructed in step 2 by substituting the coefficients into general 
solution templates that we derived for the following three types of systems: 1. three linear equations; 2. two linear 
equations plus one quadratic equation; 3. two quadratic equations plus one linear equation.   

 
The general solution to the system of three linear equations is: 

tx = (B1C3D2-B1C2D3+C1B2D3-C1D2B3+D1C2B3-D1C3B2) / (A2C1B3-A1C2B3-C3A2B1-A3C1B2+C2A3B1+A1C3B2) 
ty = (C3A2D1-A2C1D3-C3A1D2+A1C2D3+C1A3D2-C2A3D1) / (A2C1B3-A1C2B3-C3A2B1-A3C1B2+C2A3B1+A1C3B2)     (5) 
θ  = (A3B1D2-A3D1B2+B3A2D1-B3A1D2+D3A1B2-D3A2B1) / (A2C1B3-A1C2B3-C3A2B1-A3C1B2+C2A3B1+A1C3B2) 

The system of equations resulting from 0 ≤ z ≤ 2 arc-arc (quadratic) constraints and 3-z linear constraints has 2z 
solutions. However, only one of them corresponds to the nominal positions of the parts. The correct solution is 
identified by comparing the transformed vertices with the nominal vertex positions.  The general solutions for systems 
with quadratic equations were derived using MAPLE, and are too lengthy to reproduce here. 

For the partial derivatives of each of the template solutions, we derived corresponding templates, consisting of the 

coefficients and their partial derivatives. Since these were computed in step 2, the nominal solution T = (tx,ty,θ) and its 
derivatives ∂T/∂pj = (∂tx/∂pj, ∂ty/∂pj, ∂θ/∂pj) are computed with a constant number of elementary arithmetic operations. 

In step 4, we use the transformation derivatives to compute the sensitivity matrices of the vertices of B. Each 
vertex u ∈ B undergoes the transformation T in order to satisfy the relations.  Thus, its nominal position is:     
ωx=ux-uyθ+tx and ωy=uy+uxθ+ty. Its partial derivatives according to the variational parameters of both A and B define 
the sensitivity matrix Su, whose j

th column is: 
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Note that the transformation of the vertices is sufficient to describe the segments of the transformed part, as line 
segment are completely defined by their endpoints, and the radii and angles of circular arcs remain constant under 
rigid body transformations.  

When one of the constraints is conditional, the transformation T, which is correct for all instances of the assembly, 
is computed as follows. First, we solve the system of equations once for each of the cases (two or three solutions), and 

denote the resulting transformations Ti = (tix,tiy,θi), 1 ≤ i ≤ 3. An infinitesimal change in a single parameter pj either 
results in one of Ti being the correct solution, or leaves all solutions correct. In the latter case, ∂T/∂pj = ∂T1/∂pj = 
∂T2/∂pj = ∂T3/∂pj. In the former case, we first determine which of the solutions is correct (by checking distance 
relations) for an infinitesimal increase and decrease of pj, and denote it by Tj

+ and Tj
-, respectively. We then compute 

the left-hand and right-hand derivatives as follows:  ∂T+/∂pj = ∂Tj
+/∂pj, and ∂T

-/∂pj = ∂Tj
-/∂pj, where ∂Tj

+/∂pj (∂Tj
-/∂pj) is 

the right-hand (left-hand) derivative of Tj. The algorithm for computing tolerance envelopes in [8] can be used directly 
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with a straightforward modification to handle input divided into left and right-hand derivatives, at no asymptotic extra 
cost. 
       Note that the combined transformation T is accurate when a single parameter varies, but may not be accurate 
when several parameters vary simultaneously. This is a limitation of the linear approximation, which sums the effects of 
all the parameters and ignores dependencies. However, the corresponding tolerance envelope is conservative, never 
underestimating the worst case variation.  

P1

P2

P3

P4

P5

3
3

2

1

3

P6

P7

3

3

C1

C2

C3
C4

X

Y

 
Fig. 6. The assembly graph of the example in Fig. 1. The distances between part features that are connected by an edge are zero. 
Parts C1, C3 and C2, C4 of rigid bodies X and Y, respectively, contain features constraining the relative position of the two bodies. 

 
2.2.3 Example 
We illustrate the relative position computation on parts P1 and P7 in Figure 1 where P1 is toleranced as shown in Figure 
5 (for simplicity, P7 is not toleranced).   
 
In step 1, we specify an edge-line constraint and a vertex-line constraint designed to get a flush relationship between 
the parts (distances are zero). In step 2, we construct the equations based on the lines supporting the edges. The 
equations of lines L1 and L2 are, respectively: (p1-p2)x+30y+250p2-280p1-600 = 0 and (-20-p1)x+250p1+5000 = 0 
(the line equations are not normalized, but since the constraint distances are zero this does not matter). Substituting the 
coefficients into Equation (1) we get the following system of linear equations: 

(p1 - p2)tx + 30ty + (7500 - 20p1 + 20p2)θ – 30p1 = 0 
(p1 - p2)tx + 30ty + (8400 - 20p1 + 20p2)θ = 0 
-(p1 + 20)tx + (400 + 20p1)θ = 0 

In step 3 we substitute the coefficients into Equation (5) to get the nominal solution {tx = 2/3(p2 – p1),  ty = (28/3p1 – 
25/3p2,  θ = 1/30(p2 – p1) }.  Notice that when p1=p2, no rotation or horizontal translation is required. We substitute 
the coefficients and their derivatives into the derivative template and get: 

∂T/∂p1 = (-2/3, 28/3, -1/30) and ∂T/∂p2 = (2/3, -25/3, 1/30).  We illustrate step 4 on the vertex u=(280,50). 
Substituting the computed transformation derivatives and the vertex coordinates into Equation (6), we get the 

sensitivity matrix 






 −
=

10

11
uS . 

 
2.3 Relative positions of parts in an assembly 
We now describe how to model the relative position of parts in the entire assembly.  Previous work by Latombe et al. 
[6] introduces the relation graph to describe the relative position constraints between nominal parts with two degrees of 
freedom each. We extend this graph to include cycles and support parts with general tolerances and three degrees of 
freedom, and call it the extended relation graph, or simply the assembly graph. 

Graph nodes correspond to parts and undirected edges correspond to constraints between parts. Edge weights are 
1, 2, or 3, and indicate the number of degrees of freedom constrained for relative positioning of the two parts. The 
edge data structure holds additional information about each constraint, such as the feature names of parts A and B, the 
value or parametric expression of the distance between these features, and the type of constraint. Figure 6 shows the 
assembly graph of the assembly in Figure 1. 

The assembly specification is properly-constrained if it is both complete and non-redundant. The specification is 
complete if the relative position of all pairs can be determined from the constraints. It is non-redundant if the removal 
of any constraint results in incompleteness. A necessary and sufficient condition for a properly-constrained assembly of 
N parts is that the sum of edge weights is 3(N - 1), and that for each cycle in the graph with Nc nodes, the sum of 
weights is 3(Nc - 1) and there is exactly one edge of weight 2 and one edge of weight 1 (a cycle with three edges of 
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weight 2 results in a non-linear system of six equations with no general solution). The above conditions are a special 
case of the Grübler equation for planar mechanisms [12].  Properly-constrained assembly graphs have two important 
properties: 
 
1. When two parts are connected by a chain of edges of weight 3, their relative position is determined link by link, 

where each link is solved as in Section 2.2. Such a chain of parts can be regarded as a single rigid part, because 
any rigid transformation on the parts as a group preserves the relation constraints. 

2. A cycle of Nc parts has exactly Nc-2 edges of weight 3, one edge of weight 2, and one edge of weight 1. The last 
two edges divide the cycle into two non-intersecting sets of parts X and Y connected by the edges. The relative 
position between parts connected by edges of weight 1 or 2 cannot be determined because it is under-constrained, 
but the relative positions between the rigid bodies corresponding to X and Y is well constrained. Figure 6 shows 
the sets X, Y for the assembly in Figure 1. 

     

 
 
 

Table 1. Algorithm for computing the sensitivity matrices of Pj relative to Pi 

 

Table 1 shows the algorithm to compute sensitivity matrices of part Pj relative to Pi . Its inputs are the assembly 
graph and the toleranced part models, including initial vertex partial derivatives. The sensitivity matrices of the vertices 
of Pj depend on the variational parameters of all the parts in the path from Pi to Pj. The algorithm computes the relative 
position transformations between pairs of parts on the path from Pi to Pj. The transformation TXY positioning the two 
sets of cycle parts is applicable for each part in Y.  Since the parameters of a part participate in two transformations at 
most, there are at most two transformations which have non-zero kth columns in the sensitivity matrices of the vertices 
of Pj. The algorithm applies only the appropriate transformations when computing the matrix columns. 

The complexity of the algorithm is as follows. Let rij denote the number of parts in the path from Pi to Pj (including 
cycle parts). Let qk be the maximal number of variation parameters affecting a vertex of the kth part, and let q = 
maxk{qk}. At each iteration of step 2, we compute the transformation Tkl = (tx,ty,θ) between two parts and its partial 
derivatives according to the local variation parameters. There are up to 12 vertices participating in each set of 
constraints (when there are three arc-edge or arc-arc constraints), so the number of local parameters is at most 12q. 
From Section 2.2, the solution for Tkl has constant size, and so do each of its O(q) derivatives. The nj vertices of Pj 
depend on at most 12qrij variation parameters, so the computation of their sensitivity matrices in step 3 takes O(njqrij) 
time. 

Note that this result is a generalization of the result of Cazals and Latombe [2] for parts with two degrees of 
freedom. In their tolerancing model, only translations are used to satisfy the constraints. This means that all the vertices 
of Pj are translated uniformly, and the translation depends on O(qrij) parameters. The tolerance zone of the translation 
is a convex polygon inside which the origin of part Pj varies. It can be computed in O(qrijlog(qrij)) time (see [8]), and 
since q is constant (at most six), this compares with their result. Note also that in their model, the vertices are linear 
functions of the variation parameters, so the approximation is in fact exact. 

Input: Assembly graph, toleranced parts models 
1. Find a path in the assembly graph between Pi and Pj. 
2. Iterate on the path edges e = (Pk, Pl) in order: 

If weight(e) = 3 then compute transformation Tkl positioning Pl relative to Pk (Section 2.2). 
Else if weight(e) < 3 (cycle edge) then 

i. Find rigid bodies X and Y from graph cycle (X contains Pk). 
ii. Identify parts with constrained features C1,C2,C3,C4 (as in Figure 6). 
iii. Compute transformations positioning parts in X relative to Pi. 
iv. Compute transformations positioning parts in Y relative to C2. 
v. Compute transformation TXY positioning Y relative to X according to constraints in C1,C2,C3,C4. 
vi. Continue path from the exit edge (if it exists) 

3. For each u ∈ Pj 
a. For each variational parameter pk in parts from Pi to Pj 

i. Find the two transformations that depend on pk. 
ii. Apply each transformation on u using Equation (6). 
iii. Sum the derivatives of the previous step for the kth column of Su. 

Output: Sensitivity matrices of part vertices  
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One limitation of our method is that while the linear approximation is good for small variations, long chains of 
mated parts may cause non-negligible cumulative errors. However, in the assemblies that we studied, with chains of up 
to 8 parts, we did not observe this problem. 
 
3. APPLICATIONS AND EXAMPLE 

The sensitivity matrix of a vertex in a toleranced assembly describes the effect of the parameter variations on the 
position of the vertex, relative to the chosen source part, or the datum. When used as input to the algorithm in [8], the 
resulting tolerance envelope bounds the convex polygon inside which the vertex is located under all possible variations 
of the assembly parts. Similarly, the tolerance envelope of the entire part bounds the area occupied by the part under 
all possible assembly variations. In functionality analysis of mechanisms, this provides a worst case bound on variability 
of clearances and critical features.  

P1

P2

P3

P4

P5

P6

P7

v1

v2 v3
v4

v5
v6

  

P7\P4

origin

 
(a) (b) 

 
Fig. 7. (a) Infeasible instance of the mechanism when the coordinates of vertices v1,v2,v3,v4 of P3 and v5,v6 of P4 vary in 1mm from the 
nominal. To satisfy the constraints, the parts forming the cycle make much larger variations in their positions, causing P4 and P7 to 
collide. (b) The configuration space obstacle P7 \ P4 (thick curve), its tolerance envelope (thin curve), and the cone of blocked 
translation directions. 

 
One very useful property of the sensitivity matrices is their additivity – it is possible to combine matrices of vertices 

with shared parameter dependency to obtain the correct combined sensitivity. Without respecting parameter 
dependencies, the stack-up analysis of feature tolerance zones is overly conservative, as it ignores parameters whose 
effect on the variability of two features cancel each other out. The additivity is especially important in the computation 
of configuration spaces (C-space) of toleranced assemblies [9]. 

In the C-space approach for assembly analysis [3,4,5,9], the space describing the degrees of freedom of a part or 
a group of parts is partitioned into free space, corresponding to valid configurations, and blocked space corresponding 
to, invalid configurations caused by overlap with other parts in the assembly, which are treated as obstacles. For 
motion planning with limited translations, the C-space of a part Pi is two dimensional, and the obstacle made by part Pj 
is computed using the Minkowski difference of sets: Pj \ Pi = {vj – vi | vi∈Pi, vj∈Pj }.  The outer boundary of the 
obstacle is obtained by first computing the boundary features (vertices and line and arc segments in our model) 
pairwise Minkowski difference and then computing the outer cell of the resulting arrangement of curves. This outer 
bounds the C-space obstacle of the parts. 
      When the parts are toleranced, we can first compute each part’s tolerance envelope, and then compute the 
configuration space obstacle using the envelopes. However, this analysis is overly conservative because it ignores 
parameter dependencies. The correct method is to construct the C-space envelopes for pairs of parts as follows. First, 
compute the pairwise feature Minkowski difference as before. The segments bounding the Minkowski difference are 
either the difference of a vertex of Pi and a segment of Pj (or vice versa), or parts of such segments produced by the 
intersection of two segments. In either case, the vertices of these segments have explicit representations as functions of 
the vertices of Pi and Pj. Thus it is possible to compute their nominal positions, and their partial derivatives, which are a 
linear combination of the sensitivity matrices of Pi and Pj. Next, we compute the outer tolerance envelopes of the 
pairwise features, and obtain an arrangement of elementary features, whose outer cell is the C-space envelope of the 
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obstacle. When C-space envelopes of obstacles are used in assembly analysis methods instead of the nominal 
obstacles, the analysis accounts for parameter dependency in the worst case variation of the parts in the assembly. 

We have implemented the relative position computation and assembly graph data structure using MATLAB, and 
ran it on several examples of assemblies. To illustrate, we describe the results we obtained on the assembly in Figure 1. 
The input consists of N=7 parts, m=58 variational parameters. The maximum part complexity is n=14, maximal path 
length r=7 (from P6 to P7 and vice versa, including cycle parts), and maximal number of local parameters q=3. The 
CPU time to compute the sensitivity matrix of all the parts relative to P1 was 1.37 seconds on a Pentium IV 2.4GHz 
with 512 MB RAM. Figure 7(a) shows an instance of the mechanism when only six of the variational parameters are 
allowed to vary within ±1mm tolerance intervals (about 1% from the average feature length in the assembly). Even 
though the nominal horizontal clearance between P4 and P7 is of 20mm and four of the vertices translate vertically, the 
instance represents an infeasible assembly because the parts overlap. 

Even with smaller tolerance intervals, tolerancing significantly affects the assembly. Figure 7(b) shows part P7 as 
the configurations space obstacle of P4, without tolerances, and when each variational parameter has a ±0.3mm 
tolerance interval. The obstacle and the origin determine the directions in which P4 is free to move without colliding 
with P7 (shown in Figure 7(b) as part of the unit circle). Thus, unlike the nominal assembly, there are instances of the 
assembly in which of P7 blocks the directions separating P4 from P3, and therefore P7 must be removed first in the 
disassembly sequence.  
 
4. CONCLUSION 

We have presented a framework for worst case analysis of toleranced planar assemblies. The framework is more 
general than existing ones in terms of the geometry of parts (line and arc segment boundaries) and the tolerancing 
model used. The sensitivity matrices of each part vertex that are computed by our algorithm can used to compute the 
tolerance envelopes bounding the areas occupied by the parts under all possible assembly instances. The envelopes 
provide a characterization of geometric uncertainty that is more accurate than those produced by Monte Carlo 
methods and is useful in assembly planning and mechanism design. Directions for future work include modeling 
mechanisms of interest to industry, extension to three-dimensional parts, starting with polyhedra, and optimal part 
placement with respect to objective functions [7, 10] instead of pre-determined contacts.  
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